

Northeast Fisheries Science Center Reference Document 13-11

## 55th Northeast Regional Stock Assessment Workshop (55th SAW)

## Assessment Report

by the Northeast Fisheries Science Center

June 2013

## 55th Northeast Regional Stock Assessment Workshop (55th SAW)

## Assessment Report

by the Northeast Fisheries Science Center

NOAA's National Marine Fisheries Serv., 166 Water St., Woods Hole MA 02543

#### **U.S. DEPARTMENT OF COMMERCE**

National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Science Center Woods Hole, Massachusetts

June 2013

### **Northeast Fisheries Science Center Reference Documents**

**This series is a secondary scientific series** designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review, and most receive copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to *http://www.nefsc.noaa.gov/nefsc/publications/*. The electronic version is available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (*i.e.*, non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

**Information Quality Act Compliance**: In accordance with section 515 of Public Law 106-554, the Northeast Fisheries Science Center completed both technical and policy reviews for this report. These predissemination reviews are on file at the NEFSC Editorial Office.

This document may be cited as:

Northeast Fisheries Science Center. 2013. 55th Northeast Regional Stock Assessment Workshop (55th SAW) Assessment Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 13-11; 845 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://www.nefsc.noaa.gov/nefsc/ publications/

#### **Table of Contents**

|                                                                                                | )12,    |
|------------------------------------------------------------------------------------------------|---------|
| JPDATED THROUGH 2011                                                                           |         |
| cecutive Summary                                                                               |         |
| AW 55 Terms of Reference (TOR) Gulf of Maine Atlantic Cod (Gadus morhua)                       |         |
| ntroduction                                                                                    |         |
| Assessment history                                                                             |         |
| Fisheries Management                                                                           |         |
| iology                                                                                         |         |
| Stock structure                                                                                |         |
| Length-weight relationship                                                                     |         |
| Growth and maturity                                                                            |         |
| esponse to Terms of Reference (TOR)                                                            |         |
| TOR A.1 Estimate catch from all sources including landings and discards                        |         |
| TOR A.2 Present the survey data and calibration information being used in the assessment;      |         |
| investigate the utility of commercial or recreational LPUE as a measure of relative abundance  | e       |
| TOR A.3 Summarize the findings of recent workshops on stock structure of cod                   |         |
| TOR A.4 Investigate the evidence for natural mortality rates                                   |         |
| TOR A.5 Estimate annual fishing mortality, recruitment and stock biomass                       |         |
| TOR A.6 State the existing stock status definitions for overfished and overfishing; redefine 1 | BRP     |
| TOR A.7 Evaluate stock status with respect to existing model                                   |         |
| TOR A.7.a. Working with existing model, update it with new data and evaluate stock status      |         |
| with respect to the existing BRP estimates                                                     |         |
| TOR A.7.b. Using the new proposed model, evaluate stock status with respect to new BRPs        |         |
| (from Cod TOR-6)                                                                               |         |
| TOR A.8 Develop and apply analytical approaches to conduct single and multi-year stock         |         |
| projections                                                                                    |         |
| TOR A.8.a. Provide numerical annual projections                                                |         |
| TOR A.8.b. Comment on projections                                                              |         |
| TOR A.8.c. Describe this stock's vulnerability                                                 |         |
| TOR A.9. Review, evaluate and report on the status of the SARC and Working Group               |         |
| recommendations                                                                                |         |
| eferences                                                                                      |         |
| ables                                                                                          |         |
| igures                                                                                         |         |
| ppendices                                                                                      |         |
| Appendix A.1. List of 55 <sup>th</sup> Stock Assessment Workshop (SAW 55) Working Group (WG    |         |
| participants                                                                                   |         |
| Appendix A.2. Preferred Statistical Catch-at-Age Assessments (SCAA) of GOM Cod, Nov 2          | 2012    |
| Appendix A.3. Algebraic details of the SCAA Model                                              |         |
| Appendix A.4. Applications of SCAA Assessment Methodology to GOM Cod – Oct 2012                |         |
| Appendix A.5. Further SCAA Assessment Results together with BRP estimates for GOM C            | od – (  |
| 2012                                                                                           |         |
| Appendix A.6. Additional ASAP sensitivity runs                                                 |         |
| Appendix A.7. Comparison of the four assessment models recommended by the SAW 55 W             | 'orking |
|                                                                                                |         |

| B. | GEORGES BANK ATLANTIC COD (Gadus morhua) STOCK ASSESSMENT FOR 20 | 12640 |
|----|------------------------------------------------------------------|-------|
|    | SAW 55 Terms of Reference                                        | 640   |
|    | Executive Summary                                                | 642   |
|    | Background                                                       | 653   |
|    | Distribution and Stock Structure                                 | 653   |
|    | Assessment History                                               | 654   |
|    | Fishery                                                          | 655   |
|    | Management                                                       | 655   |
|    | Commercial Data Collection                                       | 656   |
|    | Commercial Catch                                                 | 656   |
|    | Commercial Landings                                              | 656   |
|    | Commercial Discards                                              | 657   |
|    | Recreational Catch                                               | 658   |
|    | Total Catch                                                      | 659   |
|    | Sampling intensity                                               | 659   |
|    | Age and Size Composition                                         | 659   |
|    | USA Commercial Landings at Age                                   | 659   |
|    | Canadian Commercial Landings at Age                              | 660   |
|    | USA Commercial Discards at Age                                   | 661   |
|    | Canadian Commercial Discards at Age                              | 661   |
|    | Total Catch at Age                                               | 662   |
|    | Catch Mean Weight and Length at Age                              | 663   |
|    | Stock Abundance and Biomass Indices                              | 663   |
|    | Commercial Catch Rates                                           | 663   |
|    | Recreational Catch Rates                                         | 664   |
|    | Survey Biomass and abundance indices                             | 664   |
|    | USA Surveys                                                      | 664   |
|    | Canadian Surveys                                                 | 665   |
|    | Model-Based Abundance Indices                                    | 665   |
|    | Ageing Precision                                                 | 665   |
|    | Life-History                                                     | 666   |
|    | Length-Weight Relationship                                       | 666   |
|    | Growth                                                           | 666   |
|    | Mean Length and Weight at Age                                    | 667   |
|    | Condition                                                        | 667   |
|    | Maturity Ogives                                                  | 667   |
|    | Total Mortality                                                  | 668   |
|    | Natural Mortality                                                | 668   |
|    | Assessment Model Formulation                                     | 671   |
|    | Bridge VPA                                                       | 672   |
|    | VPA                                                              | 672   |
|    | Input data and Analyses                                          | 672   |
|    | Diagnostics-2012 Split VPA (Run B)                               | 673   |
|    | Results – 2012 Split Model (Run B).                              | 673   |
|    | Retrospective Analysis.                                          | 674   |
|    | ASAP                                                             | 674   |
|    | Model description                                                | 674   |
|    | VPA-like ASAP                                                    | 674   |
|    |                                                                  |       |

| BASE ASAP                                                                              | 675 |
|----------------------------------------------------------------------------------------|-----|
| Base Model Results                                                                     | 677 |
| Envelope Analysis                                                                      | 678 |
| Alternative ASAP Models                                                                | 678 |
| Other Sensitivity Runs                                                                 | 679 |
| Biological Reference Points                                                            | 679 |
| Yield per Recruit Analysis                                                             | 679 |
| MSY Biological Reference Points                                                        | 680 |
| Status of Stock                                                                        | 680 |
| Parametric Stock-Recruit Biological Reference Points                                   | 680 |
| Projections                                                                            | 681 |
| Recommendations                                                                        | 681 |
| Summary                                                                                | 683 |
| References                                                                             | 684 |
| Tables                                                                                 | 689 |
| Figures                                                                                | 745 |
| Appendices                                                                             | 813 |
| Appendix B.1                                                                           | 813 |
| Table 1. USA Management actions related to Georges Bank Atlantic Cod, 1953-2011        | 814 |
| Table 2. Canadian fishery management history of cod on eastern Georges Bank, 1978-2011 | 822 |
| Appendix B.2                                                                           | 825 |
| Swept area estimates for NEFSC spring, autumn, and DFO surveys                         | 825 |
| Appendix B.3                                                                           | 828 |
| Alternative ASAP Models                                                                | 828 |

#### Foreword

The Northeast Regional Stock Assessment Workshop (SAW) process has three parts: preparation of stock assessments by the SAW Working Groups and/or by ASMFC Technical Committees / Assessment Committees; peer review of the assessments by a panel of outside experts who judge the adequacy of the assessment as a basis for providing scientific advice to managers; and a presentation of the results and reports to the Region's fishery management bodies.

Starting with SAW-39 (June 2004), the process was revised in two fundamental ways. First, the Stock Assessment Review Committee (SARC) became smaller panel with panelists provided by the Independent System for Peer Review (Center of Independent Experts, CIE). Second, the SARC provides little management advice. Instead, Council and Commission teams (e.g., Plan Development Teams, Monitoring and Technical Committees. Science and Committee) Statistical formulate management advice, after an assessment has been accepted by the SARC. Starting with SAW-45 (June 2007) the SARC chairs were from external agencies, but not from the CIE. Starting with SAW-48 (June 2009), SARC chairs are from the Fishery Management Council's Science and Statistical Committee (SSC), and not from the CIE. Also at this time, some assessment Terms of Reference were revised to provide additional science support to the SSCs, as the SSC's are required to make annual ABC recommendations to the fishery management councils.

Reports that are produced following SAW/SARC meetings include: An *Assessment Summary Report* - a summary of the assessment results in a format useful to managers; an *Assessment Report* – a detailed account of the assessments for each stock;

and the SARC panelist reports – a summary of the reviewer's opinions and recommendations as well as individual reports from each panelist. SAW/SARC assessment reports are available online at

http://www.nefsc.noaa.gov/nefsc/publication s/series/crdlist.htm. The CIE review reports and assessment reports can be found at http://www.nefsc.noaa.gov/nefsc/saw/".

The 55th SARC was convened in Woods Hole at the Northeast Fisheries Science Center, December 3-7, 2012 to review benchmark stock assessments of: Gulf of Maine and Georges Bank Atlantic cod stocks (*Gadus morhua*). CIE reviews for SARC55 were based on detailed reports produced by NEFSC Assessment Working Groups. This Introduction contains a brief summary of the SARC comments, a list of SARC panelists, the meeting agenda, and a list of attendees (Tables 1 - 3). Maps of the Atlantic coast of the USA and Canada are also provided (Figures 1 - 5).

## Outcome of Stock Assessment Review Meeting:

Text in this section is based on SARC-55 Review Panel reports (available at http://www.nefsc.noaa.gov/nefsc/saw/ under the heading "SARC-55 Panelist Reports"). Two issues dominated discussion of the Gulf of Maine Atlantic cod assessment. Issue 1 involved the use of data prior to 1982 in the assessment and in determining the stock recruitment relationship. Issue 2 involved whether natural mortality (M) was changing over time. Concerns about use of the pre-1982 data (which were not of the same detail and quality as the post-1982 data) and concerns about results from fitting stock-recruitment curves based on early data led the Review Panel to eliminate that approach from consideration. Two

variations of an ASAP model, both based on data from 1982 to present are being put forward. One model has a time-varying M while the other does not. The consequences associated with using each model were outlined. The two models should be viewed separately rather than being averaged for decision making. Commercial and recreational LPUE from the fishery were explored as potential indices of population abundance to be used in the assessment. The Panel concluded that these LPUE data are not indicative of trends in the stock as a whole. Based on the reference points derived from both assessment models being put forward, the Gulf of Maine cod stock is overfished and overfishing is occurring (the same conclusion as SARC53 in 2011). The Review Panel notes a long history of overfishing this stock.

The Review Panel was able to reach consensus on a single assessment model for **Georges Bank Atlantic cod**. The assessment assuming M = 0.2 with bias

correction was recommended. Nevertheless, the Review Panel remained uncertain about whether M has changed. Commercial and recreational LPUE were explored as potential indices of abundance to be used in the assessment. The Panel concluded that these LPUE time series are not indicative of trends in the stock as a whole. The Panel noted a reduction over time in mean weight at age in this stock, truncated age structure, and two decades of poor recruitment for this stock. The bridge from the previous assessment model to the current model was well described. As in the past, reference points were calculated using F<sub>40%SPR</sub> for stock status determination. The Georges Bank stock is overfished and overfishing is taking place.

The Review Panel was unanimous regarding its conclusions, and stated that the Gulf of Maine and Georges Bank cod stock assessments represent best available science.

#### Table 1. 55th Stock Assessment Review Committee Panel.

#### **SARC Chairman (NEFMC SSC):**

Dr. Patrick Sullivan Cornell University Dept. of Natural Resources Email: pjs31@cornell.edu

#### **SARC Panelists (CIE):**

Dr. Noel Cadigan Fisheries and Marine Institute of Memorial University of Newfoundland P.O. Box 4920 St. John's, NL Canada A1C 5R3 Email: <u>Noel.Cadigan@mi.mun.ca</u>

Dr. John Casey Centre for Environment, Fisheries and Aquaculture Sciences (CEFAS) Pakefield Road Lowestoft, Suffolk NR33 0HT UK Email: john.casey@cefas.co.uk

Dr. Steven Holmes Marine Scotland – Science Scottish Government Marine Laboratory PO Box 101 375 Victoria Road Aberdeen AB11 9DB Email: <u>S.Holmes@MARLAB.AC.UK</u>

#### Table 2. Agenda, 55th Stock Assessment Review Committee Meeting.

### December 3-7, 2012

Stephen H. Clark Conference Room – Northeast Fisheries Science Center Woods Hole, Massachusetts

### AGENDA\* (version: 2 Dec. 2012)

| TOPIC | PRESENTER(S) | SARC LEADER | RAPPORTEUR |  |
|-------|--------------|-------------|------------|--|
|       |              |             |            |  |

#### Monday, Dec. 3

| 1 – 1:30 PM<br>Welcome<br>Introduction<br>Agenda<br>Conduct of Meeting | <b>James Weinberg</b> , SAW Chair<br><b>Patrick Sullivan</b> , SARC Chair |               |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|
| 1:30 - 3:15                                                            | Assessment Presentation (B. GB cod)<br>Loretta O'Brien TBD                | Julie Nieland |
| <b>3:15 – 3:30</b> B                                                   | reak                                                                      |               |
| 3:30 - 4:45                                                            | (cont.)Assessment Presentation (B. GB cod)<br>Loretta O'Brien TBD         | Julie Nieland |
| 4:45 - 6                                                               | SARC Discussion w/ presenter (B. GB cod)<br>Patrick Sullivan, SARC Chair  | Julie Nieland |

### Tuesday, Dec. 4

| 8:30 – 9:30  | (cont.) SARC Discussion w/ presenter (B. GB cod)<br>Patrick Sullivan, SARC Chair | Jessica Blaylock |
|--------------|----------------------------------------------------------------------------------|------------------|
| 9:30 - 9:45  | Break                                                                            |                  |
| 9:45 - 10:15 | Assessment Presentation (A. GOM COD)<br>Robert O'Boyle TBD                       | Jessica Blaylock |
| 10:15 –Noon  | (cont). Assessment Presentation (A. GOM COD)<br>Mike Palmer TBD                  | Jessica Blaylock |
| Noon – 1     | Lunch                                                                            |                  |
| 1-2:15       | (cont.) Assessment Presentation (A. GOM COD)<br>Mike Palmer TBD                  | Toni Chute       |
| 2:15 - 3:15  | (cont.) Assessment Presentation (A. GOM COD)<br>Doug Butterworth TBD             | Toni Chute       |
| 3:15 – 4:15  | (cont.) Assessment Presentation (A. GOM COD)                                     |                  |

|                             | Robert O'Boyle TBD                                                                        | <b>Toni Chute</b>                |
|-----------------------------|-------------------------------------------------------------------------------------------|----------------------------------|
| 4:15 - 4:30                 | Break                                                                                     |                                  |
| 4:30-6:15                   | SARC Discussion w/ presenters (A. GOM COD)<br>Patrick Sullivan, SARC Chair                | Toni Chute                       |
| (7:15                       | Social event -Coonamesset Inn )                                                           |                                  |
| <u>Wednesday,</u>           | <u>Dec. 5</u>                                                                             |                                  |
| 9 - 11                      | Revisit w/ presenter (B. GB cod)<br>Patrick Sullivan, SARC Chair                          | Tony Wood                        |
| 11 – 11:15                  | Break                                                                                     |                                  |
| 11:15 – 12:15               | Revisit w/ presenters (A. GOM COD)<br>Patrick Sullivan, SARC Chair                        | Tony Wood                        |
| 12:15 - 1:30                | Lunch                                                                                     |                                  |
| 1:30 - 2:45                 | (cont.) Revisit w/ presenters (A. GOM COD)<br>Patrick Sullivan, SARC Chair                | Alicia Miller                    |
| 2:45 -3                     | Break                                                                                     |                                  |
| 3 - 6                       | Review/edit Assessment Summary Report (A. GOM cod)<br>Patrick Sullivan, SARC Chair        | Alicia Miller                    |
| <u>Thursday, I</u>          | <u>Dec. 6</u>                                                                             |                                  |
| 9 - Noon                    | Review/edit Assessment Summary Report (B. GBK COD)<br>Patrick Sullivan, SARC Chair        | Kiersten Curti                   |
| Noon – 1:15                 | Lunch                                                                                     |                                  |
| 1:15 – 3                    | Wrap up Assessment Summary Reports (A. and/or B.; as nece<br>Patrick Sullivan, SARC Chair | essary)<br><b>MichelleTraver</b> |
| 3 - 3:15                    | Break                                                                                     |                                  |
| 3:15 - 5:30                 | SARC Report writing. (closed meeting)                                                     |                                  |
| Friday, Dec.<br>9:00 - 3 PM | (cont.) SARC Report writing. (closed meeting)                                             |                                  |

\*All times are approximate, and may be changed at the discretion of the SARC chair. The meeting is open to the public, except where noted.

| Name             | Affiliation                  | Email                        |
|------------------|------------------------------|------------------------------|
| Blaylock Jessica | NEFSC                        | Jessica.Blaylock@noaa.org    |
| Brooks Liz       | NEFSC                        | <u>liz.brooks@noaa.gov</u>   |
| Butterworth Doug | UCT                          | doug.butterworth@uct.ac.za   |
| Cadigan Noel     | CIE                          | Noel.Cadigan@mi.mun.ca       |
| Cadrin Steve     | SMAST                        | scadrin@umassd.edu           |
| Casey John       | CIE                          | John.Casey@cefas.co.uk       |
| Crawford Jud     | Pew Charitable Trusts        | jcrawford@pewtrusts.com      |
| Curti Kiersten   | NEFSC                        | kiersten.curti@noaa.gov      |
| Deroba Jon       | NEFSC                        | jonathan.deroba@noaa.gov     |
| Giacolone Vito   | GFCPF/NSC                    | summer-breeze@mindspring.com |
| Hart Dvora       | NEFSC                        | Deborah.hart@noaa.org        |
| Holmes Steven    | CIE                          | S.Holmes@marlab.ac.uk        |
| Kaplan Katherine | Cornell University           | Kak323@cornell.edu           |
| Karp Bill        | NEFSC                        | <u>bill.karp@noaa.gov</u>    |
| Legault Chris    | NEFSC                        | chris.legault@noaa.gov       |
| Methot Richard   | NMFS                         | richard.methot@noaa.gov      |
| Miller Alicia    | NEFSC                        | alicia.miller@noaa.gov       |
| Miller Tim       | NEFSC                        | timothy.j.miller@noaa.gov    |
| Nieland Julie    | NEFSC                        | julie.nieland@noaa.gov       |
| Nies Tom         | NEFMC                        | tnies@nefmc.org              |
| Nitschke Paul    | NEFSC                        | paul.nitschke@noaa.gov       |
| O'Boyle Bob      | Beta Scientific/SAW WG Chair | betasci@eastlink.ca          |
| O'Brien Loretta  | NEFSC                        | Loretta.O'Brien@noaa.gov     |
| Odell Jackie     | NSC                          | Jackie.odell@yahoo.com       |
| Palmer Mike      | NEFSC                        | Michael.Palmer@noaa.gov      |
| Rago Paul        | NEFSC                        | Paul.Rago@noaa.org           |
| Robillard Eric   | NEFSC                        | Eric.Robillard@noaa.gov      |
| Serchuk Fred     | NEFSC                        | fred.serchuk@noaa.gov        |
| Sullivan Pat     | Cornell NEFMC SSC            | pjs31@cornell.edu            |
| Terceiro Mark    | NEFSC                        | mark.terceiro@noaa.gov       |
| Weinberg James   | NEFSC                        | James.Weinberg@noaa.org      |
| Wigley Susan     | NEFSC                        | susan.wigley@noaa.gov        |
| Wood Tony        | NEFSC                        | anthony.wood@noaa.gov        |
|                  |                              |                              |
|                  |                              |                              |

## Table 3. 55<sup>th</sup> SAW/SARC, List of Attendees



Figure 1. Offshore depth strata that have been sampled during Northeast Fisheries Science Center bottom trawl research surveys. Some of these may not be sampled presently.



Figure 2. Inshore depth strata that have been sampled during Northeast Fisheries Science Center bottom trawl research surveys. Some of these may not be sampled presently.



Figure 3. Depth strata sampled during Northeast Fisheries Science Center clam dredge research surveys.





Figure 4. Statistical areas used for reporting commercial catches.



Figure 5. Catch reporting areas of the Northwest Atlantic Fisheries Organization (NAFO) for Subareas 3-6.

#### A. GULF OF MAINE ATLANTIC COD (*GADUS MORHUA*) STOCK ASSESSMENT FOR 2012, UPDATED THROUGH 2011

#### **Executive Summary**

TOR 1. Estimate catch from all sources including landings and discards. Characterize the uncertainty in these sources of data and take into account the recommendations and subsequent work from the March 2012 MRIP workshop. Evaluate available information on discard mortality and, if appropriate, update mortality rates applied to discard components of the catch.

Since 1964, catch of Gulf of Maine Atlantic cod has ranged from 3,242 mt to 22,272 mt. Recent catches over the past five years have ranged from approximately 5,500 mt to 8,400 mt. Catch estimates prior to 1981 do not include commercial discards or estimates of recreational removals. Given the smaller mesh sizes and lower minimum retention sizes that existed pre-1977, commercial discards could have been substantial, particularly given the presence of several strong year classes in the 1970s. Since 1982, commercial landings have been the largest source of fishery removals, comprising 40-90% of the total catch. Commercial discards constituted a large proportion of the catch between 1998 and 2003 when trip limits ranged from 30-500 lb/day (13.6 – 226.8 kg/day). Since 2006 commercial discards have accounted for <10% of the total catch and <3% of the catch since 2010. Major uncertainties in the commercial catch include the mis-allocation of commercial landings stemming from industry mis-reporting of statistical area and uncertainty in the discard estimation method. The uncertainty with respect to mis-reporting is estimated to be small (5%). In recent years precision of the estimated discards has been high with coefficients of variation (CV) <20%. Beginning with the SAW 53 assessment, the Gulf of Maine cod assessment has included hindcasted commercial discard back to 1982; however, the uncertainty on these estimates is unknown.

A notable contraction of both the commercial trawl and gillnet fleets has been observed since the mid-1990's. Generally, the fishery has become highly concentrated in the western Gulf of Maine, exhibiting similar trends as those observed in the resource as a whole as evidenced from fishery-independent surveys. Between 2006 and 2010, there was an intense aggregation of the commercial fishery within a small geographic area of approximately 260 km<sup>2</sup> (<0.5% of the total Gulf of Maine surface area). By 2010, this area (known as ten minute square '427044') was responsible for >45% of the total commercial landings. There are several likely causes for this concentration in the fishery including concentration of the cod resource as well as regulatory changes. These factors are described in more depth under TOR2.

There is a large recreational fishery in the Gulf of Maine that, over the last decade, has accounted for approximately 20-31% of the total catch. Previous assessments have used data collected under the Marine Recreational Fisheries Statistical Survey (MRFSS). Beginning with this current assessment, MRFSS data have been re-estimated using revised methodologies consistent with the new Marine Recreational Information Program (MRIP) which has replaced the MRFSS program. The revised MRIP recreational catch estimates are approximately 25% lower than the MRFSS estimates pre-2003 and range from 4% higher to 50% lower between 2004 and 2011.

With increases in the recreational minimum retention size, the discard component has become an increasingly important component of recreational catch with discards more than

two times greater than the recreational landings in terms of numbers of fish between 2006 and 2011. This assessment includes revised estimates of the survival of discarded fish, with only 30% of recreationally released fish estimated to die. The true percentage of recreational discards suffering mortality remains a key source of uncertainty in the estimate of recreational removals. The uncertainty associated with the estimates of total recreational catch is on the order of 10-25% in terms of percent standard error (PSE). An additional source of uncertainty is the age composition of recreational discards prior to 2005. Beginning with the SAW 53 assessment, the recreational discard length frequency distributions were hindcasted to 1981 in an effort to incorporate recreational discards into an age-based assessment.

As noted previously, the current assessment incorporates revised estimates of the mortality of fish discarded in both the commercial and recreational fishery. The previous assessment of this stock (SAW 53, NEFSC 2012) assumed 100% mortality of all discarded fish. The revised estimates are a product of a Discard Mortality Working Group (DMWG) convened in July 2012 to evaluate the available scientific information on the survival of cod on a gear-by-gear basis. The working group consisted of scientific experts with experience in field estimation of discard survival and stock assessments as well as both recreational and commercial fishermen and other industry representative. The revised mortality estimates developed by the DMWG ranged from 20-80% depending on gear type. The impacts of the revised mortality rates on the total estimates of fishery removals are most pronounced in the recreational fishery where 30% of discarded cod are estimated to die. In the commercial fishery, where discards are dominated by otter trawl and sink gillnet gear, the revised discards mortality estimates had a much smaller impact since 75% and 80% of the fish discarded by otter trawl and sink gillnet gear are estimated to die.

TOR 2. Present the survey data and calibration information being used in the assessment (e.g., indices of abundance, recruitment, state surveys, age-length data, etc.). Consider model-based (e.g. GLM) as well as design-based analyses of the survey data in developing trends in relative abundance. Investigate the utility of commercial or recreational LPUE as a measure of relative abundance. Characterize the uncertainty and any bias in these sources of data.

The Northeast Fisheries Science Center (NEFSC) spring and fall bottom trawl surveys began in 1968 and 1963 respectively, providing a long time series of fishery independent indices. Age-specific indices for Gulf of Maine cod began in 1970. All previous Gulf of Maine cod assessments have used only the offshore survey strata. The aggregate indices of abundance (numbers) and biomass have generally declined since time series highs in the 1960/1970s. Current indices are at, or near, all time lows. The number of stations and strata where cod have been observed in the Gulf of Maine has generally decreased over time as the resource has become increasingly concentrated in the western Gulf of Maine. It appears that two related, but separate, processes may be underway with respect to the concentration of the resource. Over the longer term, there has been a loss of cod from the eastern and central Gulf of Maine with an apparent concentration of cod in the western area. In addition to this, since 2006 there has been a further aggregation of cod within the western Gulf of Maine into highly localized areas which are hypothesized to be driven by prey availability. While it is difficult to prove definitely that these processes are responsible for the observed distribution changes, the evidence is suggestive. The impacts of including the inshore survey strata in the NEFSC survey indices were examined by the 55<sup>th</sup> Stock Assessment Workshop Working Group (SAW 55 WG). The overall trends in both the aggregate and age specific indices of older fish was not markedly different with the inclusion of the inshore strata, and more importantly, there was inconsistent sampling of the inshore survey strata throughout the time series which impedes the construction of consistent and stable survey indices. For this reason, and because the inshore areas that were sampled by the NEFSC survey are largely covered by the Massachusetts Department of Marine Fisheries (MADMF) bottom trawl survey, the SAW 55 WG concluded that the status quo should be maintained with the inshore strata excluded from NEFSC indices. The NEFSC survey vessel was replaced in spring 2009 resulting in changes to the survey protocol. Calibration experiments to estimate differences in catchability between the two survey series were conducted and peer-reviewed. Length based calibration models were used to express the 2009-2012 NEFSC indices in units equivalent to the longer time series. Preliminary attempts to estimate length-based survey calibration factors internally within a Statistical Catch at Age (SCAA) assessment model were conducted and reviewed by the SAW 55 WG and found to be very similar to the externally estimated calibration factors used in previous assessment. While the SAW 55 WG generally supported the internally estimated approach as a longer-term research recommendation, given the high level of agreement between the internally and externally estimated calibration coefficients the SAW 55 WG supported continued use of the existing calibration coefficients.

The SAW 55 WG also considered model-based estimates of the NEFSC survey indices as opposed to the design-based estimators that have been employed in past assessments. The model-based estimates were based on a generalized linear model (GLM) that attempted to standardize for multiple factors including stratum, time of day and depth. Overall there was a high degree of agreement between the GLM-based estimates and the design-based estimates; however, the variability about the GLM-based estimates was considerably higher than the design-based estimates. The SAW 55 WG was concerned about the incorporation of GLM-based smoothed indices into the assessment model, which then effectively applies an additional smooth as it fits the survey index. Given the similarity of the indices, the increased variability in the GLM-based indices, and concerns over the use of smoothed series in assessment models, the SAW 55 WG concluded that the existing design-based indices be used as inputs to the assessment model.

The MADMF bottom trawl survey began in 1978, with two surveys (spring and fall) conducted annually. Age-specific indices are available beginning in 1982. The MADMF fall survey catches very few older fish and there is poor cohort tracking within the survey. For this reason, the MADMF fall survey is not used in the Gulf of Maine cod assessment. MADMF spring biomass index is currently at a time series lows and the abundance (numbers) index is the third lowest observed. Similar to what has been observed in the NEFSC survey, the number of stations and stratum in which cod have been observed has declined over time.

The SAW 55 WG spent considerable time evaluating catch per unit effort indices and their utility as indices of abundance within the Gulf of Maine cod stock assessment. A number of analyses were undertaken to describe Gulf of Maine cod distributional changes, which particularly since 2006, appear to have been driven by fine-scale spatial processes of prey (primarily sand lance). A number of surveys indicate that the Stellwagen Bank area appears to be a foraging 'hot spot' for cod feeding on sand lance. Additionally, the VTR, observer

and VMS information from the commercial fishery indicates that fishing effort since the mid-2000s has become concentrated in this area. Over the longer term, there have been a number of regulatory changes (e.g. seasonal closures, trip limits, etc) which call into question the utility of commercial LPUE as an index of GOM cod biomass. Based on these concerns, the SAW 55 WG recommended that the commercial LPUE index not be used in the SAW 55 assessment model. This recommendation is consistent with the findings of the recent NEFSC sponsored LPUE workshop. Given concerns comparable to those of the commercial fishery, the SAW 55 WG recommended that the recreational LPUE index also not be included in the GOM cod assessment model. It should be noted that sensitivity runs were conducted which incorporated LPUE indices and these model results are similar to those of the base model (described in Appendix A.6).

The SAW 55 WG also evaluated data from the Maine – New Hampshire (ME/NH) inshore groundfish survey which began in the fall of 2000. Because of lack of age-specific information and the short time series of the survey, the survey was not included in the assessment models. Progress has been made on the implementation and analysis of the data collected since the start of the survey; specifically, spring and fall 2005 and spring 2011 ageing has been completed and spring 2006 is in progress (S. Sherman, ME DMR, pers. comm.). The SAW 55 WG recommended that the complete ageing of the entire time series of collected otoliths be considered a high priority.

# TOR 3. Summarize the findings of recent workshops on stock structure of cod of the Northeastern US and Atlantic Canada. Summarize the findings of recent workshops on stock structure of cod of the Northeastern US and Atlantic Canada.

A work plan on the topic of Atlantic cod stock structure in the Northeast United States/Scotian Shelf region was recommended by the New England Fishery Management Council's Scientific and Statistical Committee (SSC). The work plan laid out a three-phase process for re-evaluating, and possibly revising, the spatial basis for assessment and management of Atlantic cod. The first phase was to review data (genetic, life history, tagging, etc.) in order to evaluate the "null hypothesis" of the status quo management units.

The NEFSC sponsored a public workshop on cod stock structure, held June 12-14, 2012, facilitated by the Gulf of Maine Research Institute to address Phase I. Invited participants from the fishing and scientific communities presented on a range of topics with opportunities for discussion. The full workshop report is available at <a href="http://www.gmri.org/mini/index.asp?ID=52&p=149">http://www.gmri.org/mini/index.asp?ID=52&p=149</a>.

Many of the workshop participants felt that there was compelling evidence that the current management units need to be revised. The Workshop did not reach any conclusions on what the most appropriate management units might be. This will require further data analysis and modeling in order to complete Phase I of the SSC recommended process. The workshop report also identifies gaps in the data and analyses and recommended action to address them.

The Workshop did not explicitly address and propose the next steps in the process. The Steering Committee recommended that an inclusive, but focused, Working Group meeting be held involving a small group of Canadian and US scientists to consider the results of the Workshop. This Working Group should be provided the short-term data and analyses identified as missing by the Workshop. Using that information, as well as the conclusions

from the Workshop, the Working Group should determine the most appropriate representations of biological stock structure to complete Phase I of the process. The results from this Working Group meeting should be evaluated through an independent peer-review process.

Since the phased review process of cod stock structure that was recommended by the SSC has not been completed, no changes to stock structure were incorporated into this assessment.

#### TOR 4. Investigate the evidence for natural mortality rates which are time- and/or agespecific. If appropriate, integrate these into the stock assessment (TOR 5).

Previous assessments of Gulf of Maine cod have assumed a constant, age-invariant rate of instantaneous natural mortality (M) of 0.2. The SAW 55 WG evaluated the sufficiency of this assumption through life history analyses of natural mortality. From the meta-analysis of life history-based estimates, the evidence available with respect to Gulf of Maine cod life history parameters suggests that an assumption of M = 0.2 is reasonable. It should be noted that maximum age as high as 16 has been observed in the commercial fishery as recently as 2009 which suggests comparable natural mortalities relative to earlier in the time series. Also, examinations of maturity-at-age and condition factor over time show no evidence of strong trends both of which can relate to changes in natural mortality.

The method of Lorenzen (1996) was used to provide an aged-based estimate of M. This method, which is based upon the relationship between body weight and M across a wide range of species, was used in SAW 54 to provide age-based estimates of M for Southern New England – Mid Atlantic Bight yellowtail flounder. The peer review panel of SAW 54 (O'Boyle et al. 2012) considered that applying an inter-species relationship to infer within-species dynamics was an over-interpretation of the method. While M no doubt may be age-specific, the pattern estimated from the Lorenzen method may not be appropriate.

Two working papers considered the predator field of cod in the Gulf of Maine area (Link 2012, Waring 2012). Link (2012) noted that directed piscivory of cod by other fish was not common, with fewer than 200 cod observed in over 550,000 stomachs examined. Similarly, the evidence for cannibalism is weak with only 20 cod found in over 20,000 stomachs. Studies to date suggest that M due to fish predation is likely low and is focused on juvenile and smaller size groups (Smith and Link 2010). Waring (2012) considered marine mammals as a potential source of elevated M in the Gulf of Maine area. Four species of seals (Harbor, Grey, Harp and Hooded) are found in New England with Harbor and Grey seals being the most numerous. The Harbor seal population, which was about 38,000 individuals in 2001, has been growing at an annual rate 6.6%. The Grey seal herd has increased from tens of animals in the early 1980s to thousands of animals in the late 2000s. Firm estimates on the size of the current herds are not available. Notwithstanding this, the food habit research suggests that cod mortality due to seals is low. Additionally, while seals are known to prey on cod, they are generalist feeders and the importance of cod in the diet of Gulf of Maine grey seals is unknown. There is limited information that suggests that cod represent only a minor component of harbor seal diet along the Maine coast (Wood 2001).

An analysis of tagging data collected during 2003 – 2006 to jointly estimate natural and fishing mortality was undertaken during GARM III (Miller and Tallack 2007). This analysis was updated for SAW 55 (Miller 2012). Contrary to the earlier work, this analysis was not

length-based. Estimates of M ranged 0.4 - 0.7 for the Gulf of Maine. It also provided evidence of significant cod movements between GOM and GB and area 4X on the order of 4.1 to 29.7%. While M was relatively high compared to current estimates, F was comparatively low, prompting discussion on whether or not it was representative of the fishery due to local effects. The results were sensitive to the assumptions on the return rate of high-reward tags. High-reward return rates on the order of 50% were associated with Gulf of Maine cod M estimates of 0.3, with M increasing as the high-reward tag rate increased. Model preference (based on log-likelihood function) was for assumptions of near-100% on reporting rates of the high-reward tags. Estimates of fishing mortality, F, were inversely related to the M response with F declining with higher assumptions of high-reward tags reporting rates. Across the full range of high-reward tag reporting rates total mortality (Z) was estimated at approximately 1.0.

Concerns were raised with the tagging conducted in the Cape Cod area, which represented over 50% of the date in the database. The tagging had been conducted employing a wide range of expertise with mostly small cod tagged. This in combination with the warm water in the area may have resulted in higher tag induced mortality than assumed in the model. There were additional concerns with the assumed tag reporting rate (100%) for high reward tags. There is evidence to suggest differential reporting rates among some sectors of the commercial fishery, most notably the reporting rate by gillnet vessels was five times lower than that of trawl vessels (Tallack 2006). It is unknown if these same reporting trends also apply to the high-reward tags. There was also discussion on the age groups of cod represented by the study. GOM cod of 50 cm are approximately 2.5 - 3 years old, implying that the estimates of *M* are for ages 2.5 - 3 plus with it weighted towards the younger ages.

The SAW 55 WG discussed how best to use these estimates of M. It was hesitant to conclude that M was in the range of 0.6 - 0.7 and to recommend that these estimates be directly included in the assessment models. Rather, the tagging analysis is another form of modeling that should be considered. The SAW 55 WG discussed the availability of historical tagging to which the current estimates could be compared. It was reported that tagging work conducted in the Gulf of Maine area during the 1970s and 1980s suggested M estimates in the range of 0.2 - 0.3 whereas tagging in the 1990s was suggestive of M similar to the more recent results. These observations are based upon unpublished work that could not be corroborated at the meeting. Much of the historical work (e.g. Hunt et al. 1999) had been focused on cod movements and did not provide estimates of natural, fishing or total mortality. Further, concerns were raised that there was no obvious mechanism (e.g. predation) that could explain a recent increase in M. While counter arguments were raised that no mechanism has been identified for the current M estimate of 0.2, it should be noted that this estimate is supported by life history parameters. The SAW 55 WG recommended profiling natural mortality across both the historical and more recent periods of the assessment to inform the discussion as to whether or not there has been a long-term change in M. The SAW 55 WG agreed that an option with an M change should be considered as an alternate to a base assessment model which would assume no change in M (i.e. M = 0.2).

TOR 5. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Consider feasibility of survey catchability estimates, the starting year for the assessment, estimation of the stock recruitment curve, inclusion of multiple fleets, and whether to use domed or flat selectivity-at-age for the NEFSC surveys. Provide a summary of steps in the model building process. Include a historical retrospective analysis to allow a

## comparison with previous assessment results. Review the performance of historical projections with respect to stock size, catch recruitment and fishing mortality.

There were several changes to the input data and the impacts of these changes on the existing SAW 53 model have been documented in this report. The primary changes to the data inputs were the revised recreational catch estimates, updated assumptions about the mortality of discarded fish and minor updates to the MADMF spring survey indices-at-age. The data updates resulted in only a -54 mt difference in the 2010 estimate of spawning stock biomass (< 1% difference). The data updates did result in moderate differences in the terminal estimate of fishing mortality due to the revisions to recreational catch and discard mortality assumptions. The combined effect of these revisions adjusted the SAW 53 estimate of 2010 age 5 fishing mortality downward from 1.14 to 0.67. Revising the discard mortality assumption increased the retrospective patterning associated with spawning stock biomass, fishing mortality and age 1 recruitment. This increase in the retrospective pattern may suggest that the revised discard mortality estimates underestimate the true mortality.

In addition to the data updates, there have been changes to the model formulation of the ASAP model. The most notable change is the move from two to three fishery selectivity blocks and the assumption of flat-topped selectivity in the fishery compared to the SAW 53 model which allowed fishery selectivity to be freely estimated. There was also a minor change in the functional form used to estimate selectivity for the MADMF spring survey. Whereas the SAW 53 model used a double logistic function to fit age 1-9 indices, the approach used in the revised ASAP model utilizes a non-parametric approach with the selectivity at ages 1-6 estimated independently.

The SAW 55 WG selected four different models for review by the SARC 55 Panel. Between the four models, there were two issues in terms of the science that arose in the SAW 55 WG that resulted in significant differences in interpretation of the Gulf of Maine cod assessment, different assessment results, and consequently led to lack of consensus. The first issue involved the use of data prior to 1982 in conducting the assessment and in determining the stock recruitment relationship based on an assessment using this data. The second issue involved whether or not natural mortality was changing in the Gulf of Maine system. Two SCAA models were put forward which evaluated the performance of models using pre-1982 with internal stock recruit relationship to assumptions of a) constant natural mortality; and, b) natural mortality of 0.4 from 2003 onward. Similarly, two ASAP models were put forward which used only data from 1982 onward but explored the two natural mortality scenarios.

With respect to the first issue, the SARC 55 Panel expressed a number of concerns regarding the use of pre-1982 data and the fitting of a stock-recruit function, but ultimately the Panel discounted the results and eliminated the SCAA approach from further consideration. Given all of the information provided to the Panel, there remained considerable uncertainty in the estimates of M. The evidence for and against constant and ramped natural mortality was equivocal. As with the Working Group, the Panel was unable to reach a decision on which natural mortality values or time varying scenarios best characterized this system. The SARC 55 Panel recognized that one of the motivations for examining how, or if, changes in natural mortality had occurred was driven by an effort to reduce the retrospective pattern present in the M = 0.2 model. However, the Panel concluded that "… finding that including a changing M provides a better fit, is generally not sufficient to justify using such a model modification without other ecologically directed information to back it up" (SARC 55 Panel Summary

Report, 2012). Noting the lack of conclusive evidence to support a change in M they determined that it was unclear as to whether a change in natural mortality was influencing the retrospective pattern or some other factor. For example, a Delphi method had been applied prior to the working group meetings to find alternative values of discard mortality rates for different gears. The retrospective pattern was worse with the lower discard mortality rates, implying that the ramp M approach could be partially aliasing unaccounted fishing mortality.

Given that there was no clear way forward for providing a single model for guiding management advice, the SARC 55 Panel put forward (accepted) both the ASAP M = 0.2 and M-ramp models. The consequences associated with using or disregarding either approach are outlined under TOR 8.

The assessment results for the two ASAP models accepted by the SARC Panel are as follows:

#### M = 0.2 ASAP model

The ASAP M = 0.2 (SAW55\_3BLOCK\_BASE) assessment model indicates that total SSB has ranged from 6,268 mt to 22,036 mt during the assessment time period, with current SSB in 2011 estimated at 9,903 mt (90% posterior probability 7,644 – 13,503 mt). The base model estimates SSB in 2010 at 11,141 mt which is 6% lower than the SAW 53 estimate of 11,868 mt. Total January 1 biomass in 2011 is estimated at 14,728 mt (90% posterior probability 11,890 – 19,149 mt) and F's at the end of the time series are estimated between 0.75 and 1.00 with the 2011 fully recruited,  $F_{full} = 0.86$  (90% posterior probability 0.53 – 1.05).

Recruitment over the past decade has been poor despite modest increases in SSB. Age-1 recruitment has not exceeded 10 million fish in the last two decades and has been below 7 hundred thousand fish over the last decade. The five highest recruitment events in the time series were spawned during a six year period from 1982 to 1987 where the SSB was near the highest observed in the time series, averaging over 14,000 mt annually. The current population structure is comprised primarily of fish that have not yet fully recruited to the fishery (fish age 1-3), with >80% of the population age 4 and younger.

Retrospective analysis for the 2004-2011 terminal years indicates retrospective error in both F and SSB with the tendency for the model to underestimate F and overestimate SSB. The 5-year Mohn's rho value for SSB and F were 0.40 and -0.27 respectively. While the retrospective pattern is larger than that observed in the SAW53 model, the directionality in the terminal year has shifted such that spawning stock biomass tended to be underestimated and fishing mortality overestimate. It appeared that the retrospective pattern was transient with a one year peel showing no bias. Both the SAW 55 WG and SARC 55 Panel agreed that no adjusmtment be made for retrospective pattern given that the retrospective pattern is small, it may be transient in nature and that SAW 53 made no retrospective adjustment.

#### M-ramp ASAP model

The ASAP *M*-ramp (SAW55\_3BLOCK\_BASE\_M\_SPLIT) assessment model indicates that total SSB has ranged from 7,930 mt to 21,531 mt during the assessment time period, with current SSB in 2011 estimated at 10,221 mt (90% posterior probability 7,943 – 13,676 mt). Total January 1 biomass in 2011 is estimated at 16,312 mt (90% posterior probability 13,173 – 20,771 mt) and F's at the end of the time series are estimated between 0.60 and 0.90 with the 2011 fully recruited,  $F_{full} = 0.90$  (90% posterior probability 0.57 – 1.09).

Recruitment over the past decade has been poor to moderate despite modest increases in SSB. Age-1 recruitment has been below ten thousand fish since 2008. The current population structure is comprised primarily of fish that have not yet fully recruited to the fishery (fish age 1-3), with >80% of the population age 4 and younger.

Retrospective analysis for the 2004-2011 terminal years indicates retrospective error in both F and SSB with the tendency for the model to underestimate F and overestimate SSB. The 5-year Mohn's rho value for SSB and F were -0.01 and 0.06 respectively. The retrospective error is considerably reduced relative to the M = 0.2 (SAW55\_3BLOCK\_BASE) model. Both the SAW 55 WG and SARC 55 Panel agreed that no retrospective adjustment should be conducted for the purposes of stock status determination or short-term projections.

TOR 6. State the existing stock status definitions for "overfished" and "overfishing". Then update or redefine biological reference points (BRPs; point estimates or proxies for  $B_{MSY}$ ,  $B_{THRESHOLD}$ ,  $F_{MSY}$ , and MSY) and provide estimates of their uncertainty. Consider alternative parametric models of the stock recruitment relationship. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the appropriateness of existing BRPs and any "new" (i.e., updated, redefined, or alternative) BRPs.

The existing MSY reference points based on a spawning potential ratio (SPR) of 40% were established at SAW 53 (NEFSC 2012). The overfishing definition is  $F_{MSYproxy} = F_{40\%} = 0.20$ . A stock is considered to be overfished if spawning biomass is less than half of SSB<sub>MSY</sub>. The existing overfished definition is  $\frac{1}{2}$  SSB<sub>40%</sub> = 0.5  $\cdot$  61,218 mt = 30,609 mt. New reference points are warranted given the changes in fishery selectivity and fishery weights-at-age due to the revisions in recreational catch estimates and discard mortality assumptions. Additionally the *M*-ramp assumption has considerable impacts on recruitment estimates which will impact the estimation of SSB<sub>MSY</sub> and MSY.

Analytic model-based reference points are not estimable because of insufficient contrast in the ASAP base model time series of estimated SSB and recruitment (1982-2011). As no standard stock-recruitment relationship could be found, the use of proxy reference points for this stock was necessary. A yield per recruit (YPR) analysis was performed using a 3-year average of weights-at-age (2009-2011) which was consistent with the approach used in SAW 53 and supported by recent observed trends. The remaining YPR inputs were time invariant (maturity-at-age) or were constant in the most recent time block of the assessment model (selectivity, natural mortality). The SARC 55 Panel concluded that for long-term projections (i.e., the establishment of reference points) natural mortality should be assumed equal to 0.2, because the longer-term historical evidence seems to indicate that M=0.2 is more plausible than the more recent 0.4 assumed under the M-ramp model. Given the SARC 55 Panel's conclusions regarding natural mortality, there are only minor differences in the selectivity vectors between the M = 0.2 and M-ramp YPR inputs; all other inputs are identical. YPR inputs are summarized in Table A.93 for both the M= 0.2 and M-ramp models.

The basis for the existing reference points was derived at GARM III (NEFSC 2008), and is based on  $F_{40\%}$ . The SARC 55 Panel recommended to maintain the  $F_{40\%}$  basis for reference points for both the M = 0.2 and M-ramp models but noted that "We *do not suggest that*  $F_{40\%}$  *is necessarily the best proxy to use, rather there has yet to be compelling reasons to abandon* 

it" (SARC 55 Panel Summary Report, 2012).

To arrive at estimates for SSB<sub>MSY</sub> and a corresponding MSY, long term projections were run sampling from the empirical distribution of recruitment estimates from the preferred ASAP model. The recruitment vector included years 1982-2009; recruitment in 2010 and 2011 were not included due to their greater variance. The projection model samples from a cumulative density function derived from estimated age-1 recruitment. However, the revised model adjusts projected recruitment when SSB falls below some specified spawning biomass threshold based on a linear function that declines to zero at zero spawning stock biomass. Consistent with the SAW 53 assessment, the 'hinge' was set at the lowest observed SSB in the time series. For the M = 0.2 scenario, this was 6,300 mt and 7,900 mt for the M-ramp scenario. To approximate the distribution of the SSB and MSY distributions, the long term projections were made from 1000 estimates of numbers at age in 2011, which were estimated by performing MCMC simulation of the ASAP models (described above under TOR 5). The 2011 age 1 estimates were based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. All projections were conducted with the AGEPRO software (Age Structured Projection Model v4.1).

For the ASAP, 1982 start, M = 0.2 scenario, the resulting reference points and their 90% confidence intervals corresponding to  $F_{MSYproxy} = F_{40\%}$  (0.18) are  $SSB_{MSY} = 54,743$  mt (40,207 – 73,354 mt) and MSY = 9,399 mt (6,806 – 13,153 mt).

For the ASAP, 1982 start, *M*-ramp scenario, the resulting reference points and their 90% confidence intervals corresponding to  $F_{MSYproxy} = F_{40\%}$  (0.18) are  $SSB_{MSY} = 80,200$  mt (64,081 – 99,972 mt) and MSY = 13,786 mt (10,900 – 17,329 mt).

TOR 7. Evaluate stock status with respect to the existing model (from the most recent accepted peer reviewed assessment) and with respect to a new model developed for this peer review. In both cases, evaluate whether the stock is rebuilt.

# a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.

The updated SAW 53 model (SAW55\_BASE) estimates 2011 SSB at 11,874 mt. This is less than the existing overfished threshold of 30,609 mt; therefore, the stock is overfished. The updated estimate of fully recruited fishing mortality ( $F_{full}$ ) in 2011 is 0.59. This is greater than the overfishing limit of 0.20, and therefore, overfishing is occurring.

## b. Then use the newly proposed model and evaluate stock status with respect to "new" BRPs (from Cod TOR-6).

For the ASAP, 1982 start, M = 0.2 scenario, the revised reference points are  $F_{MSYproxy} = F_{40\%} = 0.18$  and  $SSB_{MSY} = 54,743$  mt (0.5 x  $SSB_{MSY} = 27,372$  mt). The model estimates 2011 SSB at 9,903 mt. This is less than the overfished threshold of 27,372 mt; therefore, the stock is overfished. The estimate of 2011 fully recruited fishing mortality ( $F_{full}$ ) is 0.86. This is greater than the overfishing limit of 0.18, and therefore, overfishing is occurring.

For the ASAP, 1982 start, *M*-ramp scenario, the revised reference points are  $F_{MSYproxy} = F_{40\%} = 0.18$  and  $SSB_{MSY} = 80,200$  mt (0.5 x  $SSB_{MSY} = 40,100$  mt). The model estimates 2011 SSB at 10,221 mt. This is less than the overfished threshold of 40,100 mt; therefore, the stock is overfished. The estimate of 2011 fully recruited fishing mortality ( $F_{full}$ ) is 0.90. This is greater than the overfishing limit of 0.18, and therefore, overfishing is occurring.

Under both the M = 0.2 and M-ramp scenarios the stock is assessed to be overfished and overfishing is occurring. It is notable that this stock has experienced a long history of overfishing relative to current reference points.

TOR 8. Develop and apply analytical approaches to conduct single and multi-year stock projections to compute the pdf (probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).

a. Provide numerical annual projections (3-5 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).

Short term projections of future stock status were conducted based on the current assessment results without accounting for retrospective bias. This rationale was identical to that of stock status determination. Numbers-at-age in 2012 were derived from 1000 different vectors of numbers-at-age produced from the MCMC chain with 2011 age 1 estimates based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. Biological inputs were identical to those used for reference point determination. Short term projections have used an assumed catch in 2012 of 3,767 mt. This estimate is based on the current commercial and recreational catches as well as the expected catch over the remainder of the year which has been extrapolated using the harvest trajectories from the past two years (NEFMC PDT, T. Nies pers. comm.).

Recruitment was sampled from a cumulative density function (CDF) of estimated age 1 recruitment from 1982 to 2009. The same AGEPRO model used for reference point determination was used to conduct short-term projections (i.e., model adjusts projected recruitment based on a linear function that declines to zero at zero SSB when SSB falls below some 'hinge' SSB-level corresponding to the lowest SSB observed in the time series). For the M = 0.2 scenario, the 'hinge' SSB value was set at 6,300 mt and 7,900 mt for the *M*-ramp scenario. All projections were run under the assumption of 75%  $F_{MSY}$  (0.18  $\cdot$  0.75 = 0.135).

A consequence analysis was conducted to evaluate the sensitivity of management advice to the assumptions about M (i.e. M = 0.2 or M-ramp). For the M-ramp scenario the projections were provided assuming that: a) M remained at 0.4; or, b) that M returns to 0.2 in the projection period.

Under 75%  $F_{MSY}$  exploitation, the stock is projected to rebuild under the M = 0.2 and

*M*-ramp (M = 0.2) scenarios by 2022. The stock cannot rebuild under the *M*-ramp (M = 0.4) scenario since the reference points are based on an assumption of *M* returning to 0.2 in the long-term. It is important to note that the SARC Panel was not willing to conclude that *M* would remain at 0.4 in perpetuity and so did not provide reference points for the *M*-ramp model under a long-term assumption of M = 0.4. A full discussion of the three scenarios evaluated is provided under TOR 8b.

# b. Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions.

The risks associated with management actions taken during 2013 - 2015 were examined by undertaking stock projections under the competing assumptions for the state of nature. For example, if the true state of nature is that natural mortality has remained unchanged at 0.2 and that stock productivity is best reflected by the 1982 – present dataset (SPR, M = 0.2 model), then the consequences of management actions by setting projected catch according to 75% F<sub>MSY</sub> based on the two alternative states of nature were examined (*M*-ramp scenario with M = 0.2 in short-term and *M*-ramp scenario with M = 0.4 in the short term). In all cases, the 2012 catch was provided by the NEFMC Groundfish Plan Development Team. Projections were only conducted until 2015. There may be longer term consequences which might be revealed through a more extensive analysis. This is beyond the current terms of reference.

The three states of nature considered were:

- M = 0.2: stock dynamics and assessment based on 1982 present dataset with M remaining at 0.2 for the projection period.
- *M*-ramp: stock dynamics and assessment based on 1982 present dataset with *M* returning to 0.2 in the projection period.
- *M*-ramp: stock dynamics and assessment based on 1982 present dataset with *M* remaining at 0.4 for the projection period.

When management actions are correctly based upon a particular state of nature, a modest (5,300 - 13,000 mt) increase in SSB is projected between 2013 and 2015 for all three scenarios explored. The *M*-ramp (M = 0.2) scenario has the greatest rebuilding potential whereas the M-ramp (M = 0.4) has the lowest rebuilding potential. Fully recruited fishing mortality declines from 0.86 (M = 0.2) or 0.90 (*M*-ramp) to 0.14 (all scenarios). Catch declines from 6,830 mt in 2011 to 1,313 - 2,582 mt in 2015 depending on the scenario with the *M*-ramp (M = 0.4) scenario resulting in the lowest yield and the *M*-ramp (M = 0.2) having the highest yield. The M = 0.2 scenario is an intermediate case. If the management actions are correctly based upon the 'true' state of nature all scenarios indicate that the stock will be in an overfished state as of 2013.

The SARC 55 Panel concluded that the M = 0.2 projections and the *M*-ramp projections with *M* remaining at 0.4 in the short-term were equally realistic. Like the SAW 55 WG, the SARC 55 Panel could not decide which option was more plausible. The Panel concluded that if *M* is currently 0.2 [0.4] then it seemed more reasonable to assume that in the short-term *M* would remain at 0.2 [0.4]. Note that for long-term

projections that Review Panel decided that M should be 0.2 under all scenarios, because the longer-term historical evidence seems to indicate that M=0.2 is more plausible.

The consequences of mis-specifying natural mortality (e.g., M = 0.2 is true state of nature and manage under *M*-ramp, M = 0.4) will not impact status determination in 2013; under all consequence analyses considered the stock will be in an overfished state in 2013. Considering only the M = 0.2 and *M*-ramp (M = 0.4) scenarios, the consequence of mis-specifying natural mortality will result in at most 717 mt of an over-/under-harvest of fishery yield in 2015. While the magnitude is small in terms of historical catch, this amounts to 55% of over- harvest (*M*-ramp is true state of nature and manage under M = 0.2) or a 35% under-harvest (M = 0.2) is true state of nature and manage under M-ramp, M = 0.4). Assuming an *M*-ramp (M = 0.4) when *M* is actually equal to 0.2 results in a lower than 'planned' fishing mortality and catch and higher than 'planned' SSB. When *M* is assumed to be 0.2 but an *M*-ramp (M = 0.4) is correct, fishing mortality and thus catch would be considerably higher than 'planned' with the result that in 2013 the stock would be experiencing overfishing.

## c. Describe this stock's vulnerability (see "Appendix to the SAW TORs") to becoming overfished, and how this could affect the choice of ABC.

The Gulf of Maine cod stock is currently undergoing processes that have not been incorporated into the analytical formulations. Nevertheless, they should be considered when setting the ABC.

Since the mid-1990s, as observed in the NEFSC bottom trawl surveys and consistent with the trends in the fishery, the distribution of cod has become increasingly concentrated in the western part of the Gulf, with a gradual loss of cod from the coastal and central Gulf. Since the mid-2000s, the stock has become particularly concentrated in a small region of the western Gulf, an area which appears to be a forage 'hotspot' due to the presence of sand lance, a prey of cod. This biases CPUE as an indicator of the abundance of the stock as a whole.

There is uncertainty associated with natural mortality rates. Natural mortality of cod may be increasing through consumption by other fishes and marine mammals as these populations increase; however, evidence of this is lacking in the food habits data and among life history parameters. On the other hand, tagging studies suggest natural mortality levels higher than 0.2 during 2003 - 2006 time period. The tagging studies, combined with the reduced assessment model retrospective patterns were the basis of the *M*-ramp model. However, the states of nature as reflected in the natural mortality rates included in the models are uncertain. For example, a Delphi method had been applied prior to the working group meetings to find alternative values of discard mortality rates for different gears. The retrospective pattern was worse with the lower discard mortality rates, implying that the ramp *M* approach could be partially aliasing unaccounted fishing mortality.

It may be that at low population sizes, cod experience mortality from a number of unidentified sources. High mortality, both fishing and natural will lead to a truncated age structure, implying that spawning success is increasing dependent upon younger individuals. Murawski et al. (2001) suggest that reproduction by older females is more successful than by young females. There are a number of other factors that are known to negatively influence cod spawning success at low population sizes (Rowe et al., 2004).

If weak recruitment and low reproductive rates of Gulf of Maine cod continue, productivity and rebuilding of the stock will be less than projected. Over the last five years recruitment estimates have declined to a low level in both the M = 0.2 and M-ramp assessment models. Recent survey indices of recruitment indicate continued poor recruitment. Additionally, the NEFSC 2011 fall and 2012 spring survey abundance indices were the 4th lowest and the lowest in their respective time series. The MADMF 2012 spring survey biomass index was the lowest in its times series. The 2012 spring survey observations were not incorporated into the assessment formulations, implying that projections may be optimistic.

The current assessment provides a range of views of current stock status, all of which indicate that the resource is in an overfished state and has experienced a long history of overfishing. Concerns for stock status may also be apparent in the fishery. Cumulative commercial and recreational catches to date in 2012 are projected to be less than 60% of the total allocated quota (based on projected catch provided by NEFMC PDT, T. Nies pers. comm.). While this is suggestive of an overall difficulty on the part of the commercial fishery to locate Gulf of Maine cod it is not definitive given other possible explanations such as sector quota restrictions on other co-occurring species. However, observations from the recreational fishery which is not subject to the same catch share system as the commercial fishery has also reported difficulty locating Gulf of Maine cod.

# TOR 9. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in recent SARC reviewed assessments and review panel reports. Identify new research recommendations.

The SAW 55 WG reviewed the status of previous research recommendations and proposed new ones to address issues raised during the three SAW 55 WG meetings. There was a single research recommendation carried forward from GARM III which has been addressed in this report. Of the nine research recommendations brought forward from SAW 53, six have been either partially or fully addressed. The remaining research recommendations from SAW 53 include estimation of cod bycatch in both the nearshore and offshore lobster fishery, ageing of the backlog of otoliths collected from the Maine – New Hampshire inshore groundfish survey and the re-evaluation of Atlantic cod stock structure in the northeast region. There is currently work in progress to address all three of these research recommendations, but progress was not sufficient to inform this assessment.

The SAW 55 WG proposed eight new research recommendations which primarily focus on improving estimates of natural mortality and the survival of post-capture fish as well as advances in assessment methods. All new research recommendations proposed by the SAW 55 WG have been assigned relative priorities (high, medium, low) as appropriate. Many of these recommendations were felt to be common to both the Gulf of Maine and Georges Bank Atlantic cod stocks and are labeled as 'general'. The SARC 55 Panel also contributed seven additional research recommendations which are included in this section.

#### SAW 55 Terms of Reference for Gulf of Maine Atlantic cod (Gadus morhua)

- 1. Estimate catch from all sources including landings and discards. Characterize the uncertainty in these sources of data and take into account the recommendations and subsequent work from the March 2012 MRIP workshop. Evaluate available information on discard mortality and, if appropriate, update mortality rates applied to discard components of the catch.
- 2. Present the survey data and calibration information being used in the assessment (e.g., indices of abundance, recruitment, state surveys, age-length data, etc.). Consider model-based (e.g. GLM) as well as design-based analyses of the survey data in developing trends in relative abundance. Investigate the utility of commercial or recreational LPUE as a measure of relative abundance. Characterize the uncertainty and any bias in these sources of data.
- 3. Summarize the findings of recent workshops on stock structure of cod of the Northeastern US and Atlantic Canada.
- 4. Investigate the evidence for natural mortality rates which are time- and/or age-specific. If appropriate, integrate these into the stock assessment (TOR 5).
- 5. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Consider feasibility of survey catchability estimates, the starting year for the assessment, estimation of the stock recruitment curve, inclusion of multiple fleets, and whether to use domed or flat selectivity-at-age for the NEFSC surveys. Provide a summary of steps in the model building process. Include a historical retrospective analysis to allow a comparison with previous assessment results. Review the performance of historical projections with respect to stock size, catch recruitment and fishing mortality.
- 6. State the existing stock status definitions for "overfished" and "overfishing". Then update or redefine biological reference points (BRPs; point estimates or proxies for B<sub>MSY</sub>, B<sub>THRESHOLD</sub>, F<sub>MSY</sub>, and MSY) and provide estimates of their uncertainty. Consider alternative parametric models of the stock recruitment relationship. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the appropriateness of existing BRPs and any "new" (i.e., updated, redefined, or alternative) BRPs.
- 7. Evaluate stock status with respect to the existing model (from the most recent accepted peer reviewed assessment) and with respect to a new model developed for this peer review. In both cases, evaluate whether the stock is rebuilt.
  - a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.
  - b. Then use the newly proposed model and evaluate stock status with respect to "new" BRPs (from Cod TOR-6).
- 8. Develop and apply analytical approaches to conduct single and multi-year stock projections to compute the pdf (probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).

- a. Provide numerical annual projections (3-5 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).
- b. Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions.
- c. Describe this stock's vulnerability (see "Appendix to the SAW TORs") to becoming overfished, and how this could affect the choice of ABC.
- 9. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in recent SARC reviewed assessments and review panel reports. Identify new research recommendations.

#### Introduction

The 55<sup>th</sup> Stock Assessment Workshop Working Group (SAW 55 WG) prepared the assessment. The working group held three meetings during 27 August – 2 November 2012. The meeting dates and locations are listed below. Working group participation varied by meeting. A complete list of working group participants can be found in Appendix A.1.

- SAW 55 Data Working Group Meeting
  - o August 27-31, 2012
  - o Northeast Fisheries Science Center (NEFSC), Woods Hole, MA
- SAW 55 Models Working Group Meeting
  - o October 15-19, 2012
  - o Northeast Fisheries Science Center (NEFSC), Woods Hole, MA
- SAW 55 Models and Biological Reference Points Working Group Meeting
  - October 30-November 2, 2012
  - o Northeast Fisheries Science Center (NEFSC), Woods Hole, MA

#### Assessment history

The initial analytical assessment of the Gulf of Maine stock was conducted using a virtual population analysis (VPA) model by Serchuk and Wigley (1986) and presented at the 7<sup>th</sup> Northeast Fisheries Science Center (NEFSC) Stock Assessment Workshop (SAW) in 1988 (NEFSC 1989). Subsequently, the stock was reviewed again at SAW 12, 15, 19, and 24 (NEFSC 1991, 1993, 1995, 1997, 1998; Mayo 1995, 1998, Mayo et al. 1993, 1998, 2002). Additionally, interim assessments were reviewed outside of the SAW framework by the Northern Demersal Working Group in July 1999 (NEFSC 2000) and again in August 2000 (NEFSC 2001a).

Amendment 4 (1991) to the MultispecIes Fisheries Management Plan implemented  $F_{20\%}$  as an overfishing mortality threshold for Gulf of Maine cod. Estimates of  $F_{20\%}$  and  $F_{max}$  are shown below (\**note*  $F_{20\%}$  *was not reported in the SAW 7 documents*):

| Stock assessment | Year | F <sub>20%</sub> | F <sub>max</sub> | Model type | Notes                    |
|------------------|------|------------------|------------------|------------|--------------------------|
| workshop         |      |                  |                  |            |                          |
| SAW 7            | 1988 |                  | 0.27             | VPA        | Commercial landings only |
| SAW 12           | 1991 | 0.40             | 0.27             | VPA        | Commercial landings only |
| SAW 15           | 1993 | 0.36             | 0.25             | VPA        | Commercial landings only |
| SAW 19           | 1995 | 0.35             | 0.27             | VPA        | Commercial landings only |
| SAW 24           | 1997 | 0.37             | 0.29             | VPA        | Commercial landings only |
| SAW 27           | 1998 | 0.39             | 0.29             | VPA        | Commercial landings only |

The 1996 re-authorization of Magnuson-Stevens Conservation and Management Act required the redefinition of overfishing and overfished with respect to the rate of fishing mortality associated with producing maximum sustainable yield. SAW 27 provided estimates of  $F_{MSY}$  and  $B_{MSY}$  based on the ASPIC surplus production model with survey catchability coefficients conditioned on biomass estimates from the SAW 27 VPA. These estimates were mean age 1<sup>+</sup>  $B_{MSY}$  =33,000 mt (total biomass) and age 1<sup>+</sup> total biomass weighted  $F_{MSY}$ =0.31. This method was used in the Report of the Overfishing Definition Review Panel (Applegate et al. 1998) and the corresponding reference points were adopted in Amendment 9 to the multispecies

#### FMP. The biomass threshold was set at $\frac{1}{4}$ B<sub>MSY</sub> (8,300 t).

In the last eleven years, the Gulf of Maine cod stock has undergone five peer-reviewed assessments: SAW 33 (NEFSC 2001), the Groundfish Assessment Review Meeting (GARM, NEFSC 2002), GARM II (NEFSC 2005), GARM III (NEFSC 2008) and SAW 53 (NEFSC 2012a). Summaries of these assessments and the resulting stock status are provided in Tables A.1 and A.2. All of these assessments, with the exception of SAW 53 were conducted using the ADAPT VPA model. All assessments began the assessment time series in 1982 which corresponds to the availability of age data from the commercial fishery. The data inputs from SAW 33 through GARM II were nearly identical, with GARM I and II representing updates to the SAW 33 model inputs. Commercial discards were accounted for by increasing the total landings by 500 mt increments; the size of the increase was determined based on the estimated discards. This method assumes that the discarded fraction of the catch is of the same size composition as the landed catch. In the existence of trip limits, this assumption may be appropriate, but when discarding is occurring primarily as a result of minimum retention sizes, such a method may incorrectly characterize the age composition of the catch. The SAW 53 assessment included direct estimates of commercial discards since 1989 as well as including hindcasted estimates for the years 1982-1988. Recreational landings were included in these assessments prior to SAW 53, but recreational discards were not. Beginning with the SAW 53, estimates of recreational discards were included in the fishery removals. Additionally, prior to SAW 53 catch and stock weights-at-age were estimated solely from the landed fraction of the catch. When discards due to minimum sizes restrictions contribute a sizeable fraction of overall removals, this method has the potential to overestimate stock biomass. The weights-at-age used as inputs to SAW 53 provided a more realistic characterization of fish weights relative to the approach taken in previous assessments.

SAW 33 included catch through 2000 and survey indices through 2001 (spring only). SAW 33 re-evaluated reference points using an age based production model with a Beverton-Holt stock recruit relationship (NEFSC 2001b). Reference points were estimated as total stock age 1<sup>+</sup> total biomass  $B_{MSY}$ =90,300 mt, SSB<sub>MSY</sub>=78,000 mt, and  $F_{MSY}$ =0.23. The SAW 33 assessment concluded that Gulf of Maine cod were not over fished, but overfishing was occurring. It is noteworthy that the stock status determination applied at SAW 33 was different than the current basis. For SAW 33 the overfished definition was based on <sup>1</sup>/<sub>4</sub> B<sub>MSY</sub> criteria (Applegate et al. 1998) unlike the <sup>1</sup>/<sub>2</sub> SSB<sub>MSY</sub> that was later adopted by the Working Group on Re-estimation of Biological Reference Points for New England Groundfish (NEFSC 2002b). The 2001 total stock biomass was estimated at 24,000 mt (18,000 mt SSB); just over 25% of B<sub>MSY</sub>. Fishing mortality (*F*) was estimated at 0.73 which was over three times higher than  $F_{MSY}$ .

The Working Group on Re-evaluation of Biological Reference points for New England Groundfish (NEFSC 2002a) further revised Gulf of Maine cod reference points; SSB<sub>MSY</sub> was revised to 82,800 mt based on change in the period used to derive mean stock weights. F remained unchanged. Amendment 13 (2004) to the Multispecies FMP adopted the Working Group's revised reference points (SSB<sub>MSY</sub>=82,800 mt,  $F_{MSY}$ =0.23). The biomass threshold was revised to  $\frac{1}{2}$  SSB<sub>MSY</sub> (41,400 t). GARM I updated the data inputs by one year (through 2001) using the same VPA formulation as SAW 33. Spawning stock biomass in 2001 was estimated at 22,040 mt, approximately 25% of SSB<sub>MSY</sub>. F was estimated at 0.47, two times greater than  $F_{MSY}$ . As of 2002 Gulf of Maine cod were overfished and overfishing was occurring. GARM II was a three year update (through 2004) to the GARM I assessment. Biological reference points remained unchanged from GARM I. Spawning stock biomass had

declined to 18,800 mt in 2004 and F had increased to 0.63. The stock complex was still overfished and overfishing was occurring. The GARM II assessment exhibited a retrospective pattern in both F and SSB, with a tendency for F to be underestimated and SSB to be overestimated in the most recent three years.

The 2008 GARM III assessment represented a benchmark assessment update. Major changes from the previous assessments include a more thorough consideration of commercial discards and updates to the biological reference points. Unlike previous assessments where landingsat-age were increased in fixed amounts, the GARM III method applied an estimated discard ratio to the landings-at-age. While this method better characterizes the true trends in discards, it still makes the assumption that the age composition of the discards is identical to the landed fraction. It should be noted that the ratio increase in landings-at-age was only applied from 1999 to 2007. Prior to 1999, commercial discards were not accounted for. As in previous assessments, catch and stock weights-at-age were estimated solely from the landed fraction of the catch and recreational discards were not included in the catch estimates. Biological reference points were based on the non-parametric yield and SSB per recruit analysis with  $F_{40\%}$  used as a proxy for  $F_{MSY}$ . The reference points were estimated as follows:  $F_{MSY} = 0.237$ and  $SSB_{MSY} = 58,248$  mt. Terminal year estimates of F were 0.46 and SSB was estimated to have increased to 33,877 mt. The stock was perceived to no longer be overfished, but overfishing was still occurring. The large increase in SSB was contingent on the relative strength of the 2003, and to a greater degree, the 2005 year classes. The 2005 year class was estimated at 23.9 million fish (age 1) which represented the second largest observed year class in the assessment time period. The 2005 year class was only age 2 in 2007 and had yet to enter the fishery; the 2007 estimates of partial recruitment indicated that the vulnerability of this year class to the fishery was at less than 1%. The entire strength of the 2005 year class was primarily derived from the NEFSC spring and MADMF fall survey indices.

The SAW 53 assessment was also a benchmark assessment. For SAW 53 a new assessment model (ASAP) was developed that incorporated updated estimates of the length-weight equation, maturity at age, and weights at age. Additional changes from the GARM III assessment include the inclusion of direct estimates of commercial discards and the inclusion of recreational discards as mentioned previously. Given the major changes in data that have occurred in the most recent update, the SAW 53 assessment is not entirely comparable with previous assessments. Much of the scale differences between the SAW 53 assessment and previous assessments were the result of changes to the underlying data (e.g., weights-at-age) and not as a result of the assessment or choice of model. Biological reference points were based on the non-parametric yield and SSB per recruit analysis with  $F_{40\%}$  used as a proxy for  $F_{MSY}$ . The reference points were estimated as follows:  $F_{MSY} = 0.20$  and  $SSB_{MSY} = 61,218$  mt. Terminal year estimates of F were 1.14 and SSB was estimated at 11,868 mt. The stock was perceived to be overfished, and overfishing was occurring. The major change in estimated biomass from the GARM III assessment resulted primarily from the revised estimates of weights at age, and more importantly, from revised estimates of the strength of the 2003 and 2005 year class. With three years of additional survey and fishery data it appears that the GARM III overestimated the strength of these two year classes and subsequently the spawning stock biomass in 2007. The overestimation by the GARM III assessment was partly the result of too much confidence put on highly uncertain survey observations near the end of the time series. The ASAP model developed for SAW 53 allows direct incorporation of survey and fishery precision estimates and is more robust to uncertain data inputs.
## **Fisheries Management**

Gulf of Maine Atlantic cod have been managed under two different management authorities in recent history. Prior to 1977 the 5Y component (statistical areas 511-515) of the stock was managed under an international treaty through the International Commission for the Northwest Atlantic Fisheries (ICNAF). Fisheries management was primarily controlled through annual total allowable catches (TACs) and minimum mesh sizes (Serchuk et al. 1994). The TACs remained constant at 10,000 mt between 1973 and 1975 followed by reductions to 8,000 mt in 1976 and then to 5,000 mt in 1977. The Magnuson Fishery Conservation and Management Act (MFMCA) was passed in 1977 and subsequently the management authority of the Gulf of Maine cod stock, as well as all other New England groundfish stocks, shifted to the New England Fishery Management Council (NEFMC).

The use of TACs continued under the NEFMC authority through 1982, with TACs dispersed among quarters and vessel tonnage classes. The early quota period was accompanied by poor catch monitoring and reported black markets for quota managed species and may have contributed to increased uncertainty over catches. The system adopted in the mid-80's had numerous exceptions and special programs to mesh and minimum size requirements that make it difficult to draw conclusions about how regulations influenced fishery selectivity. In 1982, the "Interim" Groundfish Fisheries Management Plan (FMP) was implemented which replaced the quota system (TAC) with input controls such as mesh sizes and minimum retention sizes (Table A. 3). The "Interim" FMP was replaced by the initial Groundfish FMP in 1985 which largely carried forward the existing measures from the interim FMP. Amendment 4 to the FMP required the use of a Nordmore grate in the northern shrimp fishery as well as placing a prohibition on the retention of groundfish bycatch. Beginning with Amendment 5 (1994), there was a concerted attempt to reduce fishing effort through a days-at-sea (DAS) reduction schedule. Additionally, Amendment 5 brought about mandatory vessel reporting in the way of the Vessel Trip Reports (VTRs). Effort controls were increased under Amendment 7 through further acceleration of the DAS reduction schedule, and the addition of seasonal and year round closures in the Gulf of Maine. Between 1997 and 1999 trips limits on Gulf of Maine cod were reduced from 1000 lbs/day to 30 lbs/day. Amendment 13, implemented in May 2004, placed additional restrictions on DAS usage while allowing for the use of regular B DAS to target healthy stocks. Additionally, Amendment 13 implemented mandatory electronic reporting for all primary federally permitted seafood dealers. In 2006, Framework 42 established reference point thresholds for the 18 groundfish stocks reviewed at GARM II as well as formalized rebuilding plans for all overfished stocks  $(< \frac{1}{2} \text{SSB}_{\text{MSY}})$ , such as Gulf of Maine cod. Through 2010 a series of additional framework actions and interim rules placed additional restrictions on DAS usage and seasonal closures on the recreational fishery.

The effort controls first adopted in 1994 were frequently changed, making it difficult to isolate the effects of individual regulations. The use of often-changing trip limits led to increased discard rates and may have contributed to high-grading. Seasonal (rolling) and year-round closures may have limited fishery access to larger spawning fish, and strict DAS limits focused effort on easily caught nearshore cod and led to the increased use of sink gillnet gear.

In 2010, the groundfish fishery experienced a major management change with the passage of Amendment 16. Amendment 16, with the introduction of annual catch limits (ACLs),

represented a return to the use of hard TACs. Additionally, 17 new groundfish sectors were approved and those vessels not members of a groundfish sector were subject to additional cuts in DAS and restrictive trip limits. Vessels fishing under the sector management were exempt from DAS restrictions and instead, each sector was given a share of the total commercial groundfish sub-ACL. How the catch was divided up amongst sector vessels or how catch was allocated throughout the year was left to the sole discretion of the sector. One of the requirements of Amendment 16 was an increase in the overall level of observer coverage. This was accomplished using observers trained through the existing Northeast Fisheries Observer Program (NEFOP) as well as a new class of observers termed At-Sea Monitors (ASMs). The data collection protocols for ASMs were restricted to catch estimation and the collection of limited biological information (e.g., lengths). The recent shift to a catch share system in 2010 appears to have dramatically reduced discards but it is too soon to fully understand the overall impacts of the sector management system.

Since the passage of Amendment 16, two framework modifications have been made to the FMP with direct impacts on the management of Gulf of Maine cod. Framework 45 implemented in May 2011 created the Whaleback closure area in the western Gulf of Maine designed to protect spawning aggregations of cod that occur in this area. This is a seasonal closure area extending from April 1 to June 30 and applies to both the recreational and commercial fisheries. Framework 47 was implemented in May 2012 and reduced the minimum retention size in the recreational fishery to 19 inches as well as reducing the recreational bag limit to 9 fish per angler. It should be noted that Framework 47 took effect outside of the time frame being used for the current assessment which only considers data through December 31<sup>st</sup> 2011.

## Biology

# Stock structure

Atlantic cod (*Gadus morhua*) is a demersal gadoid species whose range in United States (US) waters extends from Cape Hatteras north to the Canadian border. Globally, Atlantic cod occur on both sides of the North Atlantic Ocean, extending southward in the eastern Atlantic to the Bay of Biscay. Within the United States Exclusive Economic Zone (EEZ) there are two recognized stocks of cod: Gulf of Maine and Georges Bank. The existing Gulf of Maine of Maine stock complex extends from the northern tip of Cape Cod east to the US/Canadian border and north to the coast of Maine (Fig. A.1).

Recent reviews of historical and contemporary tagging studies (O'Brien et al. 2005, Tallack 2007, Loehrke and Cadrin 2007) suggest that there is movement of fish between the Gulf of Maine and Georges Bank stocks with the degree of mixing < 30% (Hunt et al. 1999, Tallack 2009, Miller 2012). The SAW 55 WG reviewed some preliminary analyses evaluating possible impacts of stock mixing on assessment results (Chen and Cao 2012). Overall, the results indicated that the lack of consideration of inter-stock mixing had little impact on the GOM cod assessment results. The importance of the quality of the catch information was highlighted. The WG expressed several concerns and possible areas of improvement in the analysis. While the study is a work in progress with many assumptions and issues to be resolved, it highlighted the value of undertaking modeling to explore complex spatial processes influencing cod in the Gulf of Maine.

Several meta-analyses of the life history parameters of Atlantic cod in the region have been

conducted over the last four decades that generally support the current stock boundaries. These investigations have highlighted differences in both the growth and maturity rates between the Gulf of Maine and Georges Bank stocks (Pentilla and Gifford 1976, Begg et al. 1999). These differences are highlighted in the current assessment as well in addition to differences that have been noted in the trends of condition factor between stocks. There are recognized localized metapopulations within the Gulf of Maine (e.g., Ames 2004, Kovach et al. 2010, Siceloff and Howell 2012), between which, the degree of mixing is unknown. Additionally, there is recent work showing possible genetic connections between the Gulf of Maine and Nantucket Shoals (current considered part of the Georges Bank stock; Kovach et al. 2010). Investigations into the relative importance of these connections as well as a re-investigation of all stock structure information are under way and summarized under TOR 3. The existing stock structure boundaries constitute the best available science for the current assessment.

## Length-weight relationship

The SAW 53 assessment used seasonal survey-based length-weight (LW) equations as the basis for converting catch weights to numbers-at-age (Equations 1-3, Fig. A.2). Since 1992, the NEFSC bottom trawl surveys have used digital scales to record individual fish lengths. Using these data, updated survey-based length weight equations were compared to the existing length weight equation. Both seasonal (spring/fall) and annual updates were evaluated. The use of a time-invariant LW equation is only appropriate if the LW relationship has remained stable over time. Information presented in the SAW 53 assessment report (NEFSC 2012a) showed the temporal stability of LW relationships over time. Additionally, seasonal condition factors have remained relatively stable over time (Fig. A.3), providing additional support to the use of a time-invariant LW equation.

| (1) | $W = 0.000004714L^{3.1741}$ (Spring) |
|-----|--------------------------------------|
| (2) | $W = 0.000006178L^{3.1322}$ (Fall)   |
| (3) | $W = 0.000005132L^{3.1625}$ (Annual) |

There are divergent opinions as to whether it is more appropriate to use a landings-based length-weight equation versus a survey-based length-weight equation to convert catch weights to numbers-at-age. Advocates for a landings-based derivation argue that since the fishery may catch larger (heavier) fish at length, there is the possibility that a survey-based length weight equation may be biased low, particularly at greater lengths. A survey-based approach may be preferred when a large portion of the catch s comprised of discards (or some other fraction not sampled such as recreational landings) or when the catch weights-at-age are also used to estimate stock weights due to sparse sampling of older ages in the surveys (missing or highly variable estimates of weights-at-age ). In the case of Gulf of Maine Atlantic cod, the arguments for a survey-based LW relationship are valid (large fraction of catches not from commercial landings and use of catch weights to estimate stock weights). Currently in the Northeast Region, fishery surveys are the only source of individual length-weight sampling.

The suitability of applying a survey-based LW equation to commercial landings was evaluated by applying the seasonal LW relationships in equations 1 and 2 to the observed length frequency distributions of commercial biological samples collected between 1982 and 2011. The estimated weights were then compared to the recorded sample weight and the

distributions of differences were examined for the presence of bias. Examinations across years showed no evidence of strong temporal trends and across all market categories the interquartile ranges of the differences overlapped the equality line in the majority of years for both the 'scrod' and 'market' landings market categories (Fig. A.4). There was some indication that the estimated weights were greater than the recorded weights for the 'large' market category which could suggest that the survey LW relationships estimate heavier fish at length relative to the true relationship within the commercial landings. Interestingly, using the arguments made against the use of survey-based LW presented above, this is opposite of the expectation.

Since cod are typically landed in gutted form, a more likely explanation for the discrepancies noted in the 'large' market category is that the current conversion factor for converting gutted cod to its live weight equivalent is incorrectly specified. There has been an ongoing data collection effort by the NEFSC's Cooperative Research Program to collecting information to support a re-evaluation of the established conversion factors for a variety of groundfish species. Preliminary analyses of the data collected to date suggest that a more appropriate conversion factor should be 1.20 compared to the established 1.17 that has been used to date (Table A.4). While the differences are quite small, applying the preliminary 1.20 estimate to the above analysis resolves much of the apparent bias in the large market category (Fig. A.5). The preliminary work is suggestive that a revisions may be needed to the gutted-live weight conversion factor; however the work is still preliminary and additional data are needed before the work can be finalized. It should be stressed that the small changes in the conversion factor that are suggested by the preliminary work will have negligible impact on the assessment results.

## Growth and maturity

Atlantic cod in the Gulf of Maine and Georges Bank reach a maximum size around 130 cm ( $\approx 25$  kg). Cod in the Gulf of Maine tend to grow slower than on Georges Bank (Fig. A.6 - 7). Generally, the differences in growth parameters lend support to the treatment of Gulf of Maine and Georges Bank as separate stocks. These results are consistent with that of previous research on the topic (Penttila and Gifford 1976, Begg et al. 1999). The Gulf of Maine cod von Bertalanffy growth parameters were re-estimated using NEFSC survey data from 1970 to 2012 (Equation 4). A summary of the number of ages included in the analysis are presented in Table A.5. Given the sparseness of the sampling of older ages, the L<sub> $\infty$ </sub> may be poorly estimated.

(4) 
$$L = 150.93 \cdot (1 - e^{-0.11(t - 0.13)})$$
 (Annual)

To examine whether there have been large scale changes in the growth rates over time as well as evidence of cohort-specific growth rates associated with year class strength, von Bertlanffy growth curves were fit to the 1960-2005 year classes. Since K and  $L_{\infty}$  tend to be correlated and given the limited observations when fitting growth curves on a cohort basis,  $L_{\infty}$  was fixed at the time series estimate of 150.93 cm. Plots of K by cohort show oscillations about the mean cohort K value of 0.12 with K values of the most recent cohorts tending to fall below the mean (Fig. A.8). Comparison of cohort K values to age 1 estimated recruitment from the SAW 53 assessment shows no discernible relationship between K and cohort strength (Fig. A.9), suggesting a lack of density dependent growth within the range of recruitment events that have been observed. Examination of monthly trends in the mean length of Gulf of Maine cod landed in the commercial fishery suggests that the majority of somatic growth occurs between March and December, with little growth occurring January through February (Fig. A.10). Examination of mean survey weights-at-age suggests that fish size-at-age has oscillated about the long-term mean with no strong increasing or decreasing trends (Fig.'s A.11-12).

A logistic regression method (O'Brien et al. 1993) was used to fit maturity-at-age from the NEFSC spring survey data from 1970 to 2012. The number of maturity samples taken per year ranges from 23 to 229 (Table A.6). The SAW 55 WG examined the trends in annual age-at-50% maturity ( $A_{50}$ ; Fig. A.13), and determined that the estimated  $A_{50}$  (age at which 50% of fish are mature) varied about the time series average, but without any persistent trends. Based on the lack of persistent trends, the SAW 55 WG supported the use of a time-invariant maturity ogive to characterize the maturity schedule of GOM cod (Fig. A.14). The input to the stock assessment model is based on the female maturity ogive presented in Table A.7. The time series  $A_{50\%}$  for male cod was 2.85 and 2.66 for females. The approach is identical to that used for the SAW 53 assessment and the estimated values are similar, with the only changes resulting from incorporation of an additional year of survey data.

The SAW 55 WG also evaluated trends in length-based maturity (Fig. A. 15). Similar to the age-based maturity examinations, the annual  $L_{50}$  estimates lacked persistent trends, though they were generally more variable than the patterns present in the  $A_{50}$ . The WG discussed possible reasons for this and concluded that this was likely due to the high variability in the length distributions observed in any given year (Fig. A.16). The time series average  $L_{50}$  was estimated at 40.8 cm for females and 42.9 cm for males. Length-based maturity ogives are presented in Figure A.17.

In relation to spawning time, genetic and growth research presented to the WG (Kovach et al. 2010, Dean et al. 2012) indicated that cod in the western Gulf of Maine are comprised of northern spring (May/June) and southern winter (December/January) spawning components, with homing of each group to their respective and distinct spawning grounds. However, there was no information available to evaluate the relative contribution of each of the spawning components. This raised the issue as to what date to use for peak spawning. The previous assumed peak was April 1st. The WG recommended that rather than defining the assessment spawning period as a 'peak' spawning date it was more appropriate to base the date used for the estimation of SSB on the mid-point between the spawning periods, which is approximately 1<sup>st</sup> April (SAW 55 WG 2012a).

## **Response to the Terms of Reference**

TOR A.1. Estimate catch from all sources including landings and discards

## Overview

In the recent period (1982 to present) total catch has ranged from 21.0 thousand metric tons (mt) to 3.1 thousand mt (Table A.8, Fig. A18). Commercial landings are the predominant source of fishery removals averaging 75% of the total catch between 1982 and 2011. The current levels of commercial landings are on similar scales with historical (pre-1982) estimates (Table A.9 and Fig. A.19). There is an indication that a higher level of commercial

landing were supported pre-1932, however these landings were estimated from a proration of combined Georges Bank and Gulf of Maine landings and have a higher degree of uncertainty than the landings estimates beginning in 1932 (Serchuk and Wigley 1992). Some research has suggested that landings of Gulf of Maine cod during the mid-1800's could have been as high as 60,000 mt (Alexander et al. 2009, Fig. A.19). Georges Bank landings have typically exceeded Gulf of Maine landings throughout much of the time series, though Gulf of Maine landings have generally exceeded those of Georges Bank over the last decade (Fig. A.20).

Prior to 1999, landings were the primary component of the total catch, constituting 63-93% of the total catch. Since 1999, landings have made up only about 46-73% of the total catch (Table A.8, Fig. A.18). There are three primary reasons for this shift: (1) significant restrictions on commercial landings leading to (2) an increase in commercial discards, and (3) increased contribution from the recreational fishery.

Beginning in 1999, commercial discards became a significant component of the catch, accounting for greater than 30% of the overall catch (Fig. A.18). Notable increases in commercial discards were primarily the result of restrictive trip limits between 1998 and 2000 (Table A.3). Trip limits were gradually relaxed from 2000 through 2004 resulting in an overall decrease in the contribution of commercial discards to the overall catch.

Recreational landings peaked in 1987, but generally, recreational landings prior to 1999 constituted approximately 13% of the overall catch, whereas they accounted for, on average, about 25% from 1999 through 2011. Recreational discards became an increasingly important component of the overall Gulf of Maine cod catch as the minimum retention size of cod was progressively increased from 15 in. in 1982 to the current size limit of 24 in., which has been in effect since 2006. The recreational minimum size was decreased to 19 in. in 2012, but that is beyond the time series used in the current assessment.

## Commercial landings

In 1982, the United Nations Convention on the Law of the Sea (UNCLOS) defined a countries exclusive economic zone (EEZ) as a zone extending up to 200 nautical miles from a nation's coast. The EEZ defines the region where each country has sovereign rights to marine resources including fisheries. The geographic proximity of the US and Canada in the Gulf of Maine and Georges Bank Regions resulted in an overlap of each nation's EEZ. Given the importance of these areas with respect to resource extraction (among other reasons), the US and Canada both submitted cases to the International Court of Justice at The Hague, Netherlands seeking clarification. The Court issued a final ruling on October 12, 1984 formally delineating the US and Canadian EEZ. Hereafter, this demarcation line became informally known as the "Hague Line".

Within the Gulf of Maine, the US EEZ splits statistical areas 464, 465 and 467 (Fig. A.1). Prior to Hague line implementation, landings of cod in US ports from these statistical areas could have been either from the Gulf of Maine or Scotian Shelf stocks. Current management of Gulf of Maine cod includes catch from these areas against the fisheries ACLs. Previous assessments have not included these catches. While landings from these statistical areas have been low since 1985, accounting for less than two percent of the total Gulf of Maine landings (Fig. A.21), these landings are included in the current assessment to maintain consistency with the existing ACL monitoring programs. Based on the recommendations of the SAW 53

and 55 WGs, no attempt was made to adjust landings prior to 1985.

Since 1964, when modern catch statistics began, commercial landings of Gulf of Maine cod have ranged from 1.4 thousand mt to nearly 18 thousand mt (Tables A.8 and A.9). Landings statistics for area 5 (Gulf of Maine and part of Georges Bank stocks) exist back to 1893 (e.g., Mayo et al. 2009, Fig. A.19) and there are isolated estimates of commercial landings in the mid-1800's (Alexander et al. 2009). The methods used to apportion landings to individual stock complex prior to 1964 are not well documented and generally, these stock landings are considered less certain. Estimates of historical Gulf of Maine cod landings are of similar magnitude as landings between 1964 and 2010, though there was a period of sustained high landings above 8,000 mt prior to 1930. Total species landings are derived from the weighout reports of commercial seafood dealers and these data are generally considered a census of total landings. While un-reported landings are possible, no estimates exist to evaluate their magnitude. A secondary data source is required to apportion dealer landings to statistical area (stock) and assign basic information on fishing effort (e.g., gear, mesh, tow duration). Prior to 1994, the partitioning of stocks from total cod landings was accomplished, in part, through a port-interview process conducted by port agents working for the National Marine Fisheries Service (NMFS). The percent of Gulf of Maine cod landings attributed to interviewed trips was generally less than 40% (Fig. A.22). When trips were not interviewed, the port-agent would attribute area and fishing effort characteristics to the landings using their knowledge of the fishery and or information obtained during the interview process about vessels operating in the vicinity of the interviewed captain.

With the requirement of vessel-reported VTRs starting in 1994, the port interview process stopped and the area and effort information was inferred directly from the VTRs. Currently, a standardized procedure is used to assign area and effort from VTRs to dealer-reported landings from 1994 onward (Wigley et al. 2008). The product from this process is stored the NEFSC allocation (AA) database tables. Landings are matched to VTRs in a hierarchal manner, with landings matched at the top tier (level A, direct matching) having a higher confidence in the area and fishing effort attribution than those matched at the lower tiers. The matching rates have improved over time with approximately 80% of Gulf of Maine cod landings being matched at the highest level since 2004 (Figs. A.22 and 23). Interestingly, there is a seasonal component to the matching success, with generally poor matching success around the month of May (Fig. A.24). This phenomenon has not been fully explained, but does coincide with the start of the groundfish fishing year and annual renewal of vessel permits during which reporting compliance checks have historically been conducted. The overall precision associated with the allocation process, in terms of a CV is estimated at less than 0.1 (Table A.10).

An additional area of uncertainty with stock landings stems from the mis-reporting and/or under reporting of statistical areas on VTRs. Federal regulations require that a separate VTR logbook sheet be filled out for each statistical area or gear/mesh fished. Vessels fishing in multiple statistical areas frequently under-report the number of statistical areas fished (Palmer and Wigley 2007, 2009 and 2012). Following the SAW 53 assessment of Gulf of Maine cod there was also public concern that vessels were fishing in the vicinity of Stellwagen Bank in the western Gulf of Maine, but hauling back their catches across the Gulf of Maine/Georges Bank stock boundary and reporting the catch as Georges Bank cod. Based on comparisons of VTR reports with the observer and vessel monitoring system (VMS) data, the impacts of this misreporting on Gulf of Maine landings estimates are estimated to be small. Since 2006, the magnitude of this error is  $\leq 2\%$  (Table A.11). While VTR mis-reporting remains problematic, it is not likely to be a large source of error with respect to the quantification of Gulf of Maine cod landings.

For some species, there may be a component of the catch that does not get reported by seafood dealers. In the case of Gulf of Maine cod, fish retained by the crew for home consumption are the most significant component of commercial landings that would not be reported by seafood dealers. Estimates of home consumption can be derived from VTRs, but these estimates are likely underestimates of total home consumption landings due to incomplete reporting. From 1994 to 2011, home consumption landings are estimated at  $\leq 0.3\%$  of total commercial landings (Table A.12). Even if these represent underestimates, it is unlikely that home consumption landings represent a significant source of fishery removals. Because of the low magnitude, home consumption estimates are not included in estimates of commercial landings.

The commercial fishery is primarily conducted by vessels fishing trawl and gillnet gear with gillnet gear having become progressively more important over time (Fig. A.25). Current landings by trawl and gillnet gear are about equal and account for nearly 95% of the total landings. Landings by longline and handline (jig) are minor. There is a seasonal component to fleet activity in the Gulf of Maine with gillnet landings decreasing during the spring months (March through June) when parts of the western Gulf of Maine are inaccessible due to rolling closures. Larger trawl vessels which have the capacity to fish further off shore, to the east of the rolling closures, dominate the landings during the spring months (Fig. A.26).

The ports of Gloucester and Portland have historically been the primary offload ports of Gulf of Maine cod (Fig. A.27). Portland landings have declined over the last twenty years and Gloucester now accounts for over 60% of total commercial landings. The rolling closures in the western Gulf of Maine affects port landing patterns in a manner similar to their impact on the gear trends. Landings in Gloucester drop off during the months of April and May when the nearshore waters in the western Gulf of Maine are closed to groundfishing (Fig. A.28). During these months, cod are primarily landed in ports along the Maine coast. The rolling closures cycle clockwise around the western Gulf of Maine, and by June, when the rolling closures are off the coast of Maine, Gloucester again becomes the dominant port for Gulf of Maine cod landings.

The patterns for landings by statistical area are similar to the port trends. Over the last twenty years, landings have become increasingly concentrated in statistical area 514 (Fig. A.29), which is the statistical area in closest proximity to Gloucester. Landings from statistical areas to the north and east have declined. Currently, statistical area 514 accounts for >70% of total stock landings. The rolling closures have had impacted the statistical area landing patterns in manner much like the port and gear trends (Fig. A.30).

The waters of the northeast U.S. are divided into ten minutes squares which are rectangular areas ten minutes of latitude by ten minutes of longitude. Each ten minute square covers approximately 260 km<sup>2</sup>, representing approximately 0.5% of the total 52,462 km<sup>2</sup> surface area of the Gulf of Maine cod management area. Annual Lorenz curves were estimated for both the commercial trawl and gillnet fishery based on the cumulative catch by ten minute square (following methods outlined in Wigley 1996). From the Lorenz curve an annual Gini index, or concentration index, can be estimated using Equation (5).

$$(5) G = A/(A+B)$$

Where G is the Gini index, A is the area between 1:1 equality line and B is the area under the Lorenz curve.

Annual Gini indices were developed for both the commercial trawl and gillnet fishery based on the cumulative catch by ten minute square. The gillnet Gini index was relatively flat between 1994 and 2002 but then increased steadily through 2010, with a slight decline in 2011. Comparatively, the trawl Gini index has increased steadily over the VTR time series, though the index has been relatively flat since 2008 (Fig. A.31). The concentration in the commercial fleet is characterized by a directional shift in the catch-weighted center (centroid) of fishing activity to the southwest. The current center of fish of fishing activity is located in the western Gulf of Maine in the vicinity of 42.6° N x 70.3° W (Fig. A.32).

There has been a decline of approximately 40% in the number of ten minute squares contributing to the annual Gulf of Maine cod landings (Fig. A.33). However because approximately 60% of the landings prior to 1994 were not from interviewed trips and the spatial information from non-interviewed trips is only precise to the quarter degree square level, the true decline is likely greater. Comparison of ten minute square landings patterns from the mid 1990's to the late 2000's showed two noticeable patterns: (1) cod were being caught in fewer ten minute squares, particularly along coastal Maine, and (2) in the 1990's landings were evenly distributed across the Gulf of Maine, where as in the late 2000's landings were dominated by only a few ten minute squares in the western Gulf of Maine (Fig. A.34). The increases in the contribution of landings from a relatively small area of the Gulf of Maine are consistent with the concentration indicated by the Gini indices.

The top five most important ten minute squares throughout the VTR time series (1994-2011) were identified based on their average annual contribution to the total Gulf of Maine cod landings. The use of these ten minute squares over time in terms of total annual landings was investigated to determine if particular regions within the Gulf of Maine appeared to exhibit unique properties in terms of cod removals. These trends can be thought of in terms of a utilization index for small areas (i.e., does the fishery tend to differentially utilize certain areas and are there persistent trends?).

The top five ten minute squares with respect to annual contribution to Gulf of Maine cod landings are all located to the west of the Western Gulf of Maine Closure Area (Fig. A.35). Three of these ten minute squares (427034, 427044, 427054) correspond with Stellwagen Bank, a prominent bathymetric feature in the western Gulf of Maine. These five ten minute squares account for 10 to 65% of the total Gulf of Maine cod commercial landings in any year, with the contribution generally increasing over time (Fig. A.36). Examination of the annual trends of each of the ten minute squares shows that one ten minute square, 427044, is the predominant ten minute square, accounting for > 45% of the total commercial landings in 2010. In terms of total landings contribution, the 427044 square is unlike any other region in the Gulf of Maine. The second most important ten minute square only contributed 10% to the total landings in a given year (427034) and interestingly is located directly to the west of 427044.

As previously mentioned, a shortcoming of VTR data is that they are self reported and the catch amounts and location are subject mis-reporting. To verify that the apparent trends were not byproducts of VTR misreporting, utilization indices were created using observer and VMS data (using methods outlined in Palmer and Wigley 2009). The utilization trends for

ten minute square 427044 estimated from VMS and observer data exhibit similar trends to those from the VTR data for both the trawl and gillnet fleet (Fig. A.37). The observer data indicates slightly more utilization of the area during the 2000 period relative to the VTR data. Caution should be taken to not over interpret the earlier trends in the observer data due to the low number of observer trips in the early part of the time series. Overall, three sources provide evidence of a large increase in the utilization of ten minute square 427044 beginning around 2006 and persisting through 2010. The three data sources provide slightly different perceptions about when the increase began, but all three data sources suggest that by 2011, the level of utilization had dropped off.

The increased utilization of 427044 occurred not only in terms of fraction of annual landings, but also in terms of the number of trips and vessels. Between 1994 and 2010 there was an increase in the number of vessels and fishing trips into this ten minute square while outside of 427044 there was an overall decline in the number of vessels and trips landing Gulf of Maine cod (Fig. A.38). One hypothesis for the utilization trends of 427044 is increased sand lance abundance on Stellwagen Bank from 2006 through 2010 (Richardson et al. 2012).

Landings of Gulf of Maine cod have been dominated by ton class 2 (5-50 tons) and 3 (51-150 tons) vessels. Prior to 1994 ton class 4 (151-500 tons) contributed between 10-25% of the total commercial landings (Fig. A.39). Partly as results of the trip limits that were introduced in the late 1990's it became unprofitable for the larger vessels to target cod, and over the past decade Gulf of Maine cod has been predominately targeted by the smaller ton class 2 day boat vessels. With the implementation of groundfish sectors in May 2010 and the removal of trip limits there has been an increase in the relative landings by ton class 3 and 4 vessels, but they have not returned to the same levels observed in the 1980s through early 1990s. The rolling closures affect the seasonal patterns of ton class landings similar to the patterns observed for gear type and area (Fig. A.40).

Commercial landings of Gulf of Maine cod are classified by four primary market categories: scrod, market, large and unclassified. Other market categories exist such as snapper, whale and steaker, but these are considered variants of the scrod (snapper) and large (whale and steaker) market categories. Market sized fish typically dominate annual landings with scrod sized fish having become less common over time, possibly in response to increasing minimum retention sizes (Fig. A.41). Over the past six years, market cod have accounted for approximately 70% of the total landings (Fig. A.42).

The temporal landing patterns of Gulf of Maine cod has been relatively consistent over the past six years with the exception of 2010 (Fig. A.43). From 2006 through 2009, the fishery was most active from May through March, with very little landings occurring during the months of March and April. Presumably, the low landings during these months were the result of a combination of limited availability of DAS and rolling closures. However, a large increase was observed in April 2010, likely in response to the major changes brought about by Amendment 16. It is possible that vessels that were entering sectors in May 2010 sought to fully utilize any remaining DAS as its currency would be useless under a sector-based system. Seasonal landing patterns in 2011 were similar to those observed from 2006-2009.

## Commercial landings: biosampling

Biological sampling (length and age) of Gulf of Maine cod prior to 1982 was poor to non-

existent (Table A.13). The sufficiency of biological sampling has always limited age-based assessments of Gulf of Maine cod to the period from 1982 onward. Prior to 1982 it was not uncommon for sampling to be absent across entire market categories, or even for an entire year. From 1982 to 1995 sampling was relatively constant at around approximately 30 to 60 samples per year. When sampling dropped off, it was typically sampling of the smaller (scrod) and larger (large) market categories that suffered. Beginning in 1996 there was a notable increase in overall sampling. The years 1998 to 2000 were exceptions to this trend and were marked by years of low landings, including the lowest level of commercial landings (i.e., 1,407 mt in 1999).

Since 1982 length sampling of the commercial landings has varied from 28.1 to 517.9 mt per 100 lengths (Table A.14). Sampling intensities less than 200 mt per 100 lengths has traditionally been considered an unofficial NAFO/ICNAF standard. Sampling intensity has generally increased over time and has exceeded the standard since 1996. Prior to 1982 length sampling was poor with sampling intensities exceeding 1000 mt per 100 lengths sampled. The sampling density (number of lengths per sample) has ranged from 3 to 345 lengths per sample with an average of 79 lengths per sample (Table A.13). In the earlier periods, while sampling intensity was lower than the current period, the density was generally higher. Part of the trend in declining sampling densities has come about from a relaxation of the requirement to collect the full number of desired lengths per sample. In the past, samplers would frequently not sample unless they could collect a full sample (typically 100 lengths, but has varied by market category over time). Given that age sampling is conducted at the same time as length sampling (but lower density), it is not surprising that the sampling of age structures (otoliths) has followed similar trends as lengths. From 1995 onward the metric tons per 100 ages have been less than 1000 mt with sampling in the last five years on the order of 100 mt per 100 ages (Table A.15).

Prior to SAW 53, Gulf of Maine cod assessments have estimated numbers-at-age by aggregating lengths into 3 cm bins. A complete update of the catch-at-age was conducted for SAW 53 and in doing so, an attempt was made to use 1 cm intervals. This required a greater degree of age imputation to manually fill in gaps in the age length key (ALK). The majority of market/time blocks required no imputation and for those that did, generally the percentage of landings requiring imputation was less than 5% (Table A.16). ALK imputation was primarily restricted to the older ages; given the small numbers of the population in these ages combined with the plus group handling of older ages, the impacts of this imputation are likely negligible.

When estimating the number of fish landed-at-age, every attempt was made to maintain the market category/quarter sampling design. However, when the availability of lengths for a particular market/quarter block was low, either a semiannual or annual time block was used. A criterion of 100 lengths per block was applied to the commercial landings for use as an objective basis to decide when it was appropriate to bin across quarters. In situations where an annual time block was required, the annual LW relationship (Equation 3) was used to convert landings to numbers-at-age. Otherwise, the appropriate seasonal LW equation was applied (Equations 1 and 3). A summary of the amount of binning that was required is presented in Table A.14. Total numbers-at-age are presented in Table A.17. The bootstrapped generated CVs on the landings-at-age estimates are shown in Table A.18. CVs are generally less than 30% for those ages that make up the majority of the landings (Ages 3-6). Prior to 1984, the calculation of bootstrap CVs were not possible due to the inability to identify individual sampling events. There is considerable uncertainty in the estimates of landings-at-

age among some of the older ages, particularly beyond age 9 where the average CV begins to exceed 40%. Overall, younger ages have become less prevalent in the commercial landings with increases in the minimum retention size (Fig. A.44). Older fish were less common in the landings back in the late 1990's, likely due to a truncated population age structure. Estimates of weights-at-age from landings in the commercial fishery are presented in Table A.19.

## Commercial discards

Gulf of Maine Atlantic cod are primarily discarded in the commercial fishery for three reasons: (1) fish are below the minimum retention size (too small), (2) fish are of poor quality, and (3) high grading of smaller or poor quality fish in situations where a limited amount of fish can be landed (e.g., under trip limits). Discarding of smaller/poor quality fish became increasingly important from 1999 onward when the trip limits became more restrictive. However, the primary reported reason for fish discards has been because the fish were too small (Fig. A.45). With increases to the commercial minimum retention sizes in 2002, discarding due to undersized fish accounts for approximately 70% of total fish discards. This finding is in contrast to the conclusions of the GARM III assessment that "...presumed that cod of all sizes and ages are discarded without prejudice." The GARM III conclusion was based on an examination of the years 1998 to 2000 when trip limits were most restrictive; however, this conclusion does not hold for other periods. This distinction is important to consider when determining how best to estimate the discards-at-age. Given that the majority of discards are of fish that are below minimum retention size, the method used in GARM III to account for discards in the catch-at-age was is not appropriate for the full time series and would lead to an underestimation in the fishing mortality on younger fish and an overestimation in older fish

Direct sampling of the commercial fishery for discards has been conducted by fisheries observers since 1989. Of the Gulf of Maine cod that were observed to have been discarded by fishery observers, the following gear types account for greater than 99% of the total observed discards: benthic longline, small mesh (<5.5") otter trawl, large mesh ( $\geq$  5.5") otter trawl, shrimp trawl, and large mesh (5.5"-7.99") and extra large mesh ( $\geq$  8.0") sink gillnet gear (Table A.20).

While handline gear does not constitute a large fraction of observed discards, this is partly because this gear type is not frequently observed owing to the small size of these vessels and regulatory exemptions from observer coverage for some handline permit categories. Regardless, it is known that discarding by this gear does occur and it is accounted for in the in-season groundfish monitoring programs. The SAW 53 assessment attempted to estimate discards for this gear type, but the SAW 53 WG concluded that the proportion of observed trips for handline was too low and the imprecision of the discard estimates was too high to give confidence in the derived estimates (Table A.21). This decision was supported by the SAW 55 WG.

The in-season groundfish catch monitoring program makes a distinction between otter trawl gear types, specifically between standard otter trawls and the two modified otter trawl gear types, the Ruhle trawl and the haddock separator trawl. An examination of dealer data and observer data was conducted to determine if the data would support such a distinction when estimating discards for the stock assessment. The data indicate that there are more trips observed that use these modified gear types than report the gear types on the VTR (Table

A.22). This suggests that these gear types are not being accurately reported in the VTR data and no distinction can be made between the modified gear types and the standard otter trawl. However, given that the use of these gear types did not begin until 2009 and the frequency of use is low, this should have negligible impacts on discard estimates.

The total number of observed trawl, gillnet and longline trips ranged from a low of 62 in 1997 to a current high of 2,850 trips (Table A.23). The large increase in the number of observed trips in 2010 was due to the additional contribution of ASMs that were required for the groundfish fishery under Amendment 16. ASM coverage averaged approximately 25% of total groundfish trips whereas regular observer coverage (NEFOP) averaged about 7% (M. Palmer, NEFSC, unpublished data). A comparison of the estimated discard rates between ASM and NEFOP observers (Wigley et al. 2012) showed no statistical difference for the majority of gears and quarters examined. Generally, the Gulf of Maine cod ASM discard rates were statistically indistinguishable from the NEFOP discard rates as evidenced by the fact that the 95% confidence intervals of the difference between estimates include zero (Figs. A.46 and A.47). A comparison of the length frequency distributions with the large mesh otter trawl and gillnet being nearly identical (Figs. A.48 and A.49). As in the SAW 53 assessment, no distinction has been made between data collected by ASM and NEFOP observers with respect to discard estimation.

The SAW 53 assessment evaluated several different temporal stratification schemes with respect to their impact on total discards and relative precision. Quarterly, semi-annual and annual stratifications were explored. All achieved nearly identical results with respect to total discards, with the annual stratification having slightly lower CVs, though generally all CVs were below the informal target of 30%. Given the lack of sensitivity to choice of temporal stratification, a decision was made to use a semi-annual stratification owing to its ease of use from an operational perspective when estimating discards-at-age. The current assessment has retained this approach.

Final estimates of discards ranged from under 100 mt in 1998 to a high of 2,198 mt in 1990 (Table A.24). While there are exceptions, large-mesh otter trawl is the major source of cod discards. Shrimp trawl discards were an important component of cod discards in the early years, but the required use of a Nordmore grate for the Gulf of Maine shrimp fishery beginning in 1992 was highly effective at reducing cod discards. The resulting CVs on the discard estimates are variable on a gear-specific basis. At the aggregate level, CVs of total discards are typically less than 30% and below 20% over the last four years (Table A.25). As a means of evaluating the accuracy of the discard estimation procedure, a check was conducted to attempt to estimate total landings using the same methodology used to estimate discards. Instead of estimating a  $d_{cod}/k_{all}$  ratio, a  $k_{cod}/k_{all}$  ratio is estimated. When compared to the total cod landings, the results show close agreement with respect to scale and trends lending support to the accuracy of the discard estimation procedure (Fig. A.50).

## Discard mortality

The SAW53 assessment assumed 100% mortality of all discarded fish. A working group was convened in July 2012 to evaluate the available scientific information on the survival of cod on a gear-by-gear basis (summarized in Palmer 2012a). The working group consisted of scientific experts with experience in field estimation of discard survival and stock

assessments as well as both recreational and commercial fishermen and other industry representative. Using a modified Delphi approach the WG developed revised mortality estimates of cod (NEFSC 2012b). The revised estimates ranged from 20-80% depending on gear (Table A.26, Fig. A.51) which are generally consistent with the literature reviewed in Palmer (2012a). However, an accurate quantification of true discard mortality is difficult. Sole reliance on the results of the available literature is likely to bias the discard estimates low both because of the largely unaccounted impacts of long-term post-release mortality as well as unobserved escapement mortality. The discards incorporated into stock assessments only account for the observed discards brought on deck. There is some additional and unquantified mortality associated with fish that escape the capture process. While this fraction is likely small, it is an additional component that if not considered will result in negatively biased estimates of discard mortality (ICES 2005). Additional research is needed to better quantify both the true mortality of fish discarded at sea as well as quantify the magnitude of unobserved mortality in the Gulf of Maine cod fisheries.

Given that the otter trawl and gillnet gear are the dominant gear types with respect to commercial Gulf of Maine cod discards, the revised mortality estimates had only a moderate impact on the total estimates of commercial discards (Fig. A.52).

## Commercial discards: biosampling

Observers collect length and age information from the discarded fraction of the catch (as well as on the retained catch); however, only length samples are currently available. ALKs were created using both commercial landings and NEFSC survey ALK corresponding to the appropriate season (spring/fall). Length sampling extends back to 1989 and has generally been quite good with sampling intensities for most years less than 100 mt of discards per 100 lengths (Table A.27). The length distributions by gear are shown in Figure A.53 on an aggregate basis and by year in Figure A.54. Increases in the minimum fish size as well as the impacts of trip limits leading to the discarding of larger sized fish are evident in the time series plots. Generally, shrimp trawl captures the smallest fish with the sink gillnet gear having a much broader distribution of lengths including a large proportion of lengths in excess of the minimum size. The reasoning for the expanded length distribution in the gillnet fishery is largely due to the prevalence of poor quality discards in this fishery (e.g., damage due to seals, dogfish or sand fleas that occurs during the gear soak).

When estimating discards at length, attempts were made to maintain the separate semi-annual estimates so that the most appropriate seasonal LW equation could be applied. For some years and gear types this was not possible owing to limited sampling. A criterion of 50 lengths per block was applied to the commercial landings to provide an objective basis to decide when it was appropriate to bin across semesters and or gear types. Binning across gear types was only done between the two gillnet gears owing to the similarities of their length frequency distributions.

## Commercial discard hindcasting: pre-1989

Direct observations of discards by fishery observers only exist from 1989 to present. The model formulations used in past assessments have started in 1982 owing to the availability of information on the age composition of commercial landings. Prior to the SAW 53 assessment, no attempt was made to hindcast discards back to 1982. The SAW 53 assessment applied a survey filter method described in Palmer et al. (2008) and previously applied to

groundfish stocks in the Northeast Region (e.g., Mayo et al. 1992, O'Brien and Esteves 2001) to extend discard estimates back to 1982. Discards were only hindcasted for the three primary discard gear types during this period: large mesh otter trawl, shrimp trawl and large mesh sink gillnet. This same approach has been used in the current assessment.

The survey filter method requires information on survey numbers at length  $(N_i)$ , estimates of gear selectivity at length  $(m_i)$ , a scaling factor (q) and an estimate of total fishery effort (f). Assuming these are available, discard-at-length can be estimated using the following equations:

If:

| (6.a) | $C_i/f = q \bullet (N_i \bullet m_i)$ , then              |
|-------|-----------------------------------------------------------|
| (6.b) | $C_i = (q \bullet f) \bullet (N_i \bullet m_i)$ as above. |

If:

| (6. <i>c</i> ) | $K_i = C_i \bullet s_i$ , and                                           |
|----------------|-------------------------------------------------------------------------|
| (6.d)          | $D_i = C_i \bullet (1 - s_i)$ , then                                    |
| (6.e)          | $D_i = (q \bullet f) \bullet (N_i \bullet m_i) \bullet (1 - s_i)$ , and |
| (6.f)          | $D_i/f = q \bullet [N_i \bullet m_i \bullet (1 - s_i)]$                 |

where:

 $C_i$  is the catch retained by a given commercial mesh at length i,

 $N_i$  is the abundance of fish in the survey at length *i*,

 $m_i$  is the proportion of the available population retained by a given mesh at length i,

 $s_i$  is the proportion of the retained catch kept at length i,

 $K_i$  is the kept portion of the catch at length *i*, and

 $D_i$  is the discarded portion of the catch at length *i*.

*f* is some estimate of total fishing effort.

If it is assumed that the fish discarded pre-1989 were all less than the minimum size, the above equation can be simplified by setting  $s_i$  to 0. This assumption is likely valid for large mesh otter trawl and shrimp trawl, but may not hold for large mesh sink gillnet gear (Fig. A.55). The impacts of this assumption on the estimation of proportion at age is evaluated later. Using a set of years when management was similar to the hindcast years, gear selectivity at length ( $m_i$ ), and the appropriate scaling factor (q) can be estimated and the accuracy of the overall method can be evaluated. The years 1989 to 1993 were used for method development and evaluation of trawl and gillnet gear and the years 1989 to 1991 for shrimp trawl due to major changes in the shrimp trawl discard patterns that occurred in 1992 (i.e., Nordmore grate).

Using Pope's (1975) 'alternate tow' approach, the ratios of observed proportion-at-length discarded from the fishery to the proportion-at-length present in the survey are generated (e.g., Fig. A.56). Equation 7 (Wileman et al. 1996) is then fit to the aggregate ratios (across all years) to generate selectivity ogives (Fig. A.57). The fits to the shrimp trawl were poor, and given the small size distribution of cod discarded in the shrimp trawl fishery, an assumption was made that the selectivity of the shrimp trawl was identical to that of the NEFSC bottom trawl survey. The mesh sizes of the shrimp fishery during this period (1.75"/4.45 cm) were not all together dissimilar from those of the survey gear (11.5 cm codend with a 1.27 cm liner). Comparison of the proportions at length between the survey-filter method and the direct observations recorded by observers shows reasonably close

agreement in the length distributions across years for large mesh otter trawl and shrimp trawl gears (Figs. A.58 and A.59). There was less agreement among the length frequency distributions for sink gillnet gear, with only two of the five years showing close agreement (Fig. A.60). Conversion of the number-at-length to numbers-at-age using a combined spring and fall NEFSC survey ALK showed even closer agreement between the survey-filter approach and the direct estimates (Fig. A.61 – A.63). This suggests that while the assumptions of the survey filter method may not accurately reflect the length distribution of gillnet discards, the overall impacts on the age distribution are mitigated.

(7) 
$$r(l) = \left[\frac{\exp(a+bl)}{1+\exp(a+bl)}\right]$$

By regressing the ratio of observed discards-at-length to the total fishing effort ( $K_{all}$  was used similar to the contemporary discard estimates) on the ratio of selectivity-adjusted survey numbers-at-length, the gear-specific scaling factor (q) can be estimated as the slope of the regression line (Equation 6.f, Fig. A.64). In performing these regressions, it was noted that the relationship of the two ratios was different in 1990 relative to other years. It's possible that this reflects some effects of the 1987 year class moving into the fishery; the 1987 year class was the largest year class observed during the SAW 53 assessment time series (NEFSC 2012a).

Total discards estimated using the survey filter approach reflected the relative trends and scales from the direct estimates (Table A.28). The large mesh gillnet estimates were underestimated relative to the direct estimates, possibly due to the assumption of smaller fish in the survey filter method. In 1990 the survey filter underestimated across all gear types, possibly due to poor fit of q in that year as described above.

The SAW 53 WG considered an alternative metric to the survey-filter hindcast: use of an average of the  $d_{cod}/k_{all}$  ratio from years 1989-1993 and raise it by the annual  $K_{all}$  in years 1982-1988. The SAW 53 WG discussed whether the average  $d_{cod}/k_{all}$  ratio could be biased from including the 1990 value in the estimate, which may have been much higher owing to the anomalously large 1987 year class. As an intermediate approach, the WG recommended a third calculation of hindcasted discards using the average  $d_{cod}/k_{all}$  ratio for years 1989 to 1993, excluding 1990 (Fig. A.65). The SAW 53 WG discussed the appropriateness of hindcasting, and whether assuming that discards are zero is better than making assumptions to derive estimated amounts. Ultimately, the SAW 53 WG concluded that the true discards are likely between zero and the  $d_{cod}/k_{all}$  ratio estimates that included the 1990 value (which provides a likely upper bound). The final approach applied the average  $d_{cod}/k_{all}$  ratio for years 1989 to 1993, excluding 1990 as the basis for the amount of hindcasted annual discards with the proportion at age determined using the survey filter method. These estimates have been retained in the current assessment. Commercial discards-at-age and weights-at-age are presented in Tables A.29 and A.30 respectively. Figure A.66 shows the impact of the revised discard mortality estimates on estimates of total discards in terms of numbers. Bubble plots of commercial discards-at-age over time are shown in Fig. A.67.

## Recreational landings

There is a large recreational fishery for cod in the Gulf of Maine that, over the last decade, has accounted for approximately 20-31% of the total catch. Previous assessments have used data collected under the Marine Recreational Fisheries Statistical Survey (MRFSS). Beginning with this current assessment MRFSS data have been re-estimated using revised methodologies consistent with the new Marine Recreational Information Program (MRIP) which has replaced the MRFSS program (NMFS 2012). Since the existing data were collected under the MRFSS program, they will be referred to as MRFSS data. The conversion of MRFSS data to MRIP estimates is described later. The MRFSS data collection program began in 1979, though estimates of recreationally caught cod are not available until 1981. Recreational catch data are divided into three components: directly observed landings (A), unobserved landings (B1), and unobserved discards (B2). Recreational catch is partitioned into Gulf of Maine and Georges Bank stocks using annual site register lists; catches attributed to intercept/interview sites in Maine and New Hampshire as well as Massachusetts landings from Essex, Suffolk, and Plymouth counties are allocated to the Gulf of Maine stock. Landings from Barnstable County (Massachusetts) are split such that intercept sites bordering Cape Cod Bay are allocated to the Gulf of Maine stock and those on the east and south side of Cape Cod are allocated to the Georges Bank stock.

While MRFSS/MRIP is the source for official recreational catch estimates, VTRs provide a useful source for understanding some of the finer spatial and temporal trends that cannot be easily determined from the MRFSS data. They also help inform the validity of the MRFSS sampling scheme and treatment of data. VTR data are only available for the federally permitted party (head boats) and charter modes. Early in the time series party vessels were the predominate source of VTR-reported recreational catch, though charter boat landings have increased over the last five years (Fig. A.68). VTR data do not cover the private recreational fleet or party/charter vessels operating only within state waters. Federally permitted recreational vessels only represent from 14 to 69% of the total recreational harvest in a given year (Table A.31), thus VTR-based estimates will underestimate the total recreational landings (Fig. A.69). The MRFSS program did not sample the New England region in Wave 1 (January/February); however, VTR data suggest that historically, very low recreational activity occurs in these months (Table A.32). Since May 1, 2006 the recreational fishery has been prohibited from possessing cod in the Gulf of Maine between November 1<sup>st</sup> and March 31<sup>st</sup>. This prohibition was extended to April 15<sup>th</sup> in 2009. MRFSS-based estimates of total catch by sampling wave show highly variable temporal patterns, but are generally consistent with VTR data, with waves 2-5 having the highest proportion of total annual catch (Table A.33). Based on the VTRs, there are virtually no landings of Gulf of Maine cod in ports south of Massachusetts (Table A.34). This finding supports the existing allocation scheme based on the site register lists that is used to assign MRFSS recreational catch to the Gulf of Maine and Georges Bank stock components.

Unlike the commercial trawl fishery the recreational fishery has always been relatively concentrated with Gini indices ranging from 0.81-0.92 (Fig. A.70). There have been no large scale changes in the center of recreational effort over time (Fig. A.71). The majority of VTR-reported recreational landings come almost exclusively from statistical areas 513 - 515 (Table A.35), with most recreational activity located to the west of 70° W (Fig. A.72). The recreational fleet does not to utilize 427044 to the same extent as the commercial fleet (Fig. A.73). While the charter boat fleet does have two notable periods of high utilization of this

area (1998-2000 and 2007-2010) the relative use is much less than that of the commercial fleet (Fig. A.74).

The MRFSS data collection program is a numbers-based survey and conversion of MRFSS estimates to removals in terms of total biomass can be accomplished in several ways. Total weight estimates typically provided by the MRFSS program convert numbers to weight using the average sampling weights by state and semester. In the earlier time periods, sampling was poor such that average MRFSS weights did not exist for all cells. This can lead to an underestimation of removals in terms of average weight (Method 1). Imputing the missing cells using the averages from other cells within the same year addresses the issue of missing cells (Method 2). The quality of the MRFSS weight sampling is unknown, though it is generally perceived that the quality of the length information is more reliable. Length sampling of recreational landings has improved over time, though the sampling intensity is not as good as that of the commercial fishery (Table A.36). An alternative method is to use the annual length frequency distributions (Figs. A.75 and A.76) to generate numbers at length and then apply the annual LW equation to estimate total removals in terms of weight (Method 3). Because the majority of recreational catch occurs mid-way between the spring and fall NEFSC surveys, it was not appropriate to partition out catch into spring and fall components. Methods 2 and 3 achieve similar results in terms of total landings, Method 1 tends to underestimate total removals early in the time series when sampling was sparse (NEFSC 2012a). Consistent with SAW 53, method 3 has been used to report out total recreational catch in terms of biomass, though these estimates are not used in the stock assessment model.

The numbers-based estimates of recreational landings were converted to numbers-at-age using ALKs borrowed from the NEFSC survey which include age information collected from the inshore strata. The inclusion of the inshore strata provided a better spatial overlap with the recreational fishery compared to the use of just the offshore strata (Fig. A.72). Recreational landings-at-age show similar trends with respect to the impacts of increasing minimum retention sizes (Fig. A.77). Like the commercial landings, older ages are absent from the recreational landings throughout much of the 1990s.

# Recreational discards

With increases in the minimum recreational retention sizes, the contribution of recreational discards to total recreational catch has been increasing over time (Fig. A.18). Prior to the SAW 53 assessment, recreational discards were reported, but they were not included in the catch-at-age used in the assessment models. The primary reason for the exclusion was that historically, there had been no length sampling of recreational discards, and thus no information to convert the total recreational discard estimates (B2 catch) to estimates of discards-at-age. The largest fraction of discards is attributed to the party/charter mode in areas that are greater than 3 miles from shore and the private/rental mode, which has seen an increasing trend in the fraction taken more than 3 miles from shore (Table A.37). Beginning in 2005 direct sampling of cod discards from party boats began in the Gulf of Maine (i9 sampling; Table A.38). Sampling intensities have averaged approximately 200 mt of discards per 100 lengths sampled which is slightly higher relative to the length sampling of recreational landings during the same period.

Because of the increasing importance of recreational discards over time, the SAW 53 assessment attempted a hindcast of recreational discards using the available length frequency information and a variant of the survey filter method used to hindcast commercial discards.

Unlike commercial discards, estimates on the magnitude of recreational discards in terms of total numbers were already available from the MRFSS data. The survey filter method was needed only to construct the length frequency distribution of the recreational discard catch back in time. Similar to commercial discards, the assumption was made that all discarding was done due to minimum retention sizes. This assumption appears to be valid for the recreational fishery, with almost no discarding of legal-sized fish occurring in the 2005 – 2010 period (Fig. A.78). Using the alternate-tow approach used for commercial discards, a gear selectivity ogive was constructed (Fig. A.79). Comparing the survey-filter length frequency distributions to the observed length frequency distributions showed close agreement (Fig. A.80). Applying the survey filter method back to 1981 (start of the length sampling of recreational landings) vielded the length distributions shown in Fig. A.81. The same NEFSC survey ALKs applied to the recreational landing was used for the recreational discards resulting in the discard-at-age patterns shown in Figure A.82. As with commercial discards, the SAW 53 assessment assumed 100% mortality of all recreationally discarded fish. The revised estimate of 30% mortality was applied the recreational discards for the current assessment.

## Conversion of MRFSS data using MRIP methodologies

In 2012 NMFS released revised estimate of recreational catch extending back to 2004. The revised estimates were based on the application of the MRIP sampling design to the existing MRFSS data. For Gulf of Maine cod, the revised MRIP estimates ranged from 48.4-98.1% of the MRFSS landings estimates and 52.5-101% of the MRFSS discard estimates (Table A.39). A working group convened in March 2012 recommended applying a ratio estimator to MRFSS data collected pre-2004 to convert the old data into scales consistent with the revised MRIP estimates. The WG concluded that the ratio estimator be based on the "ratio of means" (across all comparison years included) rather than based on the "mean of ratios" for individual years (NMFS 2012). Consistent with the recommendations of the WG, that approach has been employed in the current assessment yielding a ratio estimator of 0.742 for AB1 catch and 0.756 for B2 catch (Table A.39).

Total recreational catch has been re-estimated since SAW 53 due to minor updates to the MRFSS data and to accommodate the MRIP re-estimation. The minor updates to the MRFSS data resulted in differences generally < 1%, but some larger differences were present in the more recent year, most notably in the estimates of B2 catch (Table A.40). Conversion of the MRFSS estimates to MRIP-based estimates resulted in differences ranging from 1-50% for AB1 catch and -4-44% for B2 catch (Table A.41).

A summary of recreational catch from 1981 to 2010 is presented in Table A.42. Recreational catch has ranged between 0.3 and 4.1 thousand mt. Because of the method used to apportion MRFSS/MRIP cod estimates to stock areas, there are no direct estimates of precision available for recreational catches; however, the published estimates of percent standard error (PSE) provide some gauge as to the relative precision of the recreational catch estimates (Table A.43). Overall the general precision of these estimates is about equal to the commercial discards. Total cumulative recreational landings-at-age and landing weights-at-age are presented in Tables A.44 and A.45. Recreational discards-at-age and discard weights-at-age are presented in Table A.46 and A.47.

## Total catch-at-age and mean weight-at-age

Estimates of total catch-at-age were determined by summing the numbers-at-age across all of the catch components: commercial landings, commercial discards, recreational landings and recreational discards (Table A.48). The age structure of fishery catch was truncated in the early 1990s relative to that observed in the 1980s. The truncation persisted through 2000 with age 9 and older fish beginning to reappear in the fishery in greater numbers beginning in 2001. These older age classes persisted through 2007 but have become less common in the fishery catches over the most recent four years. Mean catch weights-at-age were estimated by using a numbers weighted average of the individual catch component's mean weights-at-age (Table A.49). There is evidence of declines in the mean weights-at-age for fish older than age 5 over the last decade (Fig. A.83).

# Estimation of January 1/spawning stock weights

Sampling of older age fish in the trawl surveys has historically been low, and use of surveybased weights-at-age to estimate January 1 and spawning stock weights for use as model inputs would require extensive imputation. For this reason, catch weights-at-age were used to estimate January 1 and spawning stock weights. Prior to estimation of stock/spawning stock weights, minor imputation of the catch weights at-age were required to fill in gaps in the older age classes (primarily in the age 9+ group). An examination of possible approaches (e.g., moving averages or time series averages) showed that imputation using a 5-year centered moving average would be most appropriate.

January 1 and spawning stock weights were estimated from catch weights using a method described in Rivard (1980, 1982). March 1 is the assumed spawning event in the base model. Given that there is little somatic growth between January 1 and the assumed start of the major spawning period (April 1; Fig. A.10), spawning stock weights were set equal to January 1 weights-at-age. The Rivard method adjusts the catch mean weights-at-age, which are generally presumed to represent mid-year weights, back to January 1. Mean weights at the beginning of the year for a given age class are calculated as the geometric mean of the weight in the same year and of the same cohort in the previous year. No adjustments are made for the plus group calculation. Calculations for the initial and final years and ages are described in Rivard (1980, 1982). January 1/spawning stock weights are shown in Table A.50.

Brooks et al. (2012) evaluated the sufficiency of applying Rivard-adjusted catch weights as a proxy for January 1/spawning stock weights. The analyses found the Rivard-adjusted age-specific catch weights to have similar trends and scale compared to NEFSC spring survey weights but had far less variability than survey weights and were not subject to the large number of missing ages and years of observation.

TOR A.2. Present the survey data and calibration information being used in the assessment; investigate the utility of commercial or recreational LPUE as a measure of relative abundance

There are three primary fishery independent surveys that operate bi-annually in the Gulf of Maine: the NEFSC bottom trawl survey, Massachusetts Department of Marine Fisheries (MADMF) bottom trawl survey and the Maine-New Hampshire (ME/NH) inshore groundfish survey. All three surveys operate in both the spring and fall with the seasonal timing differing

slightly between surveys. The NEFSC survey occurs the earliest of the three spring surveys with MADMF and ME/NH having similar timing (Fig. A.84). Conversely, the MADMF survey occurs first in the fall with the NEFSC and ME/NH survey having similar timing.

## NEFSC bottom trawl survey

The NEFSC spring and fall bottom trawl surveys began in 1968 and 1963 respectively, providing the longest regional time series of fishery independent information. All previous Gulf of Maine cod assessments used only the offshore survey strata (Fig. A.85). The current approach to generating NEFSC indices ignores the inshore strata (Figs. A.86 and A.87) because a) historically they are not consistently sampled (Figs. A.88 and A.89); and b) the Massachusetts Department of Marine Fisheries (MADMF) survey covers the inshore areas and this survey has traditionally been included in the Gulf of Maine cod assessments. The impacts of including the inshore survey strata in the NEFSC survey indices were examined by both the SAW 53 and SAW 55 WGs. The overall trend in the aggregate abundance (numbers) and biomass indices were similar between the offshore-only indices and the combined inshore-offshore indices (Fig. A.90). There were several years in which the spring survey indices were noticeably higher due to inclusion of the inshore survey strata, but the general trends were similar suggesting that inclusion of the inshore variability increased the between year variability of the survey. The observed increases were primarily due to increases in age 0-2 fish with minimal impact on the age-specific indices of older age classes (Figs. A.91 and A.92). Due to the inconsistent sampling and minimal impact on the index trends, the SAW 55 WG supported the conclusions of the SAW 53 WG to exclude the inshore survey strata from the NEFSC Gulf of Maine cod survey index.

A frequent criticism of the NEFSC bottom trawl survey is that it does not cover the same areas where the commercial and recreational fisheries catch cod, and thus 'misses' much of the cod that exists in the Gulf of Maine. A comparison of the NEFSC spring and fall survey catches to commercial (total observed cod catches by ten minute square) and recreational activity (total number of trips catching cod by ten minute square) show close agreement between the location of survey and fishery catches (Fig. A.93).

The NEFSC bottom trawl survey has utilized three different vessels and three different door configurations throughout the time series of the survey (Table A.51). In an effort to maintain a consistent survey time series, survey indices are converted to 'Albatross IV/Polyvalent door' equivalents using several different conversion factors (Table A.52). The largest change in the survey time series occurred in 2009 when the RV Albatross IV was decommissioned and replaced by the FSV Henry B. Bigelow. This resulted in changes not only to the vessel and doors, but also to the overall trawl gear as well as the survey protocols (summarized in Table A.53). Calibration experiments to estimate survey differences were conducted in the spring and fall of 2008 (Brown 2009). The results of those experiments were peer reviewed by a panel of external (non-NMFS) experts and summarized in Miller et al. (2010). These results provide annual calibration coefficients both in terms of abundance (numbers) and biomass (weight). Further work by Brooks et al. (2010) developed length-specific abundance calibration coefficients for Atlantic cod. This method uses a segmented regression model where a constant conversion factor is applied to fish  $\leq 20$  cm and  $\geq 54$  cm, and a constantly decreasing linear regression is fit to fish between 20 and 54 cm (Fig. A.94). A comparison of the converted and unconverted spring and fall survey indices is presented in Figure A.95. It should be noted that while considerable focus has been placed on the Albatross/Bigelow

calibration, the effects of door calibration are generally larger than those of the *Albatross/Bigelow* calibration. Attempts to estimate *Albatross/Bigelow* calibration coefficients directly within an assessment model yielded similar coefficients as those estimated by Brooks et al. (2010), thus leading the SAW 55 WG to support the continued use of the existing *Albatross/Bigelow* calibrations coefficients (see Appendix A.5 for a description of the estimation of *Albatross/Bigelow* calibration coefficients within a statistical catch-at-age model).

During the SAW 53 fishing industry meeting (August 16, 2011 in Gloucester, MA), industry expressed concern with the 24-hour operation of the survey. There was a sense that there were differences in the relative catchability of cod between daytime and nighttime hours. These observations are supported in the scientific literature (e.g., Beamish 1966), though the nature of off bottom movements is highly variable. An analysis was pursued as to whether there were appreciable differences in survey catchability between daytime and nighttime tows. The results showed that generally catchability was slightly higher in the daytime tows. However, the trends between day and night tows were similar, and in most years the day/night survey indices fell within the 80% CI of the aggregate index (Fig. A.96). Because of the similarity in the trends it is appropriate to use both day and night tows to calculate indices for the assessment. Splitting by day and night would result in reduced tows and lost strata (Table A.54), which would increase the likelihood that survey indices could be influenced by a single large tow in any year.

Aggregate survey indices over time are presented in Table A.55 and the corresponding CVs are presented in Table A.56. It is worth noting that some of the highest survey indices are associated with relatively high CVs/confidence intervals. This is an important consideration in determining how to interpret survey indices; i.e., do increases in survey indices represent true increases in the relative size of the resource, or are the indices being driven by a few influential tows that are not indicative of the resource abundance/biomass? Generally, survey indices were higher in the earlier time periods, reaching lows in the mid-1990s. During the early to mid-2000s there was a slight increase in survey indices relative to the mid-1990, but subsequently survey indices have declined and are at, or near, time series lows (Figs. A.97 and A.98). There is reasonably good agreement between the intra-season survey indices (spring numbers vs. biomass) and inter-season indices (e.g., spring biomass vs. fall biomass), but poor agreement between inter-season and inter-index comparisons (e.g., spring biomass vs. fall numbers; Fig. A.99).

Indices-at-age for both the spring and fall surveys are presented in Tables A.57-A.60 and Figures A.100 and A.101. It should be noted that age information for the spring and fall survey does not begin until 1970. Similar to the trends observed in the commercial and recreational fisheries, there were few older fish present in the survey catch-at-age throughout most of the 1990s. Within the spring survey there is strong cohort tracking out to age 6 (Fig. A.102) and out to age 9 in the fall survey (Fig. A.103).

Plots of the spring and fall survey catches (number/tow) show a general decline in the overall abundance and spatial extent of the resource from the 1970s through the 1990s (Fig. A.104). There is an increase in the 2000-2010 period, but the increase appears to be restricted to the western Gulf of Maine. Moderate survey catches occurred along the coast of Maine in the 1970s, but these have not been observed in the past twenty years. To further address the aspect of spatial aggregation, a time series of Gini indices were calculated following the techniques outlined in Wigley (1996). These results support the patterns shown in distribution

plots and suggest an overall concentration of the resource over the last twenty years (Fig. A.105). The number of stations and strata where cod have been observed in the Gulf of Maine has generally decreased over time as the resource has become increasingly concentrated in the western Gulf of Maine (Figs. A.106 and A.107). Not surprisingly, the largest declines have been observed in those strata (01380-01400) off the coast of eastern Maine. These patterns are similar to the spatial aggregation that has occurred in the commercial fishery.

## NEFSC model-based survey indices

The SAW 55 WG considered a generalized linear model (GLM) of the survey data, in which the factors considered included cruise (proxy for year), stratum, temperature, depth and time of day (Terceiro 2012). This model highlighted the highly contagious and over dispersed nature of the data, which called for use of a negative binomial distribution (one of many explored) in the fitting of the model. The best fit to the data was achieved with a model using cruise, stratum and time of day as factors. Overall, the temporal trends estimated by the model were similar to those of the design-based estimators described above. The WG considered that use of the GLM estimates in the assessment model would result in an underestimation of the variability in the survey indices as the GLM is effectively acting as a smoothing function of each time series. The WG therefore recommended that the design-based survey indices be used in the assessment models. However, it noted that the CVs from the GLM could be compared to those generated during the stage two iterative re-weighting process as the latter incorporate both observation and process error, similar to what the GLM produces.

## MADMF bottom trawl survey

The MADMF has conducted research bottom trawl surveys during the spring and fall since 1978, though age information is not available until 1982. A complete description of the MADMF trawl survey is provided in King et al. (2010). The survey strata included in the MADMF survey primarily includes the nearshore habitat within Massachusetts state waters in the southwestern Gulf of Maine (Fig. A.108). Because the MADMF surveys are conducted in relatively shallow waters and are limited in their spatial extent, they do not provide an index of the total stock resource, but may provide some information on the younger age classes inhabiting the nearshore environment (i.e., a recruitment index). Additionally, given the limited spatial extent, the MADMF survey may be more susceptible to resource availability due to timing of onshore/offshore seasonal movements (i.e., process error).

The abundance indices of these surveys exhibit the same overall trends as the NEFSC surveys, with the spring index currently at an all-time low (Table A.61 and Fig. A.109). The corresponding CVs for the aggregate indices are presented in Table A.62. Fall abundance indices are near time series lows, but the biomass index is currently above average (Fig. A.110). There is moderate agreement between the intra-season survey indices (spring numbers vs. biomass), but poor agreement among other index comparisons (Fig. A.111). Similar to what has been observed in the NEFSC survey, the number of stations and stratum in which cod have been observed has declined since highs early in the time series (Figs. A.112 and A.113).

In constructing the proportions at age in Massachusetts inshore survey, it was noted that a

number of length groups in the ALK were missing age information. While there was a modest (20 days) difference in the timing of the MADMF and the NEFSC spring survey, an attempt was made to augment the ALK of the inshore survey using aging data collected during the sampling of the inshore strata of the NEFSC survey consistent with the approach used for the SAW 53 assessment (NEFSC 2012a). The number of otoliths sampled in both surveys was about the same. After analysis conducted during the SAW 55 WG meeting, it was agreed that such augmentation was not necessary, with the ALK before and after this treatment being very similar. It was therefore recommended that the aging data in the Massachusetts inshore survey not be augmented with the NEFSC ageing data. MADMF indices at-age are presented in Tables A.63-66 and Figs. A.114 and 115. The SAW 55 WG considered diagnostics of the Massachusetts spring and fall surveys. specifically how well the abundance of year-classes was being tracked by each survey. In general, year-class tracking in the spring survey was reasonable between ages 1-6 (Fig. A.116) but only reasonable between ages 0-1 in the fall survey (Fig. A.117). The WG discussed reasons why this might be the case, including seasonal movements of cod between the inshore and offshore. Based upon this analysis, the WG recommended that the MADMF spring, but not fall, survey time series be used in the SAW 55 assessment model of GOM cod consistent with the SAW 53 assessment.

## ME/NH inshore groundfish trawl survey

The ME/NH inshore groundfish trawl survey has not been included in previous assessments, though previous assessment reviews have encouraged a thorough examination of the information available from this survey (e.g., NEFSC 2002b, NEFSC 2012a). The ME/NH survey began in fall 2000 and has been conducted in the spring and fall annually in the nearshore waters of the Gulf of Maine (Fig. A.118; Sherman et al. 2005). The ten year time series of abundance and biomass indices do not exhibit strong interannual fluctuations (Fig. A.118). Overall, there is moderate agreement between seasonal abundance and biomass indices, but poor agreement between spring and fall similar to the patterns observed in the MADMF survey (Fig. A.120). The SAW 55 WG discussed the possibility that seasonal north/south movements of cod along the Maine coast may be partly responsible for the lack of cohesion between the spring and fall survey, though no definitive information was available to evaluate these hypotheses. Similar to the NEFSC and MADMF surveys there has been a general decline in the percent of positive tows over the last decade in both the spring and fall surveys (Fig. A.121), though the fall survey has exhibited small increases the number of positive tows over the last three years.

The spatial distribution of catches seems consistent with the patterns observed in the NEFSC surveys with the highest catches occurring in the southwestern Gulf of Maine off the coasts of New Hampshire (Fig. A.122). There are some indications of high catches along the eastern Maine coast and could be indicative of spawning aggregations. The length frequency distributions suggests that the survey captures primarily age 0 through 2 fish (<40 cm; Fig. A.123). The size frequencies seem to suggest that ME/NH captures the same age classes observed in MADMF survey.

The biggest impediment to inclusion of this survey is the absence of age information. Progress has been made on the implementation and analysis of the data collected since the start of the survey; specifically, spring and fall 2005 and spring 2011 ageing has been completed and spring 2006 is in progress (S. Sherman, ME DMR, pers. comm.). The WG recommended that the complete ageing of the entire time series of collected otoliths be considered a high priority. The WG concluded that while this survey may be valuable in the longer term, it is both too short and lacking the aging data to be used in the SAW 55 assessment.

Following up on the research recommendations of the SAW 53 WG, the SAW 55 WG evaluated available reproductive information to determine whether any of the fish sampled in this survey were mature and whether there was evidence to suggest the presence of spawning aggregations along the Maine coast. Since 2004 over 100 maturity samples have been taken annually in the ME/NH survey (Table A.67). Trends in the length-at-50% ( $L_{50}$ ) maturity were evaluated which did not indicate large shifts over the short times series (Fig. A.124), but did show that the fish captured in the ME/NH tend to mature at a smaller size relative to those captured in the NEFSC survey. The  $L_{50}$  for cod captured in the ME/NH survey was 31.8 cm and 32.5 cm for females and males respectively (Fig. A.125) compared to 40.8 and 42.9 cm in the NEFSC spring survey. The cause of the discrepancy in the maturity schedule is not known, but similar patterns have been observed in other species such as winter flounder (S. Sherman, ME DMR, pers. comm.). Plots of fish greater than 25 cm show the possibly of spawning aggregations at both the southern and northern extents of the survey (Fig. A.126). Examination of maturity samples by region indicate a higher proportion of mature fish in the northern regions (Table A.68). It's not clear whether these patterns are confounded by north/south differences in the maturity schedule (i.e., fish at the southern extents mature at a larger size).

#### Inter-survey comparisons

Comparisons of inter-survey indices show moderate levels of agreement between NEFSC and MADMF surveys within seasons, but generally poor agreement across seasons (Figs. A.127 and A.128). Neither the NEFSC and MADMF surveys showed good agreement with the ME/NH survey, but this may be partly related to the short time series of ME/NH survey and general lack of contrast.

## Catch per unit effort (CPUE) indices

Trends in commercial landings per unit effort (LPUE) had been used in Gulf of Maine cod stock assessments prior to SAW 53. The 1982-1993 age composition of the landings corresponding to the effort of an otter trawl sub-fleet (summarized in Mayo et al. 1994) had been used to calculate LPUE-at-age indices for ages 2 through 6 (Mayo et al. 2009). The index was never extended beyond 1994 due to major changes occurring in the Gulf of Maine groundfish fishery (Table A.3) including regulatory measure to reduce fishing effort, closed areas, changes in mesh size and trip limits in addition to a switch in the fisheries-dependent data collection system from a landings interview/intercept program to a self reported logbook program. All of these issues affect the comparability of LPUEs estimated from 1994 onward with the earlier time series. Additionally, these same issues would make standardization of a contemporary catch per unit effort (CPUE) index difficult. The SAW 53 WG examined model sensitivity runs to assess the utility of including the Mayo et al. (2009) LPUE index. Model results were insensitive to the index and the SAW 53 WG concluded to remove the index from the SAW 53 assessment.

The apparent disconnect between the increasing catch per unit effort (CPUE) reported by groundfish fishermen and the comparatively limited rebuilding suggested in SAW 53 assessment (NEFSC 2012a) received notable attention following the release of the final assessment results. To address the criticism the NEFSC convened a CPUE WG in August 2012 to review and evaluate the information available on both commercial and recreational catch per unit effort (NEFSC 2012c). The CPUE WG concluded that ideally, LPUE indices should be formally considered and vetted as inputs into the assessment model. If a LPUE index is determined to be a poor index of fish abundance, while it may not be formally included as a model input, the index should be described in the assessment report and explanations put forward describing why the information in the LPUE index may be inconsistent with other assessment tuning indices.

The SAW 55 WG considered a number of analyses in an attempt to develop representative indices of GOM cod fishable biomass based on commercial and recreational LPUE. One analysis updated the LPUE index used by Mayo et al. (1994) through 2011 (Palmer 2012b). This index used year, depth, tonnage class, quarter and statistical unit area as factors in a GLM assuming lognormal error (Fig. A.129, Table A.69). Trends produced by the analysis tracked spawning biomass (SSB) as estimated during the SAW 53 relatively well up until 2006 after which time LPUE increased much faster than SSB. The reasons for this divergence were discussed at length by the WG. A hypothesis considered by the WG is that sand lance abundance, which is a forage species of cod, became abundant in a small region of the western GOM (near Stellwagen Bank) between 2006 and 2010 (Richardson et al. 2012). It was theorized that this resulted in the aggregation of cod in the area and thus elevated commercial catch rates. The incidence of occurrence of sand lance in cod stomachs collected during the spring and fall NEFSC BTS surveys has increased since 2006. These surveys indicate that the Stellwagen Bank area appears to be a forage 'hot spot' for cod feeding on sand lance. The VTR, observer and VMS information from the commercial fishery indicates that fishing effort since the mid-2000s has become highly concentrated in this area as documented previously in this report (Palmer 2012b). A large abundance of cod in a region easily exploitable by the day boat fleet was likely responsible for the increase in CPUE reported by the fishing industry between 2006 and 2010. Interestingly, the two large NEFSC spring survey tows that were identified to have contributed to the large increase in estimated biomass in the GARM III assessment (NEFSC 2012a) both occurred on Stellwagen Bank one in 2007 and the other in 2008. The same processes that led to the overestimation of biomass in the GARM III assessment were also responsible for the increases in CPUE reported by the fishing industry.

The SAW 55 WG discussed at length the processes that may be influencing the cod distribution in the Gulf of Maine. It appears that two related but separate processes may be underway. Over the longer term, there has been a loss of cod from the central and coastal areas of the Gulf with an apparent concentration of cod in the western area. Additionally, since 2006, there has been further aggregation of cod within the western Gulf into forage hot spots, hypothesized to be driven by sand lance. While it is difficult to prove definitely that these processes are responsible for the observed distribution changes, the evidence is suggestive. Notwithstanding the causes of the observed patterns, cod appear now to be aggregated in a small area of the Gulf, which suggests that the catchability (relationship between LPUE and biomass) has changed over the LPUE time series and has likely increased more recently. Over the longer term, there have a number of regulatory changes (e.g. seasonal closures, trip limits, etc) which call into question the utility of commercial LPUE as an index of GOM cod biomass. Similar issues with commercial catch rate indices have been observed

elsewhere (e.g. Harley et al., 2001). Based on these concerns, the WG recommended that the commercial LPUE index not be used in the SAW 55 assessment model. This recommendation is consistent with the findings of the recent NEFSC-sponsored LPUE workshop.

An LPUE index was also developed for the recreational fishery (Wood 2012). A GLM using year, month, area, permit and fishing category as factors was applied to the 1994 – 2011 recreational landings data (Fig. A.129, Table A.70). A number of error structures were explored with a lognormal model ultimately chosen. Contrary to the commercial fishery, recreational fishing has consistently occurred within a restricted region of the western Gulf. As with the commercial fishery, recreational fishing has been impacted by a series of regulations (e.g. seasonal closures, bag limits, etc). The analysis only included landings and was not able to include the release information which has become an increasing component of the catch. Further, the GLM analysis was only able to include party-charter boats. Overall, given concerns comparable to those of the commercial fishery, the WG recommended that the recreational LPUE index not be included in the GOM cod assessment model.

TOR A.3. Summarize the findings of recent workshops on stock structure of cod

A work plan on the topic of Atlantic cod stock structure in the Northeast United States/Scotian Shelf region was recommended by the New England Fishery Management Council's Scientific and Statistical Committee (SSC). The work plan laid out a three-phase process for re-evaluating, and possibly revising, the spatial basis for assessment and management of Atlantic cod. The first phase was to review data (genetic, life history, tagging, etc.) in order to evaluate the "null hypothesis" of the status quo management units.

The NEFSC sponsored a public workshop on cod stock structure, held June 12-14, 2012, facilitated by the Gulf of Maine Research Institute to address Phase I. Invited participants from the fishing and scientific communities presented on a range of topics with opportunities for discussion. The full workshop report is available at http://www.gmri.org/mini/index.asp?ID=52&p=149.

Many of the workshop participants felt that there was compelling evidence that the current management units need to be revised. The Workshop did not reach any conclusions on what the most appropriate management units might be. This will require further data analysis and modeling in order to complete Phase I of the SSC recommended process. The workshop report also identifies gaps in the data and analyses and recommended actions to address them.

The Workshop did not explicitly address and propose the next steps in the process. The Steering Committee recommended that an inclusive but focused Working Group meeting be held involving a small group of Canadian and US scientists to consider the results of the Workshop. This Working Group should be provided the short-term data and analyses identified as missing by the Workshop. Using that information, as well as the conclusions from the Workshop, the Working Group should determine the most appropriate representations of biological stock structure to complete Phase I of the process. The results from this Working Group meeting should be evaluated through an independent peer-review process.

Since the phased review process of cod stock structure that was recommended by the SSC has not been completed, no changes to stock structure were incorporated into this assessment.

#### TOR A.4. Investigate the evidence for natural mortality rates

Previous assessments of Gulf of Maine cod have assumed a constant, age-invariant rate of instantaneous natural mortality (*M*) of 0.2 (NEFSC 2012a, NEFSC 2008, Mayo et al. 2009). The SAW 55 WG evaluated the sufficiency of this assumption through life history analyses of natural mortality. Hoenig (1983) demonstrated that natural mortality can be estimated as a function of the maximum observed age ( $t_{max}$ ) in a population (*ibid*; Equation 8). Depending on whether the maximum age observed from the surveys ( $t_{max} = 17$ ) or the maximum age observed in the fishery ( $t_{max} = 16$ ) is used, this approach yields estimates of M = 0.25 or 0.26. This approach was further refined by Hewitt and Hoenig (2005; Equation 9), and through the revised approach yields similar results of M = 0.24 or 0.26. Because the Gulf of Maine cod stock has been heavily exploited for most of its recent history (post-1970; Figure A.19), and age samples are only available from the 1970s, M values in the range of 0.246 to 0.281 estimated from maximum age likely overestimate the true M.

An alternative approach relies on the gonadosomatic index (GSI) which used the ratio of gonad weight to somatic weight (Gunderson 1997). The general premise it that M is positively correlated with reproductive effort (*ibid*; Equation 10), more specifically, female reproductive effort. Estimates of GSI were not readily available for Gulf of Maine cod; however using a GSI value of 0.117 reported for the adjacent Georges Bank cod (McIntyre and Hutchings 2003) yields and M estimate of 0.209. Pauly (1980) first showed that M is proportional to the von Bertalanffy growth parameter, K. Using a variant of the relationship (Jensen 1996; Equation 11) and an estimate of g=1.598 (Gunderson et al. 2003) provides estimates of M = 0.165 or 0.201 depending on whether the K value is taken from the growth parameters estimated from the fall or spring surveys respectively. The lack of observed change in condition, as evidenced by a constant LW equation, does not support a hypothesis for a shift in life history parameters.

- (8)  $ln(Z) = a + b*ln(t_{max})$
- $(9) M = 4.22/t_{max}$
- (10) M=1.79\*GSI
- (11) M=gK

where:

Z is total mortality, a = 1.46, b = -1.01,  $t_{max}$  is the maximum observed age in a population, M is natural mortality, GSI is the gonadosomatic index, g = 1.598 (after Gunderson et al. 2003), K is the von Bertalanffy growth parameter

From this, the meta-analysis of life history-based estimates the evidence available with respect to Gulf of Maine cod life history parameters suggests that an assumption of M = 0.2 is reasonable. It should be noted that maximum age as high as 16 has been observed in the

commercial fishery as recent as 2009 which suggests comparable natural mortalities relative

to earlier in the time series (Table A.19). Also examinations of maturity-at-age and condition factor over time show no evidence of strong trends both of which can related to changes in natural mortality.

The method of Lorenzen (1996) was used to provide an aged-based estimate of *M* (Fig. A.130, Table A.71). This method, which is based upon the relationship between body weight and *M* across a wide range of species, was used in SAW 54 to provide age-based estimates of *M* for Southern New England – Mid Atlantic Bight yellowtail flounder (Equation 12). The peer review panel of SAW 54 (O'Boyle et al. 2012) concluded that the application of an inter-species relationship to infer within-species dynamics was an over-interpretation of the method. While *M* no doubt may be age-specific, the pattern estimated from the Lorenzen method may not be appropriate. Recent work performed by Deroba and Shueller (*https://afs.confex.com/afs/2012/webprogram/Paper10183.html*) indicated that using constant or age varying mortality would have similar impacts on the assessment. The SAW 55 WG thus concluded that the parsimonious approach is for the SAW 55 assessment models to use a single *M* for all ages.

(12) 
$$M_w = M_u W^b$$

where:

 $M_w$  = natural mortality associated with fish of weight, W,

Mu = natural mortality at unit weight, (3.69, consistent with Lorenzen ocean ecosystem constant) W = weight (g),

b = allometric scaling factor (-0.305, consistent with Lorenzen ocean ecosystem constant)

Two working papers considered the predator field of cod in the Gulf of Maine area (Link 2012, Waring 2012). Link (2012) noted that directed piscivory of cod by other fish was not common, with well less than 200 cod in over 550,000 stomachs observed. Similarly, the evidence for cannibalism is weak with only 20 cod found in over 20,000 stomachs. Studies to date suggest that M due to fish predation is likely low and is focused on juvenile and smaller size groups (Smith and Link 2010). Waring (2012) considered marine mammals as a potential source of elevated M in the Gulf of Maine area. Four species of seals (Harbor, Grey, Harp and Hooded) are found in New England with Harbor and Grey seals being the most numerous. The Harbor seal population, which was about 38,000 individuals in 2001, has been growing at an annual rate 6.6%. The Grey seal herd has increased from tens of animals in the early 1980s to thousands of animals in the late 2000s. Firm estimates on the size of the current herds are not available. Notwithstanding this, the food habit research suggests that cod mortality due to seals is low. Additionally, while seals are known to prey on cod, they are generalist feeders and the importance of cod in the diet of Gulf of Maine grey seals is unknown. There is limited information that suggests that cod represent only a minor component of harbor seal diet along the Maine coast (Wood 2001).

An analysis of tagging data collected during 2003 - 2006 to jointly estimate natural and fishing mortality was undertaken during GARM III (Miller and Tallack 2007). This analysis was updated for SAW 55 (Miller 2012). Contrary to the earlier work, this analysis was not length-based. Estimates of *M* ranged from 0.4 to 0.7 for the Gulf of Maine with Gulf of Maine *M* estimates tending to be lower than Georges Bank estimates. It also provided evidence of significant cod movements between GOM and GB and area 4X on the order of 4.1 to 29.7%. While *M* was relatively high compared to current estimates, *F* was

comparatively low, prompting discussion on whether or not it was representative of the

fishery due to local effects. The results were highly sensitive to the assumed return rate of high-reward tags. High-reward return rates on the order of 50% were associated with Gulf of Maine cod M estimates of 0.3, with M increasing as the high-reward tag rate increased. Model preference (based on log-likelihood function) was for assumptions of near-100% on reporting rates of the high-reward tags. Estimates of fishing mortality, F, were inversely related to the M response with F declining with higher assumptions of high-reward tags reporting rates. Across all ranges total mortality (Z) was estimated at approximately 1.0.

Concerns were raised with the tagging conducted in the Cape Cod area, which represented over 50% of the data in the database. The tagging had been conducted employing a wide range of expertise with mostly small cod tagged. This in combination with the warm water in the area may have resulted in higher tag induced mortality than assumed in the model. There were additional concerns with the assumed tag reporting rate (100%) for high reward tags. There is evidence to suggest differential reporting rates among some sectors of the commercial fishery, most notably the reporting rate by gillnet vessels was five times lower than that of trawl vessels (Tallack 2006). It is unknown if these same reporting trends also apply to the high-reward tags. There was also discussion on the age groups of cod represented by the study. GOM cod of 50 cm of about 2.5 - 3 years old, implying that the estimates of *M* are for ages 2.5 - 3 plus with it weighted towards the younger ages.

The SAW 55 WG discussed how best to use these estimates of *M*. It was hesitant to conclude that M was in the range of 0.6 - 0.7 and to recommend that these estimates be directly included in the assessment models. Rather, the tagging analysis is another form of modeling that should be considered. The WG discussed the availability of historical tagging to which the current estimates could be compared. It was reported that tagging work conducted in the Gulf of Maine area during the 1970s and 1980s suggested M estimates in the order of 0.2 -0.3 whereas tagging in the 1990s was suggestive of M similar to the more recent results. These observations are based upon unpublished work that could not be corroborated at the meeting. Much of the historical work (e.g. Hunt et al. 1999) had been focused on cod movements and did not provide estimates of natural, fishing or total mortality. Further, concerns were raised that there was no obvious mechanism (e.g. predation) that could explain a recent increase in M, although it was countered that no mechanism has been identified for the current M estimate of 0.2, though this estimate is supported by life history parameters. The SAW 55 WG recommended profiling natural mortality across both the historical and more recent periods of the assessment to inform the discussion as to whether or not there has been a long-term change in M. The WG agreed that an option (M-ramp) with an M change should be considered as an alternate to a base model which would assume no change in M(i.e. M = 0.2).

## Catch-curve analyses

Catch curves were constructed for the aggregate fishery catches (commercial and recreational landings and discards; Fig. A.131) and for the NEFSC spring (Fig. A.132) and fall surveys (Fig. A.133) based on the methods of Robson and Chapman (1961). Catch curves were conducted on a cohort basis rather than an annual basis which removed the confounding effects of differential year class strength on the interpretation of catch curve results. Linear regressions were fit to the log transformed catches of ages 4-8. While ages 4-8 may not

precisely match the fully recruited age classes in both the catch and the survey it offers a compromise between full selection and having sufficient ages to fit a reliable regression (i.e., few fish beyond age 8 are regularly observed across the survey time series). The slope of the regressions provides an indication of cohort Z which is useful when interpreting the implied total mortality of both tagging models (e.g., Miller 2012) and assessment models. The analyses suggest time series Z estimates on the order of 1.0 with the survey estimates being considerably more variable than the catch-based analyses (Fig. A.134). The catch-based Z estimates indicate total mortality around 1.0 beginning with the 1979 cohort and increasing above 1.5 with the 1988 and 1989 cohorts before dropping to time series lows near 0.6 with the 1994-1996 cohorts. Current Z estimates are estimated at approximately 1.0 for the 2004 cohort which is consistent with the total mortality suggested by the Miller (2012) tagging analysis.

Catch curves can also be useful for making general inferences on the selectivity of both fisheries and surveys. While selectivities can be estimated from the fitting of stock assessment models, it is useful to have model-independent estimates of selectivity that can be used to validate model-based estimates and/or provide some apriori understanding of selectivity. A method described in Restrepo et al. (2007) uses the residuals from the logtransformed linear catch curve analysis to infer relative selectivity-at-age. Selectivities are estimated using the ratio of observed to predicted catch proportions and then rescaling the residuals from each curve so that the maximum positive residual equals 1. This analysis was conducted on the catch curves from the total catch and NEFSC spring and fall surveys. The distribution of selectivities-at-age from all cohorts was examined to evaluate the time series distributions of selectivity at age. While this approach masks any changes that may be occurring in the selectivity across time, it is useful for gaining a general understanding of catch and survey selectivities and evaluating whether there is strong evidence for the presence of domed-selectivity (i.e., lower selectivity at older ages). Examination of the residual patterns from total catch (Fig. A.135) and the NEFSC spring (Fig. A.136) and fall surveys (Fig. A.137) do not provide evidence for domed selectivity. The selectivity distributions on the younger ages are consistent with the model-based selectivity from the SAW 53 assessment (NEFSC 2012a) with age at 50% ( $A_{50\%}$ ) selectivity roughly between ages 3 to 3.5 for the total catch, ages 3 to 4 for the NEFSC spring survey and ages 2 to 3 for the NEFSC fall survey.

Additionally, a comparison of proportion of fish age 5 and older caught in the NEFSC surveys relative to the fishery shows a higher ratio of old fish caught by the NEFSC surveys (Tables A.72 and A.73). This in itself does not confirm the presence of flat top survey selectivity in the survey, but does indicate that the surveys may have higher selectivity on the older ages relative to the fishery.

There have been discussions during previous assessment meetings and working group meetings that adult cod may be unavailable to the NEFSC surveys due to the presence of fixed gear (primarily lobster pots) in the inshore areas. However, the ME/NH survey actively works with the lobster industry to have gear removed in advance of the survey and as noted before, this survey is not capturing large cod (Fig. A.123). Decreased selectivity in the fishery may be plausible, particularly if large cod are exploiting closed areas unavailable to the fishery (either permanent or seasonal). However, the SAW 53 WG examined the Massachusetts cod industry-based survey (Hoffman et al. 2006) which sampled in closed areas. The length frequencies from this survey did not indicate the presence of larger cod in the rolling closure areas relative to those captured in the fishery or surveys. Additionally, an

analysis of cod tagging data conducted by Hart and Miller (2008) concluded that there was no evidence that larger/older Atlantic cod are subjected to lower fishing mortality in the Gulf of Maine than smaller cod.

TOR A.5. Estimate annual fishing mortality, recruitment and stock biomass

## Summary of the SAW 53 assessment model

The SAW 53 Gulf of Maine cod assessment applied the statistical catch-at-age model, ASAP (Age Structured Assessment Program v2.0.20, Legault and Restrepo 1998, Legault 2008), which can be obtained from the NOAA Fisheries Toolbox (<u>http://nft.nefsc.noaa.gov/</u>). This represented a change from previous stock assessments which historically had been assessed using VPA models. The reasons for selecting the ASAP model included the ability to explore alternative model formulations to counter/lend support to VPA results, additional flexibility to explore starting condition assumptions (e.g., extending the time series beyond 1982), ability to estimate a stock-recruit relationship internal to the model, and the ability to explicitly handle data uncertainty, particularly given the lessons learned from the update of the VPA model with respect to uncertainty in the survey data.

ASAP is an age-structured model that uses forward computations assuming separability of fishing mortality into year and age components to estimate population sizes given observed catches, catch-at-age, and indices of abundance. Discards can be treated explicitly. The separability assumption is partially relaxed by allowing for fleet-specific computations and by allowing the selectivity-at-age to change in blocks of years. Weights are input for different components of the objective function which allows for configurations ranging from relatively simple age-structured production models to fully parameterized statistical catch-at-age models. The objective function is the sum of the negative log-likelihood of the fit to various model components. Catch-at-age and survey age composition are modeled assuming a multinomial distribution, while most other model components are assumed to have lognormal error. Specifically, lognormal error is assumed for: total catch in weight by fleet, survey indices, stock recruit relationship, and annual deviations in fishing mortality. Recruitment deviations are also assumed to follow a lognormal distribution, with annual deviations estimated as a bounded vector to force them to sum to zero (this centers the predictions on the expected stock recruit relationship). For more technical details, the reader is referred to the technical manual (Legault 2012a).

The SAW 53 assessment covered the years 1982 to 2010. The choice of the 1982 start year (as opposed to early start years) was chosen because this is the period which as the highest data density. Data are available on the quantity and size composition of the landings and discards, both commercial and recreational. Several survey indices are available (NEFSC and MADMF), each with aggregate indices of abundance and biomass, along with data on age/size composition. Biological information such as growth, maturity and length / weight relationships are also available. Extending the time series before 1982 results in not only loss of information quality, but also introduces additional uncertainty into the assessment. Prior to 1982 there was no information on commercial discards and there was no information on recreational catch prior to 1981. Extending the assessment back in time requires tenuous assumptions about unrecorded historical catches. Any hindcasting of both unrecorded catches and assumptions on the selectivity of the fishery back in time are confounded by the

extensive regulatory changes back in time (Table A.3). Alternative start years were examined in the SAW 53 assessment and had negligible impact on the terminal year assessment result (NEFSC 2012a).

An age  $9^+$  group was utilized in the assessment due to the difficulties encountered when attempting to estimate older ages in the population. Additionally there was evidence of truncation in the population age structure over the most recent three years and the difficulties in precisely estimating fishery selectivities of the older ages in preliminary developmental ASAP runs. The mid-point of the spawning period was assumed to be April 1 (25% through fishing year). Recruitment is modeled as deviations from the geometric mean (steepness fixed at 1.0). During the SAW 53 assessment, unsuccessful attempts were made to fit a Beverton-Holt function internally within the model because of insufficient contrast in the ASAP base model time series of estimated SSB and recruitment (1982-2010).

The model included two different fishery selectivity blocks with the first extending from 1982 to 1990 and the second from 1991 to 2010. The choice of selectivity blocks was informed on known periods of major change in the fishery with respect to mesh size, minimum retention size and changes in the regulatory reporting system. Different split years ranging from 1989 to 1994 were explored that encompassed these major changes. Sensitivity runs indicated that the 1990/1991 split had the lowest objective function and offered improved fit to the age composition in the way of reduced residual patterning. For the fishery, selectivity-at-age is freely estimated within each block for 8 out of 9 ages, with one age class fixed at full selectivity in each block. In block 1, age 5 was assumed to be fully selected, while in block 2 age 6 was assumed to be fully selected. This decision was informed on the basis of smaller mesh sizes and minimum retention sizes during the years included in block 1.

Each of the two NEFSC surveys included a single time invariant selectivity vector with selectivity-at-age being freely estimated from ages 1 to 5 and fixed at age 6 and older. The choice of the flat-topped selectivity pattern for the NEFSC survey indices was informed in part by the VPA results from SAW 53 results, which suggested increasing catchability with age, and the likelihood calculated in ASAP for domed versus flat-topped scenarios. Additionally, comparison of proportion of fish age 5 and older caught in the NEFSC surveys relative to the fishery shows a higher ratio of old fish caught by the NEFSC surveys (NEFSC 2012a). This in itself does not confirm the presence of flat top survey selectivity, but does support a conclusion of higher selectivity-at-age in the survey relative to the fishery. The MADMF spring survey was fit using a double logistic function to account for the sharp declines in selectivity-at-age observed in the VPA results. The descending slope of the double logisitic function experienced boundary problems in preliminary runs and was subsequently fixed at 10 in the base model.

The effective sample size (ESS) estimated for both the fishery and survey catch-at-age data (which are treated as multinomial) was compared to the input effective sample size in an iterative fashion until the effective sample size specified more or less matched the mean model estimated value, or until no further improvement in trying to match the estimated value could be made. Additionally, following Francis (2011), minor adjustment in the effective sample sizes were informed by the overall fit between the predicted and observed mean age of the catch. The final ESS for the fishery was set to 75, the two NEFSC surveys set to 30 and the MADMF spring set to 15. The CVs on the surveys were initially set equal to the bootstrapped CVs presented in Tables A.47 and A.52). The bootstrapped CVs characterize the sampling error, but additional process error may be present in the survey indices that are

not reflected in the bootstrapped CVs. Subsequent examination of the model fits to the survey indices resulted in adjustments to the survey CVs by adding the following constants to each of the survey CV vectors to account for additional process error: 0.2 (NEFSC spring), 0.1 (NEFSC fall), 0.3 (MADMF spring). It should be noted that these minor adjustments offered slight improvements to the statistical fit of the SAW 53 model but had little impact on the model results (NEFSC 2012a).

An annual CV of 0.05 was assumed for the fishery catch. This was a trade-off in forcing an exact fit to the catch (as in a VPA-like formulation) versus accounting for some of the uncertainty in catch owing to the uncertainty in stock allocation, discard estimation and hindcasting procedure. Commercial landings in the assessment time period are assumed to be very precise. There is a limited amount of error introduced in the allocation procedure and through VTR misreporting, but generally, these uncertainties are low. CVs on commercial discards are in the range of 0.11 - 0.38 and recreational catch PSEs are in the vicinity of 20%. Given the overall uncertainties, the assumption of a constant catch CV=0.05 was not unreasonable. Model sensitivities to alternate CV assumptions were also explored during SAW 53, but overall, the model results are robust to alternate estimates of catch precision.

## Update of the SAW 53 assessment model using revised data inputs

The general approach used to build the bridge from the SAW 53 ASAP model to an updated SAW 55 model was as follows (run numbers correspond to the run summaries presented in Tables A.74 and A.75):

- Run 1: Base model from SAW 53 (SAW53\_BASE).
- **Run 2:** Update the recreational catch to account for changes from MRFSS to MRIP methodology. Requires updates to the total catch-at-age and catch weights-at-age matrices (SAW55\_B1).
- **Run 3:** Update commercial and recreational discards to account for the revised assumptions of discard mortality. Requires updates to the total catch-at-age and catch weights-at-age matrices (SAW55\_B2).
- **Run 4:** Update the stock weights-at-age matrix to account for the revisions in recreational catch numbers resulting from the changes from MRFSS to MRIP methodology (SAW55\_B3).
- **Run 5:** Update the maturity ogive to account for the minor changes in maturity resulting from the inclusion of an additional year of maturity observations (SAW55\_B4).
- Run 6: Update the MADMF spring survey to account for changes in the indices-atage resulting from the use of only the MADMF ALK. Also, update the timing of the survey from April to May to account for a misspecification in the SAW 53 model (SAW55\_B5).
- Run 7: Add 2011 data (SAW55\_B6)
- Run 8: Update ASAP software to version 3.0.8 (Legault 2012a). *This model represents the new SAW 55 reference model* (SAW55\_BASE).
- **Run 9:** Run SAW55\_BASE under the assumption of 100% discard mortality to evaluate the impacts of the alternate discard mortality assumption on the SAW 55 reference model (SAW55\_BASE\_100MORT).

The results from the bridge building exercise are presented in Table A.75.

Overall, the impacts of the data updates were minimal on the 1982-2010 model formulation with a total 54 mt difference in the 2010 spawning stock biomass between the SAW55\_B5 and SAW53\_BASE models (Fig. A.138). There were moderate differences in the terminal estimate of age 5 fishing mortality driven by the effects of the revisions to recreational catch and discard mortality assumptions (Fig. A.139). Both of these revisions revised the SAW 53 estimate of 2010 age 5 fishing mortality downward from 1.14 to 0.67. The lower assumed catches attributed to revisions to the recreational catch and discard mortality assumptions resulted in minor negative re-scaling of age 1 recruitment estimates (Fig. A.140). Adding an additional year of data to the assessment model (2011) resulted in a 7% increase in 2010 spawning stock biomass and 7% decrease in 2010 age 5 fishing mortality relative to the SAW 53 results. The ASAP software change had no impact on the assessment model results. There were small changes in the estimated fishery and survey selectivities associated with the data updates (Table A.76). The selectivities were primarily affected by the changes in the discard mortality assumptions which shifted the selectivity curves to the right.

Compared to the impacts of the data update process on the assessment results, there was a larger impact on the observed retrospective patterns by discard mortality estimates. The SAW 53 assessment assumed 100% mortality of all discarded fish. Discard mortality has been revised in the SAW 55 assessment based on the recommendations of the Discard Mortality WG (NEFSC 2012b, Table A.26). Revising the discard mortality assumption increased the retrospective patterning associated with spawning stock biomass, age 5 fishing mortality and age 1 recruitment (Fig. A.141). To confirm that the discard mortality assumptions had a similar effect on the revised SAW55 BASE model, a variant of the SAW55 reference model was run using an assumption of 100% discard mortality (SAW55 BASE 100MORT). Introducing 100% discard mortality back into the SAW 55 model reduced the retrospective patterns to levels below those observed in the SAW 53 assessment (Figs. A.141 and A.142). Based on the minor retrospective patterns observed in the SAW 53 model, the SARC 53 Panel recommended that stock status determination should not be based on retrospective adjusted estimates of SSB and F (NEFSC 2012a). There are a number of potential sources of retrospective patterns, including missing catch (Legault 2009) which would be the expected effect if the true discard mortality was closer to the 100% assumption used in SAW 53 as opposed the revised estimates that are being used in SAW 55. While it is difficult to identify the exact cause of a retrospective pattern, the change in discard mortality assumptions from SAW 53 to SAW 55 does introduce additional retrospective patterning which negatively impacts the reliability of the model. Given the previously noted concerns with the revised discard mortality assumptions, further work is needed to revisit these assumptions and conduct field studies to better quantify discard mortality.

One interesting aspect of the SAW 55 retrospective pattern is that while the magnitude of the previous retrospective biases has increased, the additional year of data has caused the sign of the retrospective bias to switch such that the 2011 model underestimates spawning stock biomass relative to the 2010 model and fishing mortality is overestimated. These retrospective patterns will be further discussed as they relate to the final ASAP model(s).

# Further refinement of the SAW 55 reference model

In developing the final ASAP model for SAW 55, over one hundred different model

configurations were explored. The nature of the sensitivity runs fell into two different categories: 1) determining whether an alternate model formulation offered improved fit to the data; and 2) evaluating the sensitivity of the model with respect to a range of assumptions. These investigations explored the model's sensitivity to the following:

Model fit explorations

- Survey calibration coefficients
- Use of survey numbers vs. biomass indices
- Survey catchability
- Multiple fleet definitions
- Inclusion of catch-per-unit-effort indices
- Plus group assumption (age  $9^+$  vs.  $11^+$ )
- Survey selectivity assumptions (dome vs. flat topped)

Evaluating the sensitivity of the model with respect to a range of assumptions

- Inclusion/exclusion of survey indices
- Assessment starting points (e.g., 1964, 1970 vs. 1982)
- Catch precision assumptions
- Stock structure considerations

With a few exceptions, the distributions of the results from these sensitivity runs were similar to the SAW 55 reference case (SAW55\_BASE) indicating that the model results are robust to a wide range of alternate assumptions and configurations (Fig. A.143). The major sensitivities runs that were explored are described in detail in Appendix A.6. Only the primary sensitivity runs that describe the transition from the SAW55\_BASE model to the final SAW 55 model(s) are described with the main body of this report.

# Placement of selectivity blocks in a two-block model

The SAW 53 model included two fishery selectivity blocks with a split between 1990/1991. Examination of residual patterns in the fits to catch-at-age from the SAW55 BASE model indicated problems with the model fits to the catch-at-age both in the early (pre-1990) and late (post-2004) time periods (Fig. A.144). Alternate model configurations were explored within the two-block model that attempted to reduce the residual patterning by adjusting the years in which the split occurs between the selectivity blocks from 1986/1987 to 1992/1993 in two year increments. There was a ten point improvement in the objective function associated with the 1986/1987 and 1988/1989 splits (Table A.77). Both of these earlier splits reduced the residual patterning in the fits to the catch-at-age in the earlier period but offered no improvement in the residual patterns occurring post-2004. With the earlier selectivity block splits, there was minor degradation in the precision of the selectivity-at-age estimates (Table A.77). The CVs on ages 1-3 increased from 17 to 44% and 24% for age  $9^+$ . While the percent change in the selectivity CVs was large, the CVs were still relatively small for ages 1-3. The increase in CVs is likely a result of having fewer observations within the earlier time blocks with which to estimate selectivity. Overall this is a small tradeoff given the overall improvement in objective function and improved fits to the catch-at-age. Additionally, while this analysis was instructive in informing placement for the first selectivity block (between 1987 and 1989) it does not address the residual patterning in the latter part of the time series which is perhaps better addressed in a three-block model. An exploration of three-block models will be conducted later in this report.
## Fitting of the MADMF spring survey selectivity-at-age

An area of concern with the SAW 53 assessment model were boundary solutions on the selectivity parameter estimates for the MADMF spring survey. The survey selectivity is estimated using a double logistic function; in the SAW 53 assessment the ascending slope parameter was fixed at 10.0 to avoid boundary problems with this parameter, but other boundary problems existed for the  $A_{50\%}$  and  $A_{50\%}$  descending parameters (Table A.76). These problems persist in the SAW55 BASE model. In an effort to address these concerns, attempts were made to fit the MADMF spring survey using a non-parametric approach with each age having an independent selectivity parameter. Informed by the double logistic fit, selectivity at age 1 was fixed at 1.0 and selectivity at all other ages was freely estimated. The first modeling approach (SAW55 BASE FIXED MADMF AGE1 9) fitted all ages 1-9. The estimated selectivity curve was similar to that double logistic fit of the SAW55 BASE model (Figure A.145). There was a high degree of imprecision with the selectivity estimates beyond age 6. This is consistent with the finding that the year-class tracking in the spring survey was reasonable between ages 1-6 (Fig. A.116). Based on these results a second attempt was made to restrict the model to fitting only ages 1-6 in the MADMF spring survey (SAW55 BASE FIXED MADMF AGE1 6). The estimated selectivity curve from the age 1-6 fit is nearly identical in to the age 1-9 fit between ages 1 and 6 both with respect to the estimated selectivity at age and CVs. Additionally, there is no perceptible change in the residual patterns observed in the survey fits to age (Fig. A.146). Fitting the model to only MADMF spring survey ages 1-6 resulted in improved fits to the catch at age compositions (Table A.78). These investigations indicate that further Gulf of Maine Atlantic cod assessment models should restrict the ages used when fitting the MADMF spring survey to ages 1-6.

## Development of a three selectivity block model

Based on the results of the two-block examinations as well as the fits to the MADMF spring survey, attempts were made to fit a three-block model with the MADMF spring survey fit non-parametrically to ages 1-6. The two-block model examinations showed support for a split between the first and second survey blocks somewhere between 1987/1988 and 1988/1989. Additionally, the catch-at-age residuals suggested that a third selectivity block between 2004/2005 may address some of the observed residual patterning. There were no major regulatory changes in specifically in 2004 or 2005 that would give *a priori* expectation for a change in selectivity at this precise cut-off; however, there was a major change in the reporting system used for commercial landings with a switch from a paper weighout system to mandatory electronic self-reporting for all federally permitted dealers. Additionally, in 2006 there were increases in the recreational minimum retention size, seasonal recreational closures and the implementation of 2:1 DAS accounting in the commercial fishery (Table A.3).

Several different attempts were made to fit a three-block model including:

- **SAW55\_3BLOCK**: a simple implementation of the SAW55\_BASE non-parametric selectivity with the addition of a third-selectivity block starting in 2005.
- **SAW55\_3BLOCK\_DL**: Identical blocking to that used in the SAW55\_3BLOCK model, but a utilizing a double logistic function to estimate fishery selectivity.

• SAW55\_3BLOCK\_SL: Identical blocking to that used in the SAW55\_3BLOCK model, but a utilizing a single logistic function to estimate fishery selectivity (flat-topped).

The SAW55 3BLOCK model offered improved model fit relative to the two-block SAW55 BASE in the way of improved objective function while having minimal impact on the assessment results (Table A.79). The SAW55 3BLOCK model resolved the residual patterns that were evident late in the time series in the previous two-block explorations (Fig. A.147). One of the problems with the two-block model were some of the boundary problems observed in fitting the fleet selectivities as well as the high CVs on the selectivity estimates on older ages. These same problems existed in the SAW55 3BLOCK model; specifically, boundaries were hit at age 4 and age 8 in the first selectivity block and age 5 in the second selectivity block and CVs exceeded 0.3 in all ages  $\geq 8$  when boundary problems were not encountered (Table A.80). Fitting the fleet selectivity using a double logistic function attempted to address these issues but proved problematic due to the difficulty in estimated the downward portion of the double logistic function. The  $A_{50\%}$  and downward slope parameter estimates either hit boundary solutions or had excessively high CVs (Table A.80, Fig. A.148). The problems encountered in both the parametric and double logistic selectivity fits suggest general problems with estimating the downward component of the dome-shaped selectivity. Overall, there did not appear to be sufficient information within the data with which to estimate dome-shaped selectivity for the fleet. Given these results, an attempt was made to estimate fleet selectivity used a single logistic fit. The SAW55 3BLOCK SL estimated similar selectivities for the younger ages and the parameter estimates were all well estimated with CVs < 0.1 (Table A.80). There were minor differences in the catch-at-age residuals between the SAW55 3BLOCK and SAW55 3BLOCK SL models (Fig. A.147). Additionally, the SAW55 3BLOCK model did not offer an improved model fit relative to the single logistic formulation (10 objective point difference and 18 parameter difference). The SAW55 3BLOCK SL model resolved the diagnostic problems present in the SAW55 3BLOCK model and offered a more parsimonious model formulation with negligible difference in the assessment results (no change in 2011 F, <1% change in 2011 SSB).

While there was some evidence of higher selectivity at older ages relative to the fishery (Tables A.72 and A.73), the examination of the catch curve residuals (Figs. A.135) did not provide compelling evidence for a dome-shaped fleet selectivity. The use of single logistic form to estimate fleet selectivity does not negate that there may be minor doming of the fleet selectivity, but the weight of evidence combined with the model fit diagnostics indicate that the evidence is weak and the assumption of a dome has a negligible influence on the assessment results. Additionally, a working paper considered by the SAW 55 WG, Legault (2012b), examined the effects of different error assumptions on model estimated selectivities and concluded that "[t]his argues for greater reliance on external information for the existence of domes. Or as a corollary, more forcing of flat tops in the selectivity functions unless strong external evidence is available to support the presence of domed selectivity."

The next steps in the formulation of the final three block model were to incorporate an earlier split between the first and second blocks and incorporate the fitting of the age 1-6 MADMF spring survey indices at age using a non-parametric approach. Based on the observed lack of improvement in the objective function seen between the 1986/1987 and 1988/1989 split models a 1988/1989 split was applied to ensure that there were sufficient data within the first block with which to precisely estimate selectivity. The move from the 1990/1991 split

(SAW55\_3BLOCK\_BASE\_SL) to the 1988/1989 split addressed the residual patterning observed in the catch-at-age during the early part of the time series (Fig. A.147) as well as offering a 12 point improvement in the objective function.

The penultimate step in the development of a three-block model was the modification in fitting the MADMF spring survey selectivity (SAW55\_3BLOCK\_SL\_MADMF\_1\_6). Changing the MADMF spring survey selectivity from a double logistic to a non-parametric selectivity-at-age fit to ages 1-6 had only minor impacts on the assessment results (1.5% decrease in SSB, and 3% increase in age 5 F and no perceptible changes in fishery selectivity patterns; Fig. A.148). More importantly, this change addressed the diagnostics issues with the fitting of the MADMF spring survey that were previously mentioned. Examination of the root mean square error (RMSE) fits to the aggregate survey indices did not provide any indication that the further adjustments were needed to the survey CVs. All SAW 55 model explorations incorporated the same CV adjustments used in the SAW53\_BASE model to account for additional process error: 0.2 (NEFSC spring), 0.1 (NEFSC fall), 0.3 (MADMF spring).

The final steps in the development of the three-block model were to a) modify the penalty function applied to the recruitment deviations and b) to adjust the input effective sample sizes (ESS). In all previous models there was a penalty function, lambda, applied to the recruitment deviations. Since the existing model does not fit a stock recruit relationship the SAW 55 WG consensus was that the model should place less constraint on recruitment estimates. Through an iterative approach a final agreed approach set the lambda value at 0.2 with CVs set at 0.5. This approach addressed the WG concerns and provided some constraints at the end of the time series where there is little information to inform recent recruitment. The ESS adjustments were based on the application of ESS multipliers consistent with Method 1.8 of Francis (2011). The multipliers are computed such that the stage 2 input effective sample sizes are equal to the current input effective sample sizes times the multiplier. Thus, a value of 1 leaves the input sample size unchanged, while values greater than 1 increase the input sample size and values less than 1 decrease the input sample size. Francis (2011) recommends only applying these multipliers once after all other model formulations have been determined. The new input ESS values are the result of applying these stage 2 multipliers to the original input ESS (rounded to the nearest integer). The ESS adjustments applied following this approach are as follows (multipliers are in brackets):

- Fleet catch:  $75 \cdot (1.064) = 80$
- NEFSC spring survey:  $30 \cdot (0.516) = 15$
- NEFSC fall survey:  $30 \cdot (0.494) = 15$
- MADMF spring survey:  $15 \cdot (0.588) = 9$

The net effect of these was moderate with respect to the terminal estimates of spawning stock biomass and age 5 fishing mortality (Table A.79). The 2011 SSB estimate decreased by 16% and the age 5 F increased by 22%. The final base model is referred to as the SAW55\_3BLOCK\_BASE.

#### Natural mortality

As noted earlier, the SAW 55 WG spent considerable time discussing natural mortality (SAW 55 WG 2012a, 2012b, 2012c). There was conflicting evidence for both the scale and trends in natural mortality with the tagging information providing the only evidence for changes in *M*.

Meta-analyses that were considered as well as food habits information provided no compelling evidence for changes in M over time. To address the conflicts in information, the WG recommended profiling the models over a wide range of M values. The profiles were conducted for three separate time blocks: 1982 - 2002, 2003 - 2011 and 1982 - 2011. The first two time blocks correspond to the period before/during the contemporary tagging study analyzed in Miller (2012). Profiling was conducted on the SAW55\_3BLOCK\_BASE model across a wide range of M values. Profiling over the entire 1982-2011 time series showed support for M between 0.3 and 0.5. When profiling was conducted on the restricted time blocks an M of between 0.1 and 0.2 was preferred for the 1982-2002 period whereas profiling conducted on 2003-2011 period suggested an M between 0.1 and 0.6 (Fig. A.149). These profiles were consistent with the tagging evidence for M being greater than 0.2 in the 2000s and a change in M over the longer term. Interestingly, when profiling was conducted over the full 1982-2011 time period on a variation of the base model under an assumption of 100% discard mortality there was model preference for M in the range of 0.2 to 0.4. Discard mortality assumptions have implications for model-based inferences of natural mortality.

It should be noted that ASAP profiling exercises conducted using modified time blocks (1982-2004, 2005-2011) which showed clear support for an M between 0.1 and 0.2 in the early time period and an M between 0.4-0.6 in the later time period. These profile results are not shown because they are not entirely consistent with the tagging period examined (2003-2006). However, they do illustrate that the assessment model-based evidence for a higher M in the more recent time period is sensitive to the time blocks examined. This highlights the low discriminatory power of the models to estimate M. Despite the low-discriminatory power of the models, the SAW 55 WG did agree to explore an M-ramp model with M during the 1982 – 88 period set equal to 0.2, during 2003 – 2011 at 0.4, with a linear ramping up of M during 1989 – 2002 between 0.2 and 0.4 (Fig. A.150).

#### Sensitivity runs of the final three-block model

The SAW55\_3BLOCK\_BASE model presented above constitutes the preferred ASAP model for the SAW 55 Gulf of Maine Atlantic cod assessment. The SAW 55 WG explored several sensitivities of this model with respect to different assumptions of discard mortality (revised discard mortality vs. 100% discard mortality), natural mortality (M = 0.2 vs. *M*-ramp) and fishery selectivity (flat-topped vs. dome). A factorial comparison of the various sensitivity assumptions was conducted to fully evaluate model sensitivity. The examined models are displayed in Table A.81 and the sensitivities are described below. Plots of the model estimated fishery selectivities are provided in Figs. A.151 (flat-topped) and A.152 (domed). The time series of spawning stock biomass, age 5 fishing mortality and age 1 recruitment are provided in Fig. A.153 (flat-topped) A.154 (domed). Retrospective plots are provided in Figs. A.155 (flat-topped) and A.156 (domed). Model diagnostics are provided in Tables A.82 (flattopped) and A.83 (domed).

While the SAW 55 WG had previously agreed to move forward with the use of the alternate discard mortality rates, concern were raised due to the degradation of model performance when the alternate discard mortalities were incorporated into both the SAW53\_BASE and SAW 55\_BASE models, specifically the increase in retrospective patterning (Figs. A.141-142). The incorporation of the 100% discard mortality has only small effects on the fishery selectivity estimates, primarily in the way of causing a slight shift towards smaller fish in all selectivity blocks (Figs. A.151-152). The 100% discard mortality assumption causes a slight

positive re-scaling of both age 1 recruitment and spawning stock biomass with minimal effects on the 2011 estimates. It does however result in an increase in the fishing mortality estimates in 2010 and 2011 under all scenarios (Tables A.82-83, Figs. A.153-154). As observed in previous models, there was a reduction in the SSB and F retrospective patterning on the order of 30-40% (Tables A.82-83) when 100% discard mortality was used compared to the alternate discard mortality rates. The WG noted that assuming 100% mortality of discards (as done by SAW 53) moderately improved model fits and reduced the retrospective pattern and was more consistent with tagging studies in which carefully handled cod can experience high (e.g. 50%) mortality within two days of being released (Miller 2012). Notwithstanding this, the WG agreed to use the estimates from the Discard Mortality WG (NEFSC 2012b) for status determination and projections but to show the impact of the 100% discard mortality estimates on the 2011 spawning stock biomass (SSB) and fishing mortality (F) estimates without bringing these through to reference points and projections.

Earlier formulations of the SAW55 ASAP model indicated no statistical basis to choose a dome over a flat-top and stock trends were the same. It was noted that during GARM III, the principle was adopted that a flat-top should be assumed unless there was evidence for a dome (NEFSC 2008). Tagging analyses considered at that time indicated that flat-top relationships were to be expected (Hart and Miller 2008). The WG discussed other processes which could explain a dome or a flat top (e.g. gear mix) but there were no specific explanations for a dome. In response, it was noted that the SCAA models favored domes although overparameterization could be an issue (Legault 2012b). The SCAA models were rerun with the flat-top selectivities from the ASAP models to see how this assumption is influencing the difference between the two formulations. These runs confirmed that use of a flat-topped fishery selectivity was not consequential to the difference and thus the WG agreed that further formulations would use flat top fishery selectivity relationships. It should be stressed that for the fishery selectivity curves that were estimated for the Gulf of Maine cod in this assessment, the choice of a flat-topped or domed shape has negligible impact on the assessment results (Fig. A.157).

The influence of the *M*-ramp (M SPLIT) had almost no impact on fishery selectivity estimates, but resulted in positive re-scaling of age 1 recruitment and spawning stock biomass and negative re-scaling of fishing mortality from about 1991 onward. Interestingly, there were only small impacts on the 2011 terminal estimates (Tables A.82-83, Figs. A.153-154). Under an assumption of M ramping to 0.4 in the later period of the time series, the removals attributed to natural mortality exceed fishery removals from 1998 to 2010 (Fig. 158). There was considerable improvement in the retrospective patterns both in the flat-topped (Fig. A.155) and domed (A.156) ASAP formulations. There was an 8 point improvement in the objective function under both the flat-topped and domed assumptions (Table A.82-83). Support for an *M*-ramp rests primarily on its ability to reduce the retrospective pattern, although the retrospective patterning in the Gulf of Maine stock is not as severe as that of the Georges Bank cod stock assessment. It should be noted that the Miller (2012) tagging analysis supported a much higher M(0.6) than used in the M-ramp model (0.4). A sensitivity run of the ASAP *M*-ramp model (flat-topped) was conducted using an *M* of 0.6 during the recent period. Compared to the model using an M ramped up to 0.6, the fit with M ramped up to 0.4 improved fit by 22 log-likelihood points. These analyses indicated that while estimation of current spawning stock biomass (SSB) was generally comparable between models with different *M* options, the bigger issue is the impact of these options on reference point and thus stock status determination. The WG agreed to pursue two M options (M = 0.2and *M*-ramp) with respect to their potential impact on reference points and short-term

# projections (SAW 55 WG 2012c). The SAW55\_3BLOCK\_BASE (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT (M-ramp) ASAP models were forwarded to the SARC 55 Panel for consideration.

#### Recommendations of the SAW 55 WG

The SAW 55 WG could not reach consensus on which model should serve as the basis of current stock status determination and management advice, but noted that "...*lack of consensus should not be interpreted as implying equal support for the models*..." Consequently, both the M = 0.2 and M-ramp ASAP models were put forward for consideration by the SARC 55 Panel along with the list of support for and against both modeling approaches which is outlined below:

## M = 0.2 approach

The features that lend support to the assumption that M has remained constant throughout the time series are those features which do not support the M ramp assumption, which is discussed below. The main feature against the assumption of constant M is the presence of a retrospective pattern. However, there is some evidence to suggest that this may be transitory and becoming less of an issue (SAW 55 WG, 2012c). It was for this reason that no adjustment for the retrospective pattern has been made to any of the models.

## M-ramp approach

One of the main features supporting the assumption of a recent change in natural mortality is that it employs an M = 0.4 which is generally consistent with the results of the 2003 – 2006 GMRI tagging data and associated analyses (if one assumes a 50% reporting rate of high reward tags). The tagging analysis indicated that M could be as high as 0.6. Tag reporting rates would have to be very low in order to be consistent with an M of 0.2.

Another line of support for this assumption is the model fits. The value of the objective function for the *M*-ramp model was lower (by 8-10 log-likelihood points depending on the specific formulation) than that of the M = 0.2 model. Further, compared to the M = 0.2 model, assuming that *M* had changed more recently reduces the retrospective pattern.

The final observation supporting a recently elevated M in Gulf of Maine Cod is evidence of increasing M in the adjacent NAFO Div. 4X Cod stock, based on both tagging analyses and assessment model fits.

A number of features don't lend support to a recently increasing M. There is no evidence for increased predation, either by fish or pinnipeds, in the diet compositional data collected by the NEFSC. Regarding the GMRI tagging analyses, if reporting rates of high reward tags were less than 50%, natural mortality would be less than 0.4. It is unfortunate that there are little or no historical tagging studies to which the results of the GMRI study could be compared. Besides using different assumptions, these earlier studies did not formally incorporate parameters to estimate movement. For these reasons, the tagging studies which suggested higher (than 0.2) M in 4X may not apply to Gulf of Maine Cod (SAW 55 WG 2012a).

Regarding model fits, the likelihood profile of M for the 2003 – 2011 period was relatively flat, with estimates between 0.1 and 0.6 potentially possible. Exploratory runs indicated that M profiling was sensitive to which years to include in the recent period of high M. A change of two years would result in a more informative profile (favoring higher M).

The final lines of evidence against a recently elevated M relate to the life history information. Compared to adjacent stocks, there have been little or no long-term changes in maturity at age, fish condition and growth. Meta-analyses of life history parameters suggest an M of 0.2 with no trend over time. For example, fish as old as age 16 have been observed in the population within the past five years, seemingly inconsistent with a two-fold increase in natural mortality.

## Diagnostics and results of the M = 0.2 ASAP model (SAW55\_3BLOCK\_BASE)

Model fits to the fishery catches were good, with no strong patterning of residuals over time and generally good agreement between modeled and observed catches (Fig. A.159). An ESS of 80 on the fishery catch-at-age appeared reasonable (Fig. A.160) though the application of the Francis (2011) stage 2 multipliers results in slightly lower ESS than would have been achieved using the iterative mean approach used in SAW 53 (NEFSC 2012a). The input ESS did achieve reasonable fits to the observed catch-at-age (Fig. A.161.a-c) with no large residual runs or obvious year class effects apparent in the residual patterning (Fig. A.162). The Francis approach focuses on the model fits to the observed mean catch-at-age which are generally good (Fig. A.163). Overall, the fits to the mean age in the SAW55\_3BLOCK\_BASE model are improved over those from SAW 53 (0.96 vs. the SAW 53 values of 1.28). Fishery selectivities were flat-topped as described in depth in previous sections (Fig. A.164). The trends in selectivity, with decreasing selectivity on the younger ages through time is consistent with management measures that have gradually increased mesh sizes and minimum retention sizes. The fishery selectivity parameters are well estimated with CVs  $\leq$  0.10 on all parameters (Table A.84).

Fits to the NEFSC spring survey index exhibited no strong residual patterning (Fig. A.165). It is notable that the ASAP model did not fit the 2007 and 2008 index values well, with the model fits being influenced by the high CVs in these years. These two index values were the subject of considerable discussions during SAW 53 and are partly responsible for the large discrepancies between the GARM III and SAW 53 assessment results (NEFSC 2012a). The input ESS value of 15 was generally supported by the modeled estimates (Fig. A.166), though as noted with the fishery ESS values, they appear to be lower than those that would have resulted from the iterative mean approach used in SAW 53. There is a decent fit of observed to predicted age compositions (Fig. A.167). There was no strong residual patterning to the index age composition fits, although there are some small transient year class effects in the early to mid-1990s. Fits to the mean age were comparable to the fishery mean ages (Fig. A.168, RMSE=1.02) lending additional support to the input ESS.

Models fits to the NEFSC fall survey were generally better than the spring fits, with stronger coherence between the observed index and modeled estimate and less residual patterning

(Fig. A.169). ESS values of 15 are generally lower than the modeled estimates; additionally there is some suggestion of decreased ESS more recently in the time series (Fig. A.170). The fit to the age composition was generally good, with very little patterning to the survey indices age composition residuals (Fig. A.171). There does appear to be a small increase in the residuals in the more recent years which is likely related to the trends observed in the model estimated ESS. The overall fit to the mean catch-at-age is reasonable, though there is some indication of reduced fit in the most recent period (Fig. A.172) as suggested by the comparison of the input ESS to the modeled ESS values and the residual patterns in the fits to the indices-at-age.

Similar to the fits to the NEFSC surveys, the fit to the MADMF spring survey is reasonably good with the model tracking the observed index values moderately well, with no strong residual patterning (Fig. A.173). The input ESS appears generally reasonable (Fig. A.174). The MADMF spring age compositions were not fit as well as the NEFSC surveys, with the magnitude of residuals being somewhat larger for this survey relative to the others, particularly at the younger ages (Fig. A.175). However, no long runs of residuals (either positive or negative) are observed and there are no indications of year class effects. Estimated mean ages were fairly close to the observed mean ages, with a RMSE of 1.06 (Fig. A.176).

The NEFSC fall survey exhibits higher selectivity at younger ages relative to the spring survey (Table A.84, Fig. A.177). Survey catchabilities (q) are presented in Figure A.178. The q CVs were less than 20%. The NEFSC spring survey q=0.92 which would appear to suggest that the NEFSC spring is close to 100% efficient. Considering the calibration coefficients applied to the Bigelow survey years, this would suggest greater than 100% efficiency over the last two years. This is not necessarily a valid assumption and caution needs to be taken when interpreting the area-swept converted values of q. A full exploration of the survey qestimates is provided in Appendix A.6 along with model independent estimates of total stock biomass which support the general scale of biomass estimated by the BASE model. Longterm retrospective analyses were conducted to evaluate the patterns of survey catchability changes over time (NEFSC spring and fall and MADMF spring). While the NEFSC spring (Fig. A.179) survey q exhibited a sharp increase during the 1990s, q has remained relatively stable for the NEFSC fall (Fig. A.180) and MADMF spring (Fig. A.181) surveys. The WG discussed potential causes for this pattern, though no concrete hypotheses were put forward. One hypothesis concerned the intense aggregation of cod that was observed in the vicinity of Stellwagen Bank between 2006 and 2010; however a q retrospective on just the 1982-2002 time series suggests that the shift in q was independent of this process (Fig. A.182).

The SAW55\_3BLOCK\_BASE assessment model indicates that total SSB has ranged from 6,268 mt to 22,036 mt during the assessment time period, with current SSB in 2011 estimated at 9,903 mt (Table A.85, Fig. A.183). The base model estimates SSB in 2010 at 11,141 mt which is 6% lower than the SAW 53 estimate of 11,868 mt. Total January 1 biomass in 2011 is estimated at 14,728 mt (Table A.85, Fig. A.184) and F's at the end of the time series are estimated between 0.75 and 0.98 (Fig. A.183) with the 2011 fully recruited,  $F_{full} = 0.86$  (Table A.86). Fishing mortalities-at-age are presented in Table A.87. The low fishing mortality on ages 1 through 3 is notable given that the maturity  $A_{50\%}$  is between ages 2 and 3. The current fishery selectivity allows one to two spawning events, on average prior to entering the fishery. These patterns partly explain the persistence of the population in the presence of the high Fs over the past decade. The coefficients of variation on SSB and F have generally been less than 0.1 except at the end of the time series where CVs increased to at or

near 0.2 (Fig. A.185).

Recruitment over the past decade has been poor despite modest increases in SSB (Fig. A.186 and A.187). Age-1 recruitment has not exceeded 10 million fish in the last two decades and has been below 7 hundred thousand fish over the last decade (Table A.88). While there is an absence of a well defined stock-recruit relationship there is some indication of a relationship (Fig. A.188). The five highest recruitment events in the time series were spawned during a six year period from 1982 to 1987 where the SSB was near the highest observed in the time series, averaging over 14,000 mt annually. The current population structure is comprised primarily of fish that have not yet fully recruited to the fishery (fish age 1-3), with >80% of the population age 4 and younger (Table A.88 and Fig. A.189).

MCMC simulation was performed to obtain posterior distributions of the SSB, total B,  $F_{full}$  and  $F_{5.7}$  time series. Two MCMC chains of initial length of ten thousand were simulated with every thousandth value saved. The trace of each chain's saved draws suggests good mixing (Fig. A.190 and A.191). The lagged autocorrelations showed decreasing correlation with increased lag with correlations  $\leq 0.1$  beyond lag 1 (Fig. A.192 and A.193). From the MCMC distributions, 90% posterior probability intervals (PI) were calculated to provide a measure of uncertainty for the model point estimates. Time series plots of the SSB and  $F_{full}$  90% PIs as well as plots of the posterior probability distributions for SSB<sub>2011</sub> and  $F_{full(2011)}$  are shown in Figures A.194 through A.197. ASAP point estimates and the 90% PIs are reported in Table A.91.

Retrospective analyses for the 2004-2011 terminal years indicates retrospective error in both F and SSB with the tendency for the model to underestimate F and overestimate SSB (Fig. A.155). The 5-year Mohn's rho value for SSB and F were 0.40 and -0.27 respectively (Table A.82). While the retrospective pattern is larger than that observed in the SAW53\_BASE model, the directionality in the terminal year has shifted such that spawning stock biomass tended to be underestimated and fishing mortality overestimate. The SAW 55 WG discussed criteria to judge when to adjust for a retrospective pattern (SAW 55 WG 2012c). It was mentioned that there are no firm guidelines on when to (or not) adjust for a retrospective pattern. There was however SAW 55 WG agreement to always adjust for a consistent retrospective pattern and to do this on the numbers at age.

The ASAP model presented retrospective patterns based upon five year peels. It appeared that the retrospective pattern was transient with a one year peel showing little bias. The SAW 55 WG could not agree on general criteria to adjust for the retrospective pattern, noting that this is a broader issue than the Gulf of Maine cod assessment. The group agreed that further formulations should not adjust for the retrospective pattern given that the retrospective pattern is small, it may be transient in nature and that SAW 53 made no retrospective adjustment. This decision was supported by the SARC 55 Panel (i.e., no retrospective adjustment should be conducted for the purposes of stock status determination or short-term projections).

## *Diagnostics and results of the M-ramp ASAP model (SAW55\_3BLOCK\_BASE\_M\_SPLIT)*

Model fits to the fishery catches were good, with no strong patterning of residuals over time and generally good agreement between modeled and observed catches (Fig. A.198). An ESS of 80 on the fishery catch-at-age appeared reasonable (Fig. A.199) though the application of the Francis (2011) stage 2 multipliers results in slightly lower ESS than would have been achieved using the iterative mean approach used in SAW 53 (NEFSC 2012a). The input ESS did achieve reasonable fits to the observed catch-at-age (Fig. A.200.a-c) with no large residual runs or obvious year class effects apparent in the residual patterning (Fig. A.201). As noted previously, the Francis approach focuses on the model fits to the observed mean catchat-age which were generally good (Fig. A.202). As with the M = 0.2 model, fishery selectivities were flat-topped as described in depth in previous sections (Fig. A.203). Similar to the M = 0.2 model, selectivity on the younger ages decreased over time blocks consistent with management measures that have gradually increased mesh sizes and minimum retention sizes. The fishery selectivity parameters are well estimated with CVs  $\leq 0.10$  on all parameters (Table A.84).

Fits to the NEFSC spring survey index exhibited no strong residual patterning (Fig. A.204). It is notable that the ASAP model did not fit the 2007 and 2008 index values well, with the model fits being influenced by the high CVs in these years. The input ESS value of 15 were generally supported by the modeled estimates (Fig. A.205), though as noted with the fishery ESS values, they appear to be lower than those that would have resulted from the iterative mean approached used in SAW 53. There is a decent fit of observed to predicted age compositions (Fig. A.206). There was no strong residual patterning to the index age composition fits, although there are some small transient year class effects in the early to mid-1990s. Fits to the mean age were comparable to the fishery mean ages (Fig. A.207, RMSE=1.02) lending additional support to the input ESS.

Models fits to the NEFSC fall survey were generally better than the spring fits, with stronger coherence between the observed index and modeled estimate and less residual patterning (Fig. A.208). ESS values of 15 are generally lower than the modeled estimates; additionally there is some suggestion of decreased ESS more recently in the time series (Fig. A.209). The fit to the age composition was generally good, with very little patterning to the survey indices age composition residuals (Fig. A.210). There's a a small increase in the residuals in the more recent years which is likely related to the trends observed in the model estimated ESS. The overall fit to the mean catch-at-age is reasonable, though there is some indication of reduced fit in the most recent period (Fig. A.211) as suggested by the comparison of the input ESS to the modeled ESS values and the residual patterns in the fits to the indices-at-age.

Similar to the fits to the NEFSC surveys, the fit to the MADMF spring survey is reasonably good with the model tracking the observed index values moderately well, with no strong residual patterning (Fig. A.212). The input ESS appears generally reasonable (Fig. A.213). The MADMF spring age compositions were not fit as well as the NEFSC surveys, with the magnitude of residuals being somewhat larger for this survey relative to the others, particularly at the younger ages (Fig. A.214). However, no long runs of residuals (either positive or negative) are observed and there are no indications of year class effects. Estimated mean ages were fairly close to the observed mean ages, with a RMSE of 1.06 (Fig. A.215).

The NEFSC fall survey exhibits higher selectivity at younger ages relative to the spring survey (Table A.84, Fig. A.216). Survey catchabilities (q) are presented in Figure A.217. The q CVs were less than 20%.

The SAW55\_3BLOCK\_BASE\_M\_SPLIT assessment model indicates that total SSB has ranged from 7,930 mt to 21,531 mt during the assessment time period, with current SSB in 2011 estimated at 10,221 mt (Table A.85, Fig. A.218). Total January 1 biomass in 2011 is

estimated at 16,312 mt (Table A.85, Fig. A.219) and F's at the end of the time series are estimated between 0.60 and 0.90 (Fig. A.218) with the 2011 fully recruited,  $F_{full} = 0.90$ (Table A.86). Fishing mortalities-at-age are presented in Table A.89. The low fishing mortality on ages 1 through 3 is notable given that the maturity  $A_{50\%}$  is between ages 2 and 3. The current fishery selectivity allows one to two spawning events on average prior to entering the fishery. These patterns partly explain the persistence of the population in the presence of the high Fs over the past decade. The coefficients of variation on SSB and F have generally been less 0.1 except at the end of the time series where CVs increased to at or near 0.2 (Fig. A.220).

Recruitment over the past decade has been poor to moderate despite modest increases in SSB (Fig. A.221). There is no well defined stock-recruit with very little relationship between age 1 recruitment and spawning stock biomass (Fig. A.222). Age-1 recruitment has been below ten thousand fish since 2008 (Table A.90 and Fig. A.223). The current population structure is comprised primarily of fish that have not yet fully recruited to the fishery (fish age 1-3), with >80% of the population age 4 and younger (Table A.90 and Fig. A.224).

Identical to the M = 0.2 model, MCMC simulation was performed to obtain posterior distributions of the SSB, total B, F<sub>full</sub> and F<sub>5-7</sub> time series. Two MCMC chains of initial length of ten thousand were simulated with every thousandth value saved. The trace of each chain's saved draws suggests good mixing (Fig. A.225 and A.226). The lagged autocorrelations showed decreasing correlation with increased lag with correlations  $\leq 0.1$ beyond lag 1 (Fig. A.227 and A.228). From the MCMC distributions, 90% PIs were calculated to provide a measure of uncertainty for the model point estimates. Time series plots of the SSB and F<sub>full</sub> 90% PIs as well as plots of the posterior probability distributions for SSB<sub>2011</sub> and F<sub>full(2011)</sub> are shown in Figures A.229 through A.232. ASAP point estimates and the 90% PIs are reported in Table A.91.

Retrospective analysis for the 2004-2011 terminal years indicates retrospective error in both F and SSB with the tendency for the model to underestimate F and overestimate SSB (Fig. A.155). The 5-year Mohn's rho value for SSB and F were -0.01 and 0.06 respectively (Table A.82). This retrospective is considerably reduced relative to the SAW55\_3BLOCK\_BASE (M = 0.2) model. Both the SAW 55 WG and SARC 55 Panel agreed that no retrospective adjustment should be conducted for the purposes of stock status determination or short-term projections.

#### Conclusions of the SARC 55 Panel

The SARC 55 Panel recognized that one of the motivations for examining how, or if, changes in natural mortality had occurred was driven by an effort to reduce the retrospective pattern present in the M = 0.2 model. Given all of the information provided to the Panel, there remained considerable uncertainty in the estimates of M. The evidence for and against constant and ramped natural mortality was equivocal. As with the Working Group, the Panel was unable to reach a decision on which natural mortality values or time varying scenarios best characterized this system.

With respect to the improved diagnostics of the *M*-ramp model, the Panel concluded that "...finding that including a changing *M* provides a better fit, is generally not sufficient to justify using such a model modification without other ecologically directed information to

*back it up*" (SARC 55 2012). Noting the lack of conclusive evidence to support a change in *M* they determined that it was unclear as to whether a change in natural mortality was influencing the retrospective pattern or some other factor. For example, a Delphi method had been applied prior to the working group meetings to find alternative values of discard mortality rates for different gears. The retrospective pattern was worse with the lower discard mortality rates, implying that the ramp M approach could be partially aliasing unaccounted fishing mortality.

Given that there was no clear way forward for providing a single model for guiding management advice, the SARC 55 Panel put forward (accepted) both the ASAP M = 0.2 and *M*-ramp models. The consequences associated with using or disregarding either approach are outlined under TOR 8.

#### Other models considered by the SARC 55 Panel, but not accepted:

#### Historical (1932) ASAP model with Beverton-Holt stock recruit relationship

While the SAW55 3BLOCK BASE (M = 0.2) and SAW55 3BLOCK BASE M SPLIT (M-ramp) models constituted the accepted models, the SAW 55 WG felt it was worthwhile to develop candidate ASAP models that both a) utilized the historical information back to 1932; and b) fit a Beverton-Holt (BH) stock recruit (SR) function internally within the model. In this respect they provided a more similar comparison to the SCAA candidate models (though a BH model was also developed for the SCAA model). The current version of ASAP does not allow the fitting of a Ricker SR relationship. Extending the assessment back in time is necessary to establish sufficient contrast in the SR relationship such that a SR function can be estimated. Such an approach, by necessity, requires that the assessment incorporate data of lower informational quality, but also data with higher uncertainty. It is important to note that the ASAP BH models were not presented to the SARC 55 Panel as preferred ASAP models, rather they were prepared to provide ASAP equivalents to the SCAA models (described in next section). The SARC 55 Panel did not accept the SCAA modeling approach for the reasons outlined in the next section. Many of the SARC 55 Panel's objections to the SCAA modeling approach would also apply to the ASAP BH models (e.g., incorporation of highly uncertain historical data, influence of uncertain recruitment on steepness parameters, volatility of MSY reference points to SR functional form).

To adjust historical catches to account for un-recorded commercial discards and recreational catch the average ratio of these catches to the commercial landings between 1982 and 1988 (0.32) was applied as an adjustment factor. While the constant ratio approach was the best that could be developed by the SAW 55 WG, it is based on several critical assumptions, namely that the commercial discards were constantly proportional to commercial landings prior to 1982. This assumption may not be valid, particularly when historical landings of non-targeted fisheries such as the northern shrimp fishery are considered. There is evidence that landings, and presumably effort, of northern shrimp were greater back during the late 1960s to mid-1970s (Fig. A.233). This fishery was responsible for large amounts of Gulf of Maine cod discards, particularly during the mid-1980s (Fig. A.24) prior to implementation of the Nordmore grate. Given the fisheries tendency to catch small cod (Fig. A.53), the discard patterns of this fishery would be subject not only to relative effort, but also the year-class strength of Gulf of Maine cod. These observations suggest that the discards of Gulf of Maine

cod could have been much greater relative to landings during the late-1960s to mid-1970s. While no better direct estimates are available for the historical catches, these types of issues should be considered when determining the reliability of historical catch estimates used in stock assessments. Given the high uncertainty in the historical catches, the SAW 55 WG agreed to apply a CV of 0.4 between 1932 and 1963 and 0.2 between 1964 and 1982. Time series averages of catch weights and stock weights were used for the period prior to 1982. The assumptions used for historical catches were identical between ASAP and SCAA runs.

For the ASAP 1932 BH runs, both M = 0.2 and M-ramp models were developed. In each model initial guesses for numbers-at-age, fishing mortality and steepness were set. The model was free to estimate fishing mortality and steepness with no imposed penalty function/prior, though the initial numbers at age were fixed. Preliminary investigations of the ASAP 1932 Beverton-Holt model explored alternate starting points, with model convergence and results robust to these alternate starting points. The final model applied an initial F = 0.2 in 1932. A summary of model diagnostics are presented in Table A.92. An interesting finding from the 1932 BH runs is that there is no model preference for the M-ramp, in fact imposing the M-ramp on the 1932 BH model results in a loss of 17 objective points, though most of these differences were due to differences in the recruitment deviations. Additionally, unlike the 1982 ASAP model, the retrospective pattern is worse under the M-ramp assumption (Fig. A.234). Since the support for the M-ramp in the 1982 ASAP formulation rested in part on its ability to reduce the retrospective pattern, these results call into question the justification for an M-ramp model.

The spawning stock biomass, fishing mortality and age 1 recruitment estimate time series were nearly identical to their 1982 equivalents for the years in which overlap occurred (1982-2011; Fig. A.235). The imposed *M*-ramp did affect the historical time series due to the effects on the estimated SR relationship (Fig. A.236). Steepness was estimated at 0.90 in the M = 0.2model and 0.82 in the *M*-ramp model. Overall, the corresponding reference points appeared well-estimated with CVs < 0.15 (Table A.92). Profiling over various values of steepness shows that for the M = 0.2 run, there is equal evidence for a steepness between about 0.85 and 0.95 (Fig. A.237) between which there is no considerable change with respect to reference points or 2011 estimates of SSB or F (Fig. A.238). Consequently, across the range of likely steepness values, there is little impact on stock status determination (Fig. A.239). The converse is not true for the *M*-ramp model where there is equal evidence for steepness between 0.7 and 0.9 with large implications on the estimate of F<sub>MSY</sub> (ranges from approximately 0.5 to 1.1). While B<sub>MSY</sub> and the 2011 SSB estimate were not highly sensitive to the steepness estimate, given that the 2011 SSB estimate (8,442 mt) was close to the  $B_{MSY}$ estimate of 7,713 mt, steepness values in the range of 0.7 and 0.9 can lead to very different perceptions about stock status (Fig. A.239).

These results are important to consider in both in the context of current stock biomass and fishing mortality and in the justification of an *M*-ramp. The 2011 estimates of the 1932 BH ASAP models were both below those of the 1982 models, but both generally exhibited the same time series trends and scale. The implementation of an *M*-ramp into the 1932 BH model degraded the model performance, particularly with respect to the retrospective patterns which was a justification for its consideration in the 1982 model.

SCAA model

Statistical catch-at-age (SCAA) assessment models were also considered by the SAW 55 WG, the details of which are provided in Appendices A.2-A.5. The primary differences between the ASAP and SCAA model formulations are the choice of starting points with the SCAA model starting in 1932 and the fitting of an internal Ricker stock-recruit relationship. The treatment of the historical input data in the SCAA model was identical to that described in the ASAP 1932 BH models detailed in Appendix A.6. There were other minor differences between the models but the WG concluded that each model series estimated similar spawning stock biomass across the range of the time series (Fig. A.240), but did note that the terminal 2011 estimates exhibited differences in scale with the SCAA model tending to estimate high biomass at the end of the time series. The WG discussed the source(s) of this difference and identified it as the weightings given to recent stock – recruitment data, with the SCAA model applying greater shrinkage to the SR relationship in the more recent years.

Both a constant M = 0.2 and an *M*-ramp model SCAA were developed and brought forward for consideration by the SARC 55 Panel. A **full description of the comparison of the ASAP and SCAA modeling approaches put forward by the SAW 55 WG is provided in Appendix A.7.** Ultimately, the SARC 55 Panel did not accept the SCAA approach. Below is the justification provided by the SARC 55 Panel (SARC 55 2012):

"While using information in the earlier part of the time series to help define a stock-recruitment relationship is laudable, it can be tricky. A number of concerns were raised and discussed regarding the use of the pre-1982 data (which was not of the same detail and quality as the post-1982 series) and the results from fitting the stock-recruitment curves to these data. Any one concern, by itself, might not have been enough to preclude the use of these methods in the assessment, but together these concerns led the Review Panel to discount the results and consequently the approach was eliminated from further consideration. These concerns can be examined from the point of view of the two parametric stock recruitment models (Ricker and Beverton-Holt) and then from the point of view of the data. These concerns are outlined below:

- The FMSY reference point derived from the Ricker model based on the longer data series was sometimes higher than total mortality derived from surveys suggesting that FMSY estimated in this way is higher than would make sense as the stock decreased at these mortality levels. The Review Panel acknowledges that the criterion for determining survey total mortality integrates selectivity as well, but believes the above argument still holds.
- Although the Ricker model fit the longer data series better than other models (neither the Ricker or Beverton-Holt could be reasonably fit without including some other information, as that derived from the longer data series or some other external piece of prior information), the fit was clearly influenced by low recruitments in earlier years associated with high spawning stock biomass (SSB). The Review Panel could not decide if this was a period with low recruitment productivity driven by external forces or if it was a low recruitment period because of high SSB. If the low productivity had been estimated at two or more periods of high SSB then the Review Panel would have had put more consideration into the Ricker model. There was also no evidence of density dependent effects on recruitment rate such as cannibalism.

- The Beverton-Holt stock-recruitment model was similarly rejected because these low recruitment points also inflated the steepness parameter to values beyond what seemed reasonable.
- Including the earlier catch series was necessary to fit a stock recruit relationship, however, because of the above arguments and concerns about the quality and the less detailed information available in earlier part of the data series, the Review Panel concluded that these relationships were too unreliable to provide MSY reference points for characterizing assessment advice and so all model formulations (either ASAP and SCAA) that included a stock recruitment relationship were not considered further.
- Regarding the low recruitment values of the 1960s, it looked like there were other avenues that could be pursued to help validate whether or not they should be included in determining stock recruitment model fits and associated reference point calculations. For example, examining evidence of ecosystem drivers would help determine if these recruitments were more likely to be evidence of density dependence or alternatively an environmental regime shift or a change in predation by other species. A general concern about the quality of the data in the earlier part of the series provides further motivation for examining the credibility of these influential points.
- As no standard stock-recruitment relationship could be found, the use of proxy reference points for this stock was supported.
- One other important related issue should be noted when using the Ricker or the Beverton-Holt relationships for data like these. The two models result in very different SSB<sub>MSY</sub> and F<sub>MSY</sub> reference points although the resulting recruitment levels at these points may be close to indistinguishable. Basing overfishing thresholds on such a volatile criterion may not be the best approach for establishing stable and sustainable management actions for stocks with this type of recruitment history."

## Historical assessment retrospective

A comparison between the results of the current SAW 55 assessment (both M = 0.2 and M-ramp model) and the five previous assessment (SAW 33, GARM I, GARM II, GARM III, and SAW 53) is provided in Figure A.241. This historical "retrospective" examination of past model performance illustrates the general tendency of updated models to achieve higher estimates of F and lower estimates of SSB, total biomass and overall stock size over the last decade. These patterns are in addition to the intra-model retrospective patterns that are present in the existing ASAP model as well as past VPA models. Given the major changes in data that have occurred in both the SAW 55 as well as the SAW 53 benchmark assessments, the current assessment is not entirely comparable with previous assessments. Much of the scale differences between the current assessment and previous assessments are driven by changes to the underlying data (e.g., recreational catch estimates, discard mortality assumptions, weights-at-age) and not as a result of the assessment or choice of model.

TOR A.6. State the existing stock status definitions for "overfished" and "overfishing"; update or redefine biological reference points.

The existing MSY reference points based on a spawning potential ratio (SPR) of 40% were established at SAW 53 (NEFSC 2012). The overfishing definition is  $F_{MSYproxy} = F_{40\%} = 0.20$ . A stock is considered to be overfished if spawning biomass is less than half of SSB<sub>MSY</sub>. The existing overfished definition is  $\frac{1}{2}$  SSB<sub>40%</sub> = 0.5  $\cdot$  61,218 mt = 30,609 mt. New reference points are warranted given the changes in fishery selectivity and fishery weights-at-age due to the revisions in recreational catch estimates and discard mortality assumptions. Additionally the *M*-ramp assumption has considerable impacts on recruitment estimates which will impact the estimation of SSB<sub>MSY</sub> and MSY.

As noted under TOR 5, the ASAP model has the capability to estimate a Beverton-Holt stock recruit function within the model; however, model runs attempting to fit a Beverton-Holt function were unsuccessful when 1982 is used as a starting year. Analytic model-based reference points are not estimable because of insufficient contrast in the ASAP base model time series of estimated SSB and recruitment (1982-2011). As no standard stock-recruitment relationship could be found, the use of proxy reference points for this stock was necessary. A vield per recruit (YPR) analysis was performed using a 3-year average of weights-at-age (2009-2011) which was consistent with the approach used in SAW 53 and supported by recent observed trends. The remaining YPR inputs were time invariant (maturity-at-age) or were constant in the most recent time block of the assessment model (selectivity, natural mortality). The SARC 55 Panel concluded that for long-term projections (i.e., the establishment of reference points) natural mortality should be assumed equal to 0.2, because the longer-term historical evidence seems to indicate that M=0.2 is more plausible than the more recent 0.4 assumed under the *M*-ramp model. Given the SARC 55 Panel's conclusions regarding natural mortality, there are only minor differences in the selectivity vectors between the M = 0.2 and M-ramp YPR inputs; all other inputs are identical. YPR inputs are summarized in Table A.93 for both the M= 0.2 and *M*-ramp models.

The basis for the existing reference points was derived at GARM III (NEFSC 2008), and is based on  $F_{40\%}$ . This decision was based on an assumed natural mortality of M = 0.2. The decision to use  $F_{40\%}$  as a proxy was endorsed by the independent reviewers at GARM III meeting, stating that "If recruitment and spawning stock biomass derived from the assessment are not informative about a relationship, the panel recommended use of  $F_{40\% MSP}$ as a proxy for FMSY (NEFSC 2002) and  $SSB_{MSY}$  proxy computed using a stochastic projection approach, also referred to as the "nonparametric approach" (NEFSC 2008, p979). Additional analyses by the SAW 55 WG evaluated various proxies for  $F_{MSY}$  by comparing estimated SSB and recruitment ratios (SSB/R) with expected spawning biomass per recruit (SPR) over a range of fishing mortalities (F=20% to F80% in 5% increments) to investigate the potential for replacement under equilibrium assumptions (i.e. constant harvest rate and biology over the lifespan). The SAW WG considered an analysis of replacement lines under recent productivity (approximately last 10 years) and concluded that for the M =0.2 option,  $F_{40\%}(0.18)$  was still appropriate (Fig. A.242). It should be noted that subsequent to the SAW/SARC 55, work was presented at SAW 56 WG that invalidates the replacement line approach for determining an appropriate spawning potential ratio and suggested that  $F_{40\%}$ be maintained for fish with typical groundfish life histories (Legault and Brooks 2013). The

SARC 55 Panel recommended to maintain the  $F_{40\%}$  basis for reference points for both the M = 0.2 and M-ramp models but noted that "...*F40% is necessarily the best proxy to use, rather there has yet to be compelling reasons to abandon it*" (SARC 55 Panel Summary Report, 2012).

To arrive at estimates for SSB<sub>MSY</sub> and a corresponding MSY, long term projections were run sampling from the empirical distribution of recruitment estimates from the preferred ASAP model. The recruitment vector included years 1982-2009; recruitment in 2010 and 2011 were not included due to their greater variance. The projection model samples from a cumulative density function derived from estimated age-1 recruitment. However, the revised model adjusts projected recruitment when SSB falls below some specified spawning biomass threshold based on a linear function that declines to zero at zero spawning stock biomass. Consistent with the SAW 53 assessment, the 'hinge' was set at the lowest observed SSB in the time series. For the M = 0.2 scenario, this was 6,300 mt and 7,900 mt for the M-ramp scenario. To approximate the distribution of the SSB and MSY distributions, the long term projections were made from 1000 estimates of numbers at age in 2011, which were estimated by performing MCMC simulation of the ASAP models (described above under TOR 5). The 2011 age 1 estimates were based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. All projections were conducted with the AGEPRO software (Age Structured Projection Model v4.1).

For the ASAP, 1982 start, M = 0.2 scenario, the resulting reference points and their 90% confidence intervals corresponding to  $F_{MSYproxy} = F_{40\%}$  (0.18) are  $SSB_{MSY} = 54,743$  mt (40,207 – 73,354 mt) and MSY = 9,399 mt (6,806 – 13,153 mt).

For the ASAP, 1982 start, *M*-ramp scenario, the resulting reference points and their 90% confidence intervals corresponding to  $F_{MSYproxy} = F_{40\%}$  (0.18) are  $SSB_{MSY} = 80,200$  mt (64,081 – 99,972 mt) and MSY = 13,786 mt (10,900 – 17,329 mt).

A detailed summary of these reference points is also provided in Table A.94.

TOR A.7. Evaluate stock status with respect to the existing model

TOR A.7.a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.

The updated SAW 53 model (SAW55\_BASE) estimates 2011 SSB at 11,874 mt. This is less than the existing overfished threshold of 30,609 mt; therefore, the stock is overfished. The updated estimate of fully recruited fishing mortality ( $F_{full}$ ) in 2011 is 0.59. This is greater than the overfishing limit of 0.20, and therefore, overfishing is occurring.

TOR A.7.b. Then use the newly proposed model and evaluate stock status with respect to "new" BRPs (from Cod TOR-6).

For the ASAP, 1982 start, M = 0.2 scenario, the revised reference points are  $F_{MSYproxy} = F_{40\%} = 0.18$  and  $SSB_{MSY} = 54,743$  mt (0.5 x  $SSB_{MSY} = 27,372$  mt). The model estimates 2011 SSB at 9,903 mt. This is less than the overfished threshold of 27,372 mt; therefore, the stock is overfished. The estimate of 2011 fully recruited fishing mortality ( $F_{full}$ ) is 0.86. This is

87

greater than the overfishing limit of 0.18, and therefore, overfishing is occurring.

For the ASAP, 1982 start, *M*-ramp scenario, the revised reference points are  $F_{MSYproxy} = F_{40\%} = 0.18$  and  $SSB_{MSY} = 80,200$  mt (0.5 x  $SSB_{MSY} = 40,100$  mt). The model estimates 2011 SSB at 10,221 mt. This is less than the overfished threshold of 40,100 mt; therefore, the stock is overfished. The estimate of 2011 fully recruited fishing mortality ( $F_{full}$ ) is 0.90. This is greater than the overfishing limit of 0.18, and therefore, overfishing is occurring.

Under both the M = 0.2 and *M*-ramp scenarios the stock is assessed to be overfished and overfishing is occurring. It is notable that this stock has experienced a long history of overfishing relative to current reference points (Fig. A.243).

TOR A.8. Develop and apply analytical approaches to conduct single and multi-year stock projections

TOR A.8.a. Provide numerical annual projections

Short term projections of future stock status were conducted based on the current assessment results without accounting for retrospective bias. This rationale was identical to that of stock status determination. Numbers-at-age in 2012 were derived from 1000 different vectors of numbers-at-age produced from the MCMC chain with 2011 age 1 estimates based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. Biological inputs were identical to those used for reference point determination. Short term projections have used an assumed catch in 2012 of 3,767 mt. This estimate is based on the current commercial and recreational catches as well as the expected catch over the remainder of the year which has been extrapolated using the harvest trajectories from the past two years (NEFMC PDT, T. Nies pers. comm.).

Recruitment was sampled from a cumulative density function (CDF) of estimated age 1 recruitment from 1982 to 2009. The same AGEPRO model used for reference point determination was used to conduct short-term projections (i.e., model adjusts projected recruitment based on a linear function that declines to zero at zero SSB when SSB falls below some 'hinge' SSB-level corresponding to the lowest SSB observed in the time series). For the M = 0.2 scenario, the 'hinge' SSB value was set at 6,300 mt and 7,900 mt for the *M*-ramp scenario. All projections were run under the assumption of 75% F<sub>MSY</sub> (0.18  $\cdot$  0.75 = 0.135).

A consequence analysis was conducted to evaluate the sensitivity of management advice to the assumptions about M (i.e. M = 0.2 or M-ramp). For the M-ramp scenario the projections were provided assuming that: a) M remained at 0.4; or, b) that M returns to 0.2 in the projection period.

Projection results are summarized in terms of median SSB and fishery catch (yield) under all three scenarios outlined above in Table A.95. Under 75%  $F_{MSY}$  exploitation, the stock is projected to rebuild under the M = 0.2 and M-ramp (M = 0.2) scenarios by 2022. The stock cannot rebuild under the M-ramp (M = 0.4) scenario since the reference points are based on an assumption of M returning to 0.2 in the long-term. It is important to note that the SARC 55 Panel was not willing to conclude that M would remain at 0.4 in perpetuity and so did not provide reference points for the M-ramp model under a long-term assumption of M = 0.4. A full discussion of the three scenarios evaluated is provided under TOR 8b.

## TOR A.8.b. Comment on which projections seem most realistic assumptions

## Consequence Analysis

The risks associated with management actions taken during 2013 - 2015 were examined by undertaking stock projections under the competing assumptions for the state of nature. For example, if the true state of nature is that natural mortality has remained unchanged at 0.2 and that stock productivity is best reflected by the 1982 - present dataset (SPR, M = 0.2 model), then the consequences of management actions by setting projected catch according to 75%  $F_{MSY}$  based on the two alternative states of nature were examined (*M*-ramp scenario with M =0.2 in short-term and *M*-ramp scenario with M = 0.4 in the short term). In all cases, the 2012 catch was provided by the NEFMC Groundfish Plan Development Team. Projections were only conducted until 2015. There may be longer term consequences which might be revealed through a more extensive analysis. This is beyond the current terms of reference.

The column headers in Table A.96 and Figure A.244 represent the 'true' states of nature considered, these being:

- M = 0.2: stock dynamics and assessment based on 1982 present dataset with M remaining at 0.2 for the projection period.
- *M*-ramp: stock dynamics and assessment based on 1982 present dataset with *M* returning to 0.2 in the projection period.
- *M*-ramp: stock dynamics and assessment based on 1982 present dataset with *M* remaining at 0.4 for the projection period.

The row headers in Table A.96 indicate the basis of the management action during the projected period (2013 - 2015). For example, the row header 'ASAP, 1982 start, M = 0.2' indicates that catch was projected assuming that the stock conditions and reference points were as per these dynamics. All projections were conducted at 75% F<sub>MSY</sub>, based on the assumed state of nature and thus which establishes the catch in each cell. This is the 'planned' catch. The cells of the table indicate the SSB and fully recruited fishing mortality (F<sub>full</sub>) which are a consequence of applying the catch based on the assumed state of nature to the SSB of the 'true' state of nature. The diagonal rows represent the situation in which the management actions based upon the assumed state of nature are in fact correct.

The consequence analysis is summarized in Figure A.244. As with Table A.96, the column headers indicate one of the 'true' states of nature. The row headers indicate whether or not catch, SSB or  $F_{full}$  is being displayed along the row. The content of each cell summarizes the consequences (reflected by the medians of the distributions in question) of assuming one state of nature when another is true. The black line in each cell indicates the catch, SSB and  $F_{full}$  for the 'true' state of nature. The coloured lines (for the projected period only) indicate the catch, SSB and  $F_{full}$  which result when the 75%  $F_{MSY}$  estimated catch is incorrectly based upon an alternate state of nature. The dashed lines in each figure are the  $B_{MSY}$ ,  $F_{MSY}$  and MSY for the 'true' states of nature.

When management actions are correctly based upon a particular state of nature (the diagonals of Table A.96), a modest increase in SSB is projected between 2013 and 2015 for all three scenarios explored. The *M*-ramp (M = 0.2) scenario has the greatest rebuilding potential

whereas the M-ramp (M = 0.4) has the lowest rebuilding potential. Fully recruited fishing mortality declines from 0.86 (M = 0.2) or 0.90 (M-ramp) to 0.14 (all scenarios). Catch declines from 6,830 mt in 2011 to 1,313 - 2,582 mt in 2015 depending on the scenario with the M-ramp (M = 0.4) scenario resulting in the lowest yield and the M-ramp (M = 0.2) having the highest yield. The M = 0.2 scenario is an intermediate case. If the management actions are correctly based upon the 'true' state of nature all scenarios indicate that the stock will be in an overfished state as of 2013 (Table A.96).

The SARC 55 Panel concluded that the M = 0.2 projections and the *M*-ramp projections with *M* remaining at 0.4 in the short-term were equally realistic. Like the SAW 55 WG, the SARC 55 Panel could not decide which option was more plausible. The Panel concluded that if *M* is currently 0.2 [0.4] then it seemed more reasonable to assume that in the short-term *M* would remain at 0.2 [0.4]. Note that for long-term projections that Review Panel decided that *M* should be 0.2 under all scenarios, because the longer-term historical evidence seems to indicate that *M*=0.2 is more plausible.

The consequences of mis-specifying natural mortality (e.g., M = 0.2 is true state of nature and manage under *M*-ramp, M = 0.4) will not impact status determination in 2013; under all consequence analyses considered the stock will be in an overfished state in 2013. Considering only the M = 0.2 and *M*-ramp (M = 0.4) scenarios, the consequence of mis-specifying natural mortality will result in at most 717 mt of an over-/under-harvest of fishery yield in 2015. While the magnitude is small in terms of historical catch, this amounts to 55% of over-harvest (*M*-ramp is true state of nature and manage under M = 0.2) or a 35% under-harvest (M = 0.2 is true state of nature and manage under M = 0.4). Assuming an *M*-ramp (M = 0.4) when *M* is actually equal to 0.2 results in a lower than 'planned' fishing mortality and catch and higher than 'planned' SSB. When *M* is assumed to be 0.2 but an *M*-ramp (M = 0.4) is correct, fishing mortality and thus catch would be considerably higher than 'planned' with the result that in 2013 the stock would be experiencing overfishing (Table A.97).

TOR A.8.c. Describe this stock's vulnerability

The Gulf of Maine cod stock is currently undergoing processes that have not been incorporated into the analytical formulations. Nevertheless, they should be considered when setting the ABC.

Since the mid-1990s, as observed in the NEFSC bottom trawl surveys and consistent with the trends in the fishery, the distribution of cod has become increasingly concentrated in the western part of the Gulf, with a gradual loss of cod from the coastal and central Gulf. Since the mid-2000s, the stock has become particularly concentrated in a small region of the western Gulf, an area which appears to be a forage 'hotspot' due to the presence of sand lance, a prey of cod. This biases CPUE as an indicator of the abundance of the stock as a whole.

There is uncertainty associated with natural mortality rates. Natural mortality of cod may be increasing through consumption by other fishes and marine mammals as these populations increase; however, evidence of this is lacking in the food habits data and among life history parameters. On the other hand, tagging studies suggest natural mortality levels higher than 0.2 during 2003 - 2006 time period. The tagging studies, combined with the reduced assessment model retrospective patterns were the basis of the *M*-ramp model. However, the

states of nature as reflected in the natural mortality rates included in the models are uncertain. For example, a Delphi method had been applied prior to the working group meetings to find alternative values of discard mortality rates for different gears. The retrospective pattern was worse with the lower discard mortality rates, implying that the ramp *M* approach could be partially aliasing unaccounted fishing mortality.

It may be that at low population sizes, cod experience mortality from a number of unidentified sources. High mortality, both fishing and natural will lead to a truncated age structure, implying that spawning success is increasingly dependent upon younger individuals. Murawski et al. (2001) suggest that reproduction by older females is more successful than by young females. There are a number of other factors that are known to negatively influence cod spawning success at low population sizes (Rowe et al., 2004).

If weak recruitment and low reproductive rates of Gulf of Maine cod continue, productivity and rebuilding of the stock will be less than projected. Over the last five years recruitment estimates have declined to a low level in both the M = 0.2 and M-ramp assessment models. Recent survey indices of recruitment indicate continued poor recruitment. Additionally, the NEFSC 2011 fall and 2012 spring survey abundance indices were the 4th lowest and the lowest in their respective time series. The MADMF 2012 spring survey biomass index was the lowest in its times series. The 2012 spring survey observations were not incorporated into the assessment formulations, implying that projections may be optimistic.

The current assessment provides a range of views of current stock status, all of which indicate that the resource is in an overfished state and has experienced a long history of overfishing. Concerns for stock status may also be apparent in the fishery. Cumulative commercial and recreational catches to date in 2012 are projected to be less than 60% of the total allocated quota (based on projected catch provided by NEFMC PDT, T. Nies pers. comm.). While this is suggestive of an overall difficulty on the part of industry to locate Gulf of Maine cod it is not definitive given other possible explanations such as sector quota restrictions on other co-occurring species. However, observations from the recreational fishery which is not subject to the same catch share system as the commercial fishery has also reported difficulty locating Gulf of Maine cod.

TOR A.9. Review, evaluate and report on the status of the SARC and Working Group research recommendations

The SAW 55 WG reviewed the status of previous research recommendations and proposed new ones to address issues raised during the three WG meetings. For all new research recommendations proposed by the SAW 55 WG, the WG has indicated relative priorities (high, medium, low) as appropriate. Many of these recommendations were felt to be common to both the Gulf of Maine and Georges Bank Atlantic cod stocks. These are indicated as 'General' below. The SARC 55 Panel also contributed several additional research recommendations which are included in this section.

## GARM III

• The Panel recommended that historical data be used to hindcast recruitments as far back in time as possible for use in the estimation of reference points and projections.

• Analyses to explore the use of the historical information were undertaken by the WG with the sensitivity of reference points examined.

## SAW 53

- Examine historical and contemporary estimates of cod catch in the lobster fishery. Preliminary discussions with Maine DMR suggest that the lobster bycatch may be relatively small proportional to other fishery removals.
  - There is ongoing work through a collaboration between the University of Maine and the Maine Department of Marine Resources to estimate Atlantic cod bycatch in the Maine lobster fishery. Work is still in progress and no information was available for evaluation during SAW 55 (Y. Chen, University of Maine Orono, pers. comm.).
  - Observer coverage of both nearshore and offshore lobster vessels has been allocated by the Northeast Fishery Observer Program for period April 2012 – March 2013 with the specific objective of obtaining information on fishery bycatch.
  - The WG recommended that this research recommendation be carried forward.
- The SAW 53 data WG had recommended that consideration be given to inclusion of the inshore strata data when switching to the *FRV* Bigelow survey time series. Sampling in these strata during both spring and fall surveys has been inconsistent or non-existent, dependent upon the stratum.
  - The analysis presented to the SAW 55 WG indicated that inclusion of these inshore strata had minimal influence on the trends in both survey indices. It was thus recommended that these inshore strata be excluded from the SAW 55 analyses.
  - When it is judged that the Bigelow time series is long enough to include as a separate series, reconsideration needs to be given to adding these strata back into the survey index since there has been consistent sampling of these survey strata since the change in survey vessels in 2009.
- Further pursue the incorporation of the Maine/New Hampshire Inshore Trawl (MENH) Survey in future assessments. The unavailability of age information and short time series have precluded this survey from being used in past assessments. While age structures are currently collected from this survey, they have not been aged.
  - Progress has been made on the implementation and analysis of the data collected since the start of the ME/NH survey in 2000/2001; specifically, spring and fall 2005 and spring 2011 ageing has been completed and spring 2006 is in progress (S. Sherman, ME DMR, pers. comm.). Continued progress towards ageing the entire time series of collected otoliths should be considered a high priority.
- The SARC 53 Data Working Group suggested exploration of the maturity information collected by the ME/NH survey to examine agreement with the NEFSC maturity ogives.

- Maine DMR (S. Sherman, ME DMR, pers. comm.) provided the maturity info for the ME/NH inshore groundfish survey. These data were analyzed and presented at the SAW 55 data meeting and summarized in this report.
- Examine the reproductive information collected from the ME/NH survey for the early years (e.g., where Downeast Maine stations were sampled to evaluate whether any of the fish were mature and if it could possibly suggest the presence of a spawning aggregation.
  - *ME DMR (S. Sherman ME DMR pers. comm.) provided maps of cod*  $\geq$  25 cm broken down in to two time blocks (2001-2006, 2007-2011). Additionally, maturity data were examined in terms of proportion mature by region. These data were presented at the SAW 55 data meeting and summarized in this report.
- Examine the impacts of excluding the Commercial LPUE index from the assessment. The Commercial LPUE index exists for the year 1982 – 1993 and is no longer updated. Regulations implemented since 1994 (e.g., trip limits, area closures) limit the utility of a LPUE index that extends beyond these years. Initial modeling to explore this recommendation indicated no impact to the updated VPA and negligible impact to the ASAP base model if the Commercial LPUE index is excluded. The NDMBRPWG therefore decided to drop the Commercial LPUE index from this, and all future assessments of Gulf of Maine cod.
  - This recommendation was included in TOR 2 of SAW 55. A number of surveys indicate that the Stellwagen Bank area appears to be a forage 'hot spot' for cod feeding on sand lance. As well, the VTR, observer and VMS information from the commercial fishery indicates that fishing effort since the mid-2000s has become concentrated in this area. Over the longer term, there have a number of regulatory changes (e.g. seasonal closures, trip limits, etc) which call into question the utility of commercial LPUE as an index of GOM cod biomass. Based on these concerns, the WG recommended that the commercial LPUE index not be used in the SAW 55 assessment model. This recommendation is consistent with the findings of the recent NEFSC sponsored LPUE workshop. Given concerns comparable to those of the commercial fishery, the WG recommended that the recreational LPUE index also not be included in the GOM cod assessment model.
- Stock definition should be re-assessed. The SARC 53 panel recommended that efforts be undertaken to reassess the stock definition for Gulf of Maine Atlantic cod. Cod is a very population-rich species, and matching the scale of the assessment to the spatial scale of the population dynamics is important to achieve reliable, accurate assessments. Several lines of evidence support this recommendation: 1) the assessment under review presents compelling evidence of a change in the distribution of cod within the current stock area. The SARC 53 panel was not able to determine whether this is solely a demographic response, but comments made during the SARC indicate that it may also relate to a reduction in the diversity of spawning times and locations; 2) there is compelling historical and contemporary evidence from natural history information and tagging studies of movements across stock boundaries that compromises the integrity of existing stock definitions, and 3) There is a wealth of historical and more recent genetic information of local stock structure and local

adaption in cod and in fish populations general at finer spatial scales than previously admitted.

- As indicated under TOR 3, a separate process has been initiated to address this recommendation. The SAW 55 WG reported on the findings of a recent workshop on stock structure which was an element of this initiative.
- The level, schedule and variability of natural mortality should be evaluated. Currently, the level of fishing mortality, F, estimated in Gulf of Maine Atlantic cod is substantially higher than the estimated rate of natural mortality, *M*. However, as managers begin to regulate harvests more effectively, F will decline and approach *M*. Under such circumstances the accuracy of the assumed *M* becomes more important. Accordingly, the SARC 53 panel recommended that efforts be increased to evaluate size-specific, age-specific and inter-annual variation in *M* be expanded.
  - This was considered and reported on under TOR 4 of SAW 55. The SAW 55 WG considered analyses which provide evidence for M greater (up to 0.6) than the currently assumed value of 0.2 during 2003 – 2006. These and other analyses were the basis of the WG's decision to consider an M change model option.
- Study of the behavior of fishers in response to changes in the distribution of the stock and to changes in management. There was clear evidence presented in the assessment and at SARC 53 of changes in the distribution of cod within the stock area. The SARC 53 panel recommended that research and analyses be conducted to: 1) understand and characterize changes in the distribution of the stock, 2) understand and characterize changes in the distribution of fishing effort and to evaluate the impacts of such changes on the pattern and biological characteristics of removals from the stock and 3) evaluate the potential for changes in the distribution of effort to be associated with changes in the distribution of vulnerability of different components of the stock to fishing mortality.
  - As reported under TOR 2, a number of analyses were undertaken to describe GOM cod distributional changes, which particularly since 2006, appear to have been driven by prey (sand lance) spatial processes. The associated changes in commercial and recreational effort distribution, as well as regulatory changes over the longer term, imply that LPUE is no longer a representative index of abundance and led to the WG's decision to exclude these time series from the base models.

## SAW 55 WG (new recommendations)

- The tagging analysis of Miller (2012, WP 31) provided evidence of natural mortality greater than 0.4 during the 2003 2006 period. Historical tagging data were reported to exist, but there was no comparable analysis to which this could be compared. It would be useful to reconsider historical tagging data using modern analytical methods similar to that in Miller (2012) to allow comparisons of the estimates of natural and fishing mortality. (High)
- Improved estimates of discard mortality/survival (i.e. post capture mortality) are needed, particularly in the recreational fishery. Studies which incorporate electronic

tags and acoustic arrays would allow confirmation of the currently used estimates. (Low)

- Studies to provide information on the natural mortality of cod and inferred temporal trends are needed. Specifically, predator population estimates (i.e. pinnepeds) specific to Gulf of Maine/Georges Bank and focused stomach collection and analyses of fish and other predators would assist in evaluating whether or not natural mortality may have changed. (High)
- The SAW 55 WG noted that there may be advantages to inclusion of the tagging analysis formally within the stock assessment model. This would allow consideration of the factors affecting tagging estimates of F and M, including age/size based processes. This would be a longer-term project given the complexity of integrating the two analyses. (High, General)
- The SAW 55 WG discussed at length the appropriateness of the methods used to weight the proportions at age data within the ASAP and SCAA models. The current ASAP error assumption (multinomial) assumes that the standardized variance on the proportions at age is constant. Analyses were presented to the WG that indicated that the variance on the proportions at age was not constant and that in order to properly account for this in the model fitting process, it was necessary to employ an age-dependent weighting, as the adjusted log-normal does. While use of the multinomial would not produce biased estimates, it would likely result in the variance being overestimated. Further, the AIC criterion would not be valid in model selection, although it was countered that the ASAP uses a penalized likelihood. This issue could not be fully resolved by the WG and further work is required to explore the appropriate weighting of the proportions at age data. (Medium, General)
- The SAW 55 WG considered an approach that incorporated the *Bigelow/Albatross* calibration coefficients within an SCAA assessment model. This allowed reestimation of the coefficients as data on year-classes was updated. While the effect in this assessment was small, the approach may have merit and consideration should be given for the incorporation into the ASAP software. (Medium, General)
- Explore the utility of applying a random errors approach to the internal fitting of stock recruitment relationships. This would require extensive software changes to ASAP code. (Medium, General)
- Simulations (conditioned on data) of the internal estimation of stock recruitment functions be used to explore potential bias in the fitting of these relationships. (Medium, General)

## SARC 55 Panel (new recommendations)

• Provide analysis on changes in the location and quality of preferred environment and habitats for cod and potential implications on *M* (adult and juvenile) and spawning potential.

- Telemetry tagging may provide a more direct way to measure natural mortality, particularly if there are local cod populations with high site fidelity.
- Consider other assessment models that include 'smoothing' approaches (e.g. penalized random walks) to deal with changes in fishery selectivity and natural mortality.
- Consider accounting for residual patterns and retrospective patterns using process errors. A rationale for this is that process errors can be projected into the future to potentially better account for the model/process uncertainty (indicated by residual and retrospective patterns) in projections and MSY reference points. The current approach of retrospective correcting for process error does not seem sufficient particularly in long-term projections for rebuilding analyses and reference point calculations. Uncertainty in calibrations to standardize survey time series for changes in vessels and fishing gear (i.e. doors) was not accounted for in the stock size indices. This may be a useful area for future research, although hopefully the time-series will soon be long enough that direct calibration will not be required.
- A GLM approach could be used to combine NEFSC and MADMF survey indices into two more complete indices for the Spring and Fall. The NEFSC surveys have better coverage in offshore strata, and the MADMF surveys had better coverage in inshore strata. Combining surveys would result in better coverage of the whole stock and hopefully better stock size indices.
- As part of the model building exercise, consider summarizing the information about mortality rates and trends in stock size using a survey-only assessment model such as SURBA. This could replace catch-curve estimation of Z's. It can also be used to explore conflict (or lack thereof) between surveys and catches.
- When stock-recruit data are uncertain but the time-series is long, consider constraining R<sub>max</sub> to be some reasonable value (e.g. maximum of historic assessment values) and derive MSY reference points using the constrained stock-recruit curve. There are nonparametric approaches that could be used to address sensitivity of MSY reference points to simple parametric assumptions about stock-recruitment relationships

#### References

Alexander KE, Leavenworth WB, Cournane J, Cooper AB, Claesson S, Brennan S, Smith G, Rains L, Magness K, Dunn R, Law TK, Gee R, Bolster WJ, Rosenberg A. 2009. Gulf of Maine cod in 1861: historical analysis of fishery logbooks, with ecosystem implications. Fish and Fisheries. 10:428-449.

Ames EP. 2004. The stock structure of Atlantic cod in the Gulf of Maine. Fisheries, 29:10-28.

- Applegate A, Cadrin S, Hoenig J, Moore C, Murawski S, Pikitch E. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. Final Report, Overfishing Definition Review Panel. New England Fishery Management Council, Newburyport, Massachusetts. 179 p.
- Beamish FWH. 1966. Vertical migration of demersal fish in the Northwest Atlantic. Journal of the Fisheries Research Board of Canada, 23: 109–139.
- Begg GA, Hare JA, Sheehan D. 1999. The role of life history parameters as indicators of stock structure. Fisheries Research 43:141-163.
- Brooks EN, Miller TJ, Legault CM, O'Brien L, Clark KJ, Garvaris S, Eeckhaute LV. 2010. Determining Length-based Calibration Factors for Cod, Haddock and Yellowtail Flounder. Transboundary Resource Assessment Committee (TRAC) Reference Document 2010/08. 23 p.
- Brooks EN, Palmer M, O'Brien, Legault C. 2012. Evaluating methods to calculate stock weights at age for Gulf of Maine and Georges Bank cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 5. 70 p.
- Brown R. 2009. Design and field data collection to compare the relative catchabilities of multispecies bottom trawl survey conducted on the NOA ship Albatross IV and the FSV Henry B. Bigelow. NEFSC Bottom Trawl Survey Calibration Peer Review Working Paper. NEFSC. 19 p.
- Butterworth DS, Rademeyer RA. 2008a. Statistical catch-at-age analysis vs. ADAPT-VPA: the case of Gulf of Maine cod. ICES J. Mar. Sci. 65(9): 1717-1732.
- Butterworth DS, Rademeyer RA. 2008b. Further SCAA/ASPM Assessments of Gulf of Maine Cod Including Data for 2007 and Exploring the Impact of Age-Dependence in Natural Mortality. Groundfish Assessment Review Meeting (GARM) III Working Paper 1.F.b. 17 p.
- Chen Y, Cao J. 2012. Impact of stock mixing on the assessment of Atlantic cod in the Gulf of Maine. SAW 55 Models Meeting. October 15-19, 2012. Working Paper 22. 42 p.
- De Valpine P, Hastings A. 2002. Fitting population models incorporating process noise and observation error. Ecological Monographs. 72: 57 76.

- Dean M, Elzey S,Hoffman B. 2012. Using otolith microstructure to discriminate between spawning components of Atlantic cod in the GOM. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 13. 10 p.
- Forrester JRS, Byrne CJ, Fogarty M, Sissenwine MP, Bowman EW. 1997. Background papers on USA vessel, trawl, and door conversion studies. SAW-24 SARC Working Paper Gen. 6.
- Francis RICC. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68:1124-1138.
- Gunderson DR. 1997. Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes. Can. J. Fish. Aquat. Sci. 54:990-998.
- Harley SJ, Myers RA, Dunn A. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58:1760-1772.
- Hart D, Miller T. 2008. Analyses of tagging data for evidence of decreased fishing mortality for large Gulf of Maine Cod, *Gadus morhua*. Groundfish Assessment Review Meeting (GARM) Biological Reference Point Meeting. April 29 – May 2, 2008. Working Paper 4.7. 12 p.
- Hewitt DA, Hoenig JM. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin. 103(2):433-437.
- Hoenig JM. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin. 82(1):898-903.
- Hoffman WS, Correia SJ, Pierce DE. 2006. Implementing the Industry-Based Survey for Gulf of Maine Cod Pilot Study. Final Report for NOAA Contract #: EA133F-03-CN-0109.
- Hunt JJ, Stobo WT, Almeida F. 1999. Movement of Atlantic cod, Gadus morhua, tagged in the Gulf of Maine area. Fish. Bull. 97:842-860.
- ICES (International Council for the Exploration of the Sea). 2005. Joint report of the study group on unaccounted fishing mortality (SGUFM) and the workshop on unaccounted fishing mortality (WKUFM). ICES Fishery Technology Committee. ICES CM 2005/B:08. 68 pp.
- Jensen AL. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53:820-822.
- King JR, Camisa MJ, Manfredi VM. 2010. Massachusetts Division of Marine Fisheries Trawl Survey Effort, Lists of Species Recorded, and Bottom Temperature Trends, 1978-2007. Massachusetts Division of Marine Fisheries Technical Report TR-38. 157 p.
- Kovach AI, Breton TS, Berlinsky DL, Maceda L, Wirgin I. 2010. Fine-scale spatial and temporal genetic structure of Atlantic cod off the Atlantic coast of the USA. Mar. Ecol. Prog. Ser. 410:177-195.

- Legault, CM, Restrepo VR. 1998. A flexible forward age-structured assessment program. ICCAT. Col. Vol. Sci. Pap. 49:246-253.
- Legault CM. 2008. Technical Documentation for ASAP Version 2.0 NOAA Fisheries Toolbox (http://nft.nefsc.noaa.gov/).
- Legault CM, Chair. 2009. Report of the Retrospective Working Group, January 14-16, 2008, Woods Hole, Massachusetts. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 09-01; 30 p.
- Legault CM. 2012a. Technical Documentation for ASAP Version 3.0 NOAA Fisheries Toolbox (<u>http://nft.nefsc.noaa.gov/</u>).
- Legault CM. 2012b. Simulation test of age composition error distributions. SAW 55 Models Meeting. October 15-19, 2012. Working Paper 21. 15 p.
- Legault C, Brooks L. 2013. Can stock recruitment points determine which spawning potential ratio is the best proxy for maximum sustainable yield reference points? SAW 56 Models and Reference Point Meeting. January 7-11, 2013. 30 p.
- Link J. 2012. Observations on consumption of Georges Bank and Gulf of Maine cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 13. 3 p.
- Loehrke J, Cadrin S. 2007. A review of tagging information for stock identification of cod off New England. Groundfish Assessment Review Meeting (GARM) Data Meeting. October 29-November 2, 2007. Working Paper 3b. 17 p.
- Mayo RK, O'Brien L, Buxton N. 1992. Discard estimates of American plaice, Hippoglossoides platessoides, in the Gulf of Maine northern shrimp fishery and Gulf of Maine-Georges Bank large-mesh otter trawl fishery. Appendix to NEFSC Ref. Doc. 92-07. 40 p.
- Mayo RK, Hesler TE, O'Brien L, Sosebee KA, Figuerido BF, Hayes DB. 1994. Estimation of standardized otter trawl effort, landings per unit effort, and landings-at-age for Gulf of Maine and Georges Bank cod. NMFS NEFSC Ref. Doc. 94-12. 17 p.
- Mayo RK. 1995. Assessment of the Gulf of Maine Cod Stock for 1993. NMFS NEFSC Ref. Doc. 95-02. 74 p.
- Mayo RK. 1998. Assessment of the Gulf of Maine Cod Stock for 1997. NMFS NEFSC Ref. Doc. 98-08. 88 p.
- Mayo RK, O'Brien L, Serchuk FM. 1993. Assessment of the Gulf of Maine Cod Stock for 1992. NMFS NEFSC Ref. Doc. 94-04. 54 p.
- Mayo RK, O'Brien L, Wigley SE. 1998. Assessment of the Gulf of Maine Cod Stock for 1998. NMFS NEFSC Ref. Doc. 98-13. 88 p.
- Mayo RK, Thunberg EM, Wigley SE, Cadrin SX. 2002. The 2001 Assessment of the Gulf of Maine Atlantic Cod Stock. NMFS NEFSC Ref. Doc. 02-02. 154p.

- Mayo RK, Col L. 2006. The 2005 Assessment of the Gulf of Maine Atlantic Cod Stock. NEFSC Ref Doc. 06-02. 109 p.
- Mayo RK, Sheperd G, O'Brien L, Col LA, Traver M. 2009. The 2008 assessment of the Gulf of Maine Atlantic cod (*Gadus morhua*) stock. NMFS NEFSC Ref. Doc. 09-03. 128 p.
- McIntyre TM, Hutchings JA. 2003. Small-scale temporal and spatial variation in Atlantic cod (*Gadus morhua*) life history. Can. J. Fish. Aquat. Sci. 60:1111-1121.
- Miller TJ, and Tallack STM. 2007. Estimating instantaneous rates of regional migration and mortality from conventional tagging data. 2007 GARM Data Methods Working Paper C.3.
- Miller TJ, Das C, Politis PJ, Miller AS, Lucey SM, Legault CM, Brown RW, Rago PJ. 2010. Estimation of Albatross IV to Henry B. Bigelow calibration factors. NMFS NEFSC Ref. Doc. 10-05. 233 p.
- Miller TJ. 2012. Regional migration and mortality of Atlantic cod in the Northwest Atlantic Ocean from tag-recovery data, accounting for short-term tagging-induced fatalities. SAW 55 Models Meeting. October 15-19, 2012. Working Paper 31. 21 p.
- Murawski SA, Rago PJ, and Trippel E. A. 2001. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES Journal of Marine Science, 58: 1002–1014.
- Nies T. 2011. Management Regulations. Stock Assessment Workshop 52 Southern Demersal Working Group 52 Working Paper 6.
- NEFSC (Northeast Fisheries Science Center). 1989. Report of the Seventh NEFC Stock Assessment Workshop (7<sup>th</sup> SAW). NMFS NEFSC Ref. Doc. 89-04. 108 p.
- NEFSC (Northeast Fisheries Science Center). 1991. Report of the Twelfth Northeast Regional Stock Assessment Workshop (12th SAW). NMFS NEFSC Ref. Doc. 91-03: 187 p.
- NEFSC (Northeast Fisheries Science Center). 1992. Report of the Thirteenth Northeast Regional Stock Assessment Workshop (13th SAW). NMFS NEFSC Ref. Doc. 92-02. 183 p.
- NEFSC (Northeast Fisheries Science Center). 1993. Report of the Fifteenth Northeast Regional Stock Assessment Workshop (15th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS NEFSC Ref. Doc. 93-06. 108 p.
- NEFSC (Northeast Fisheries Science Center). 1995. Report of the Nineteenth Northeast Regional Stock Assessment Workshop (19th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS NEFSC Ref. Doc. 95-08. 221 p.

- NEFSC (Northeast Fisheries Science Center). 1997. Report of the Twenty-fourth Northeast Regional Stock Assessment Workshop (24th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS NEFSC Ref. Doc. 97-12. 291 p.
- NEFSC (Northeast Fisheries Science Center). 1998. Report of the Twenty-seventh Northeast Regional Stock Assessment Workshop (27th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS NEFSC Ref. Doc. 98-15. 350 p.
- NEFSC (Northeast Fisheries Science Center). 2000. Assessment of 11 Northeast Groundfish stocks through 1999. Report of the Northern Demersal Working Group, Northeast Regional Stock Assessment Workshop. NMFS NEFSC Ref. Doc. 00-05. 173 p.
- NEFSC (Northeast Fisheries Science Center). 2001a. Assessment of 19 Northeast Groundfish stocks through 2000. Report of the Northern Demersal Working Group, Northeast Regional Stock Assessment Workshop. NMFS NEFSC Ref. Doc. 01-20. 217 p.
- NEFSC (Northeast Fisheries Science Center). 2001b. Northeast Fisheries Science Center. 2001. Report of the 33rd Northeast Regional Stock Assessment Workshop (33rd SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments NMFS NEFSC Ref. Doc. 01-18. 281 p.
- NEFSC (Northeast Fisheries Science Center). 2002a. Final report of the Working Group on re-evaluation of biological reference points for New England groundfish. NMFS NEFSC Ref. Doc. 02-04. 123 p.
- NEFSC (Northeast Fisheries Science Center). 2002b. Assessment of 20 Northeast groundfish stocks through 2001: a report of the Groundfish Assessment Review Meeting (GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts. October 8-11, 2002. NMFS NEFSC Ref. Doc. 02-16. 521 p.
- NEFSC (Northeast Fisheries Science Center). 2005. Assessment of 19 Northeast groundfish stocks through 2004. 2005 Groundfish Assessment Review Meeting (2005 GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts. August 15-19, 2005. NMFS NEFSC Ref. Doc. 05-13. 508 p.
- NEFSC (Northeast Fisheries Science Center). 2008. Assessment of 19 Northeast groundfish stocks through 2007. Report of the 3<sup>rd</sup> Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts. August 4-8, 2005. NMFS NEFSC Ref. Doc. 08-15. 884 p.
- NEFSC (Northeast Fisheries Science Center). 2012a. 53rd Northeast Regional Stock Assessment Workshop (53rd SAW) Assessment Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 12-05; 559 p.
- NEFSC (Northeast Fisheries Science Center). 2012b. Establishing discard mortality rates for Atlantic cod stock assessments using a modified Delphi technique. Final Report of the Cod Discard Mortality Working Group. July 24, 2012. 23 p.

- NEFSC (Northeast Fisheries Science Center). 2012c. Utility of Catch and Landings Per Unit of Fishing Effort (CPUE and LPUE) in Gulf of Maine and Georges Banks cod Stock Assessments. Draft Report of the Cod Catch Per Unit Effort (CPUE) Working Group. August 21, 2012. 14 p.
- NMFS (National Marine Fisheries Service). 2012. MRFSS/MRIP Calibration Workshop Adhoc Working Group Report. May 16, 2012. 12 p.
- O'Boyle B, Francis C, Hall N, Klaer N. 2012. Stock Assessment Review Committee (SARC) 54 Panel Report. June 5-9, 2012. Woods Hole, MA. 45 p.
- O'Brien L, Burnett J, Mayo RK. 1993. Maturation of Nineteen Species of Finfish off the Northeast Coast of the United States, 1985-1990. NOAA Tech. Rep. NMFS 113: 66 p.
- O'Brien L, Esteves C. 2001. Update Assessment of American plaice in the Gulf of Maine-Georges Bank Region for 2000. NMFS NEFSC Ref. Doc. 01-02. 114 p.
- O'Brien L, Lough RG, Mayo RK, Junt JJ. 2005. Gulf of Maine and Georges Bank (NAFO Subareas 5 and 6). In Brander K. Spawning and life history information for North Atlantic cod sotcks. ICES Cooperative Research Report No. 274. 162 p.
- Palmer MC, Wigley SE. 2007. Validating the stock apportionment of commercial fisheries landings using positional data from Vessel Monitoring Systems (VMS). NMFS NEFSC Ref. Doc. 07-22; 35 p.
- Palmer MC, O'Brien L, Wigley S, Mayo R, Rago P, Hendrickson L. 2008. A brief overview of discard estimation methods where observer coverage is unavailable. Groundfish Assessment Review Meeting (GARM) Reference Points Meeting. April 29 – May 2, 2008. Working Paper 4.5. 13 p.
- Palmer MC, Wigley SE. 2009. Using positional data from vessel monitoring systems to validate the logbook-reported area fished and the stock allocation of commercial fisheries landings. N. Amer. J. Fish. Manag. 29:928-942.
- Palmer MC, Wigley SE. 2012. Using positional data from vessel monitoring systems to validate the logbook-reported area fished and the stock allocation of commercial fisheries landings, 2004-2011. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 1. 57 p.
- Palmer MC. 2012a. A review of factors affecting the mortality of discarded Atlantic cod (*Gadus morhua*). SAW 55 Data Meeting. August 27-31, 2012. Working Paper 2. 44 p.
- Palmer MC. 2012b. Commercial catch-per-unit-effort (CPUE) indices for Gulf of Maine Atlanic cod (*Gadus morhua*). SAW 55 Data Meeting. August 27-31, 2012. Working Paper 9. 89 p.
- Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer.

39(2):175-192.

- Penttila JA, Gifford VM. 1976. Growth and mortality rates for cod from the Georges Bank and Gulf of Maine areas. International Commission for the Northwest Atlantic Fisheries Research Bulletin. 12:29-36.
- Pope JA, Margetts AR, Hamley JM, Aykuz EF. 1966. Manual of methods for fish stock assessment Part III: Selectivity of fishing gear. FAO Fish. Tech. Pap. (41) Rev. 1.
- Puvanendran, V., B.J. Laurel and J. A. Brown. 2008. Cannibalism of Atlantic cod Gadus morhua larvae and juveniles on first – week larvae. Aquatic Biology. 2: 113 – 118.
- Restrepo VR, Ortiz de Urbina J, Fromentin JM, Arrizabalaga H. 2007. Estimates of selectivity for eastern Atlantic bluefin tuna from catch curves. Col. Vol. Sci. Pap. ICCAT 60:937-348.
- Richardson, DE, Palmer MC, Smith B. 2012. The relationship of forage fish abundance to aggregations of Gulf of Maine Atlantic cod (*Gadus morhua*) and possible implications for catch-per-unit-effort indices. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 4. 41 p.
- Rivard D, 1980. APL programs for stock assessment. Can. Tech. Rep. Fish. Aquat. Sci. 953: 103 p.
- Rivard D, 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091. 146 p.
- Robson DS, Chapman DG. 1961. Catch curves and mortality rates. Trans. Am. Fish. Soc. 90:181-189.
- Rowe S, Hutching JA, Bekkevold D, Rakitin A. 2004. Depensation, probability of fertilization, and the mating system of Atlantic cod (*Gadus morhua L*.). ICES Journal of Marine Science, 61: 1144 1150.
- SARC 55 (55<sup>th</sup> Stock Assessment Review Committee). 2012. 55<sup>th</sup> Stock Assessment Review Committee (SARC) Panel Summary Report. Available from: http://www.nefsc.noaa.gov/saw/saw55/crd1301.pdf.
- SAW 55 WG (55<sup>th</sup> Stock Assessment Workshop Working Group). 2012a. Report of the Data Meeting. SAW/SARC 55 Working Group. August 27-31, 2012. 18 pp.
- SAW 55 WG (55<sup>th</sup> Stock Assessment Workshop Working Group). 2012b. Report of the Models Issues Meeting. SAW/SARC 55 Working Group. October 15-19, 2012. 19 pp.
- SAW 55 WG (55<sup>th</sup> Stock Assessment Workshop Working Group). 2012c. Report of the Modeling and Reference Points Meeting. SAW/SARC 55 Working Group. 22 pp.
- Serchuk FM, Wigley SE. 1986. Assessment and status of the Georges Bank and Gulf of Maine Atlantic cod stocks 1986. NMFS NEFSC Ref. Doc. 86-12. 84 p.

- Serchuk FM, Wigley SE. 1992. Assessment and Management of the Georges Bank Cod Fishery: An Historical Evaluation. J. Northw. Atl. Fish. Sci. 13: 25-52.
- Serchuk FM, Grosslein MD, Lough RG, Mountain DG, O'Brien L. 1994. Fishery and environmental factors affecting trends and fluctuations in the Georges Bank and Gulf of Maine Atlantic cod stocks – an overview. ICES Mar. Sci. Symp. 198:77-109.
- Sherman SA, Stepanek K, Sowles J. 2005. Maine New Hampshire Inshore Groundfish Trawl Survey: Procedures and Protocols. Available from: <u>http://www.maine.gov/dmr/rm/trawl/reports/proceduresandprotocols.pdf</u>. 42 p.
- Siceloff L, Howell H. 2012. Fine-scale temporal and spatial distributions of Atlantic cod (Gadus morhua) on a western Gulf of Maine spawning ground. Fish. Res. *In press* (http://dx.doi.org/10.1016/j.fishres.2012.04.001).
- Smith BE, Link JS. 2010. The trophic dynamics of 50 finfish and 2 squid species on the northeast US continental shelf. NOAA Tech. Memo. NMFS-NE-216. 640 p.
- Tallack S. 2007. A description of tagging data from the Northeast Regional Cod Tagging Program (WPA3A) and preliminary applications of weighting and mixing analysis (WP3C). Groundfish Assessment Review Meeting (GARM) Data Meeting. October 29-November 2, 2007. Working Paper 3a and c. 17 p.
- Tallack S. 2006. Final Report of the Northeast Regional Cod Tagging Program. Submitted to the National Marine Fisheries Service. Contract No. EA133F-03-CN-0016. 100 p.
- Tallack S. 2009. Proceedings from a workshop to identify future research priorities for cod tagging in the Gulf of Maine. NMFS NEFSC Ref. Doc. 09-09. 76 p.
- Terceiro M. 2012. Modeling of NEFSC trawl survey indices for Gulf of Maine Atlantic cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 7. 21 p.
- Waring G. 2012. Observations on marine mammals in the Gulf of Maine area. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 19.
- Wigley, S.E. 1996. The Lorenz curve method applied to NEFSC bottom trawl survey data. NMFS NEFSC Ref. Doc. 96-05f. 11 p.
- Wigley SE, McBride HM, McHugh NJ. 2003. Length-weight relationships for 74 fish species collected during NEFSC research vessel bottom trawl surveys, 1992-9. NOAA Tech Memo NMFS NE 171. 26 p.
- Wigley SE, Rago PJ, Sosebee KA, Palka DL. 2007. The Analytic Component to the Standardized Bycatch Reporting Methodology Omnibus Amendment: Sampling Design, and Estimation of Precision and Accuracy (2nd Edition). NMFS NEFSC Ref. Doc. 07-09. 156 p.
- Wigley SE, Hersey P, Palmer JE. 2008. A description of the allocation procedure applied to the 1994 to 2007 commercial landings data NMFS NEFSC Ref. Doc. 08-18. 61 p.

- Wigley SE, Palmer MC, Legault C. 2012. A comparison of discard rates derived from 2011 at-sea monitoring and observer trips. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 3. 44 p.
- Wileman DA, Ferro RST, Fonteye R, Millar RB (eds.). 1996. Manual of methods of measuring the selectivity of towed fishing gears. ICES Cooperative Research Report. No. 215.
- Wood SA. 2001. <u>Report to MERI:Summary of Harbor Seal (*Phoca vitulina concolor*) Food <u>Habits in Mid-Coast Maine: Summer 2000</u>, Marine Environ. Research Institute, Blue Hill, ME, 12 pp.</u>
- Wood A. 2012. Standardized LPUE for Gulf of Maine and George's Bank cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 11. 11 p.

## Tables

Table A.1. Summary of model inputs and formulations used to assess the Gulf of Maine Atlantic cod stock over the last eleven years. *Notes:* <sup>1</sup>1999-2000 commercial landings raised to account for commercial discards, <sup>2</sup>1999-2001 commercial landings raised to account for commercial discards, <sup>3</sup>Not known with certainty that MADMF time series included the spring 2002 survey, <sup>4</sup>1999-2004 commercial landings were raised to account for commercial discards.

| Year | Meeting  | Model | Starting year | Catch data series      |                        |                          |                          | Survey series |                        |                    | Plus  |
|------|----------|-------|---------------|------------------------|------------------------|--------------------------|--------------------------|---------------|------------------------|--------------------|-------|
|      |          |       |               | Commercial<br>landings | Commercial<br>discards | Recreational<br>landings | Recreational<br>discards | NEFSC         | MADMF                  | Commercial<br>LPUE | group |
| 2001 | SAW 33   | VPA   | 1982          | 1982-2000 <sup>1</sup> |                        | 1982-2000                |                          | 1982-2000     | 1982-2000              | 1982-1993          | 7+    |
| 2002 | GARM I   | VPA   | 1982          | 1982-2001 <sup>2</sup> |                        | 1982-2001                |                          | 1982-2002     | 1982-2002 <sup>3</sup> | 1982-1993          | 7+    |
| 2005 | GARM II  | VPA   | 1982          | 1982-2004 <sup>4</sup> |                        | 1982-2004                |                          | 1982-2005     | 1982-2005              | 1982-1993          | 7+    |
| 2008 | GARM III | VPA   | 1982          | 1982-2007              | 1999-2007              | 1982-2007                |                          | 1982-2008     | 1982-2008              | 1982-1993          | 11+   |
| 2011 | SARC 53  | ASAP  | 1982          | 1982-2010              | 1982-2010              | 1982-2010                | 1982-2010                | 1982-2010     | 1982-2010              |                    | 9+    |
Table A.2. Summary of the results of the Gulf of Maine Atlantic cod assessments over the last eleven years and the resulting stock status determinations based on the existing biological reference points at the time of the assessment. *Notes:*  ${}^{1}SR$  (*BH*) = *Beverton-Holt stock recruitment;*  ${}^{2}Stock$  status was determined using a different basis in 2001 (total biomass, 25% of BMSY; Applegate et al. 1998);  ${}^{3}YPR$  = Yield per recruit, based on 5-year averages of weights-at-age, maturity-at-age and selectivity-at-age,  $F_{MSY}=F_{40\%}$ .

| Year | Meeting  | SSB (mt) <sub>terminal</sub> | F <sub>terminal</sub> | F note            | Reference point<br>basis | SSBmsy (mt)                         | Fmsy  | MSY (mt) | Stock status                                         |
|------|----------|------------------------------|-----------------------|-------------------|--------------------------|-------------------------------------|-------|----------|------------------------------------------------------|
| 2001 | SAW 33   | 13,100 (B=24,400)            | 0.73                  | Favg4-5           | $SR(BH)^{1}$             | 8,000 (B <sub>MSY</sub> =90,300 mt) | 0.230 | N/A      | Not overfished, overfishing is occuring <sup>2</sup> |
| 2002 | GARM I   | 22,040                       | 0.47                  | Favg4-5           | $SR(BH)^{1}$             | 82,830                              | 0.225 | 16,600   | Overfished, overfishing is occuring                  |
| 2005 | GARM II  | 18,800                       | 0.63                  | Favg4-5           | $SR(BH)^{1}$             | 82,830                              | 0.225 | 16,600   | Overfished, overfishing is occuring                  |
| 2008 | GARM III | 33,877                       | 0.46                  | Favg5-7           | YPR <sup>3</sup>         | 58,248                              | 0.237 | 10,014   | Not overfished, overfishing is occuring              |
| 2011 | SARC 53  | 11,868                       | 1.14                  | F <sub>mult</sub> | YPR <sup>4</sup>         | 61,218                              | 0.200 | 10,392   | Overfished, overfishing is occuring                  |

Table A.3. Summary of major regulatory actions that have affected the Gulf of Maine Atlantic cod fishery since 1973. For a more detailed summary of recent regulatory actions see Nies (2011).

| <b>D</b> ( | Regulatory Cod end minimum Minimum fish size (in) |                           |                   | B C LATEN        | CI.                                                                  |                                               |                                                          |                                                            |  |
|------------|---------------------------------------------------|---------------------------|-------------------|------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|--|
| Date       | action                                            | mesh size (in)            | Commercial        | Recreational     | Commercial trip limits                                               | Recreational trip limits                      | Closures                                                 | Differential DAS Counting                                  |  |
| 01/01/73   |                                                   | 4.5                       | 4                 | ???              |                                                                      |                                               |                                                          |                                                            |  |
| 01/01/77   | Groundfish FMP                                    | 5.125                     | 16                | 5 16             |                                                                      |                                               |                                                          |                                                            |  |
| 01/01/82   |                                                   |                           | 17                | 7 15             |                                                                      |                                               |                                                          |                                                            |  |
| 01/01/83   |                                                   | 5.5                       |                   |                  |                                                                      |                                               |                                                          |                                                            |  |
| 01/01/89   |                                                   |                           | 19                | ) 19             |                                                                      |                                               |                                                          |                                                            |  |
| 04/01/92   | Shrimp trawl fisher                               | ry: Nordmore grate regula | ation, groundfish | bycatch prohibit | ed                                                                   | -<br>-                                        | · · · · · · · · · · · · · · · · · · ·                    |                                                            |  |
| 05/01/94   | Amendment 5                                       | 6.0                       |                   |                  |                                                                      |                                               |                                                          | DAS monitory w/ reduction schedule,<br>mandatory reporting |  |
| 05/01/96   | Amendment 7                                       | 0.0                       |                   | 20               |                                                                      |                                               |                                                          | Accelerated DAS reduction                                  |  |
| 05/01/90   | / inchancine /                                    |                           |                   | 20               | 1000 lbs day for first 4 days then 1500                              |                                               |                                                          | Received Dris reduction                                    |  |
| 05/01/97   | Framework 20                                      |                           |                   | 21               | lbs/day; no overall cap but RA had authority<br>to reduce limit      |                                               |                                                          |                                                            |  |
| 05/01/08   | Emmerals 25                                       |                           |                   |                  | 700 lbs/day; no overall cap but RA had                               |                                               | WGOM (Jeffreys Ledge, Stellwagen                         |                                                            |  |
| 05/01/98   | Flamework 25                                      |                           |                   |                  | 400 lbs/day: no overall can but PA had                               |                                               | Balik)                                                   |                                                            |  |
| 06/25/08   |                                                   |                           |                   |                  | 400 los/day, no overall cap but KA had                               |                                               |                                                          |                                                            |  |
| 02/01/99   | Framework 26                                      |                           |                   |                  | authority to reduce influ                                            |                                               | Additional month-block closures for<br>February to April |                                                            |  |
| 05/01/99   | Framework 27                                      | 6.5 square/6.0 diamond    |                   |                  | 200 lbs/day: no overall cap                                          |                                               |                                                          |                                                            |  |
| 05/28/99   |                                                   |                           |                   |                  | 30 lbs/day                                                           |                                               |                                                          |                                                            |  |
| 08/03/99   | Interim rule                                      |                           |                   |                  | 100 lbs/day, 500 lbs max per trip;<br>modifications to running clock |                                               |                                                          |                                                            |  |
| 01/05/00   | Framework 31                                      |                           |                   |                  | 400 lbs/day, 4000 lb/trip                                            |                                               | Additional month-block closures for<br>February          |                                                            |  |
| 06/01/00   | Framework 33                                      | 6.5 square/6.5 diamond    |                   |                  | 100 105 443, 1000 10 449                                             |                                               | reorairy                                                 |                                                            |  |
| 11/01/00   | rune work 55                                      | 0.5 Square, 0.5 damond    |                   |                  |                                                                      |                                               | One month closure of Cashes Ledge                        |                                                            |  |
| 11/01/00   |                                                   |                           |                   |                  |                                                                      |                                               | Additional month-block closures for                      |                                                            |  |
|            |                                                   |                           |                   |                  |                                                                      |                                               | May June 2002: Cashas Ladra                              |                                                            |  |
| 05/01/02   | Intorim rulo                                      |                           | 2                 |                  | 500 lb/day, 4000 lb/trip                                             | 10 and/norman                                 | Closed year round                                        | 20% raduation in DAS                                       |  |
| 05/01/02   | Revised interim                                   |                           | 24                | 23               | 500 io/day, 4000 io/d ip                                             | 10 cou/person                                 | Closed year round                                        | 2070 reduction in DAS                                      |  |
| 06/01/02   | rulo                                              |                           | 10                |                  |                                                                      |                                               |                                                          |                                                            |  |
| 00/01/02   | Func                                              |                           | 2                 | 2                |                                                                      | 5 10 and/namon (cancome)                      |                                                          |                                                            |  |
| 06/01/02   | Emergency rule                                    |                           | 22                | 2                |                                                                      | 5 - To cod person (seasonal)                  | WCOM Cashar Ladar and aslina                             |                                                            |  |
| 05/01/04   | Amandmant 13                                      |                           |                   |                  | 800 lb/day, 4000 lb/trip                                             |                                               | closures continued                                       | Further reduction in DAS                                   |  |
| 05/01/04   | Emorgonou rulo                                    |                           |                   |                  | 600 lb/day, 4000 lb/trip                                             |                                               | closures continued                                       | Turtier reduction in DAS                                   |  |
| 05/01/00   | Emergency rule                                    |                           |                   |                  | 000 lo/day, 4000 lo/l lp                                             | Baggaggian prohibitad Mayambar to             |                                                          |                                                            |  |
| 11/22/06   | FW 42                                             |                           |                   | 24               | 800 lb/day, 4000 lb/trip                                             | March 31st                                    |                                                          | DAS counted 2:1 in inshore GOM                             |  |
| 05/01/09   | Interim rule                                      |                           |                   |                  |                                                                      | Possession prohibited November to<br>April 15 |                                                          |                                                            |  |
|            |                                                   |                           |                   |                  | None for sector vessels, varies in-season for                        |                                               |                                                          | DAS counted in 24 -hour blocks; no                         |  |
|            |                                                   |                           |                   |                  | common pool, handgear A and B vessels (50                            | 10 cod/person, Possession                     | Some changes to rolling closures for                     | differential DAS counting except as                        |  |
| 05/01/10   | Amendment 16                                      |                           |                   |                  | lb/trip - 800 lb/day, 4000 lb/trip)                                  | prohibited November to April 15               | sector vessels                                           | AMs                                                        |  |
| 05/01/22   | F 1.40                                            |                           |                   |                  |                                                                      |                                               | Whaleback closure April 1 - June 30                      |                                                            |  |
| 05/01/11   | rramework 45                                      |                           |                   |                  |                                                                      | Orad/manage Descension at 13 % 1              | (commercial and recreational)                            |                                                            |  |
| 0.5/01/25  |                                                   |                           |                   |                  |                                                                      | 9 courperson, Possession prohibited           |                                                          |                                                            |  |
| 05/01/12   | Framework 47                                      |                           |                   | 19               |                                                                      | November to April 15                          |                                                          |                                                            |  |

Table A.4. Preliminary estimates of updated Atlantic cod gutted-to-live weight conversion factors summarized by quarter, sex and maturity stage. Raw data were provided by the Northeast Fisheries Science Center's Cooperative Research Program (C. Sarro pers. comm.).

| Class variable | 2                | N   | Mean  | Standard<br>Deviation | Coefficient of<br>Variation | Median                  | 5th Percentile | 95th Percentile |
|----------------|------------------|-----|-------|-----------------------|-----------------------------|-------------------------|----------------|-----------------|
| All            |                  | 422 | 1.200 | 0.091                 | 0.076                       | 1.190                   | 1.077          | 1.381           |
| Quartar        | 1                | 123 | 1.170 | 0.076                 | 0.065                       | 1.154                   | 1.077          | 1.308           |
|                | 2                | 179 | 1.191 | 0.099                 | 0.083                       | 1.172                   | 1.070          | 1.381           |
| Quarter        | 3                | 120 | 1.244 | 0.077                 | 0.062                       | 1.235                   | 1.144          | 1.387           |
|                | 4                | 0   |       |                       |                             |                         |                |                 |
| Corr           | Male             | 98  | 1.172 | 0.085                 | 0.073                       | 1.157                   | 1.070          | 1.323           |
| Sex            | Female           | 84  | 1.214 | 0.110                 | 0.091                       | 1.157 1.07   1.189 1.07 | 1.077          | 1.415           |
|                | Immature         | 5   | 1.125 | 0.086                 | 0.076                       | 1.125                   | 1.050          | 1.263           |
|                | Developing       | 35  | 1.209 | 0.072                 | 0.059                       | 1.200                   | 1.107          | 1.333           |
|                | Ripe             | 19  | 1.241 | 0.098                 | 0.079                       | 1.222                   | 1.103          | 1.488           |
| Maturity       | Ripe and running | 11  | 1.193 | 0.068                 | 0.057                       | 1.174                   | 1.111          | 1.333           |
|                | Spent            | 7   | 1.119 | 0.033                 | 0.030                       | 1.133                   | 1.077          | 1.160           |
|                | Resting          | 85  | 1.154 | 0.063                 | 0.054                       | 1.143                   | 1.077          | 1.267           |
|                | Unknown          | 1   | 1.222 |                       |                             | 1.222                   | 1.222          | 1.222           |

Table A.5. Summary of the number of Atlantic cod otiliths sampled from Northeast Fisheries Science Center (NEFSC) bottom trawl surveys from 1970 to 2012 by stock and age. Otiliths that have not been aged are not included in this summary.

| Age | <b>Georges Bank</b> | Gulf of Maine |
|-----|---------------------|---------------|
| 0   | 372                 | 188           |
| 1   | 2353                | 1378          |
| 2   | 4112                | 2544          |
| 3   | 3919                | 2832          |
| 4   | 2813                | 2462          |
| 5   | 1556                | 1420          |
| 6   | 781                 | 782           |
| 7   | 369                 | 378           |
| 8   | 190                 | 171           |
| 9   | 79                  | 116           |
| 10  | 54                  | 59            |
| 11  | 28                  | 33            |
| 12  | 14                  | 30            |
| 13  | 4                   | 16            |
| 14  | 6                   | 18            |
| 15  | 3                   | 3             |
| 16  | 1                   | 3             |
| 17  |                     | 1             |
| 18  | 1                   |               |

Table A.6. Number of Atlantic cod maturity samples taken from the Northeast Fisheries Science Center (NEFSC) spring survey from 1970 to 2012 by year.

| Year | Unknown | Male | Female | Total |
|------|---------|------|--------|-------|
| 1970 | 6       | 41   | 51     | 98    |
| 1971 |         | 23   | 40     | 63    |
| 1972 | 2       | 31   | 50     | 83    |
| 1974 | 1       | 35   | 66     | 102   |
| 1975 | 4       | 42   | 75     | 121   |
| 1976 | 3       | 75   | 71     | 149   |
| 1977 |         | 70   | 88     | 158   |
| 1978 |         | 37   | 64     | 101   |
| 1979 | 13      | 96   | 119    | 228   |
| 1980 |         | 35   | 56     | 91    |
| 1981 | 5       | 112  | 106    | 223   |
| 1982 | 4       | 74   | 91     | 169   |
| 1983 | 2       | 77   | 66     | 145   |
| 1984 | 1       | 40   | 65     | 106   |
| 1985 |         | 47   | 81     | 128   |
| 1986 | 1       | 44   | 56     | 101   |
| 1987 | 2       | 77   | 46     | 125   |
| 1988 | 32      | 64   | 59     | 155   |
| 1989 | 3       | 68   | 74     | 145   |
| 1990 | 1       | 56   | 57     | 114   |
| 1991 | 1       | 62   | 70     | 133   |
| 1992 | 1       | 51   | 61     | 113   |
| 1993 |         | 45   | 63     | 108   |
| 1994 | 1       | 61   | 45     | 107   |
| 1995 |         | 39   | 36     | 75    |
| 1996 |         | 58   | 60     | 118   |
| 1997 |         | 60   | 63     | 123   |
| 1998 |         | 73   | 55     | 128   |
| 1999 | 5       | 80   | 71     | 156   |
| 2000 | 9       | 78   | 70     | 157   |
| 2001 | 1       | 46   | 79     | 126   |
| 2002 | 3       | 121  | 135    | 259   |
| 2003 |         | 156  | 121    | 277   |
| 2004 | 2       | 23   | 40     | 65    |
| 2005 |         | 52   | 52     | 104   |
| 2006 | 7       | 63   | 59     | 129   |
| 2007 |         | 85   | 127    | 212   |
| 2008 | 1       | 60   | 79     | 140   |
| 2009 | 6       | 148  | 229    | 383   |
| 2010 |         | 118  | 130    | 248   |
| 2011 |         | 46   | 58     | 104   |
| 2012 | 8       | 152  | 177    | 337   |

Table A.7. Gulf of Maine Atlantic cod female maturity ogive. The time series average incorporated data collected the Northeast Fisheries Science Center (NEFSC) spring survey between 1970 and 2012.

| Age (years) | Proportion<br>Mature | Lower 95% CI | Upper 95% CI |
|-------------|----------------------|--------------|--------------|
| 0           | 0.03                 | 0.02         | 0.03         |
| 1           | 0.09                 | 0.08         | 0.11         |
| 2           | 0.29                 | 0.26         | 0.31         |
| 3           | 0.61                 | 0.59         | 0.64         |
| 4           | 0.86                 | 0.84         | 0.88         |
| 5           | 0.96                 | 0.95         | 0.97         |
| 6           | 0.99                 | 0.99         | 0.99         |
| 7           | 1.00                 | 1.00         | 1.00         |
| 8           | 1.00                 | 1.00         | 1.00         |
| 9           | 1.00                 | 1.00         | 1.00         |
| 10          | 1.00                 | 1.00         | 1.00         |
| 11          | 1.00                 | 1.00         | 1.00         |

| Year | Recreational discards<br>(mt) | Recreational landings (mt) | Commercial discards (mt) | Commercial landings (mt) | Total catch<br>(mt) |
|------|-------------------------------|----------------------------|--------------------------|--------------------------|---------------------|
| 1982 | 8.1                           | 2816.7                     | 805.4                    | 13465.9                  | 17096.2             |
| 1983 | 17.6                          | 1772.8                     | 829.1                    | 13867.4                  | 16486.8             |
| 1984 | 16.6                          | 1266.8                     | 858.9                    | 10725.3                  | 12867.6             |
| 1985 | 16.9                          | 2765.9                     | 962.9                    | 10645.3                  | 14390.9             |
| 1986 | 10.1                          | 1928.4                     | 964.2                    | 9669.6                   | 12572.4             |
| 1987 | 48.0                          | 3547.2                     | 884.0                    | 7526.2                   | 12005.4             |
| 1988 | 13.5                          | 1688.5                     | 682.9                    | 7948.2                   | 10333.2             |
| 1989 | 76.1                          | 1957.2                     | 786.9                    | 10550.7                  | 13370.8             |
| 1990 | 66.7                          | 2246.7                     | 1560.6                   | 15439.7                  | 19313.7             |
| 1991 | 68.0                          | 2287.2                     | 663.9                    | 17959.0                  | 20978.1             |
| 1992 | 35.5                          | 623.6                      | 668.6                    | 11019.4                  | 12347.0             |
| 1993 | 101.9                         | 1011.9                     | 479.8                    | 8366.7                   | 9960.4              |
| 1994 | 100.6                         | 721.7                      | 207.5                    | 8030.2                   | 9060.1              |
| 1995 | 96.2                          | 627.2                      | 235.4                    | 6606.8                   | 7565.6              |
| 1996 | 81.0                          | 498.6                      | 157.2                    | 7019.8                   | 7756.7              |
| 1997 | 58.8                          | 236.3                      | 87.1                     | 5432.1                   | 5814.3              |
| 1998 | 72.2                          | 353.1                      | 78.5                     | 4074.3                   | 4578.1              |
| 1999 | 71.7                          | 577.2                      | 1021.9                   | 1407.4                   | 3078.1              |
| 2000 | 137.6                         | 967.1                      | 946.1                    | 3771.8                   | 5822.7              |
| 2001 | 227.5                         | 1967.6                     | 1545.4                   | 4314.4                   | 8054.9              |
| 2002 | 286.9                         | 1254.8                     | 1329.1                   | 3638.3                   | 6509.1              |
| 2003 | 282.4                         | 1607.7                     | 741.0                    | 3865.6                   | 6496.7              |
| 2004 | 201.4                         | 1150.9                     | 631.1                    | 3782.3                   | 5765.7              |
| 2005 | 267.3                         | 1346.9                     | 269.5                    | 3557.6                   | 5441.3              |
| 2006 | 194.0                         | 702.3                      | 342.3                    | 3029.4                   | 4268.0              |
| 2007 | 316.9                         | 1042.2                     | 178.4                    | 3989.8                   | 5527.3              |
| 2008 | 315.4                         | 1267.2                     | 349.2                    | 5443.5                   | 7375.2              |
| 2009 | 292.4                         | 1357.1                     | 752.3                    | 5952.9                   | 8354.7              |
| 2010 | 384.5                         | 1758.2                     | 170.8                    | 5356.4                   | 7669.9              |
| 2011 | 334.2                         | 1799.1                     | 98.8                     | 4597.9                   | 6830.0              |

Table A.8. Estimates of Gulf of Maine of Atlantic cod catch (mt) by fleet (commercial, recreational) and disposition (landed, discarded) from 1982 to 2011.

Table A.9. Historical estimates of Gulf of Maine of Atlantic cod catch (mt) by fleet (commercial, recreational) and disposition (landed, discarded) from 1932 to 1981. *Estimates of both United States (US) and foreign fleet commercial landings are shown. No estimates of recreational catch are available prior to 1981 and no estimates of commercial discards are available pre-1982.* 

| Year | US recreational discards (mt) | US recreational catch (mt) | US commercial<br>discards (mt) | US commercial<br>landings (mt) | Foreign landings<br>(mt) | Total catch (mt) |
|------|-------------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------|------------------|
| 1932 |                               |                            |                                | 5,858.0                        |                          | 5,858.0          |
| 1933 |                               |                            |                                | 7,025.0                        |                          | 7,025.0          |
| 1934 |                               |                            |                                | 11.619.0                       |                          | 11.619.0         |
| 1935 |                               |                            |                                | 9.679.0                        |                          | 9.679.0          |
| 1936 |                               |                            |                                | 7.442.0                        |                          | 7.442.0          |
| 1937 |                               |                            |                                | 7.432.0                        |                          | 7.432.0          |
| 1938 |                               |                            |                                | 7.547.0                        |                          | 7.547.0          |
| 1939 |                               |                            |                                | 5.504.0                        |                          | 5.504.0          |
| 1940 |                               |                            |                                | 5.836.0                        |                          | 5.836.0          |
| 1941 |                               |                            |                                | 6 124 0                        |                          | 6 124 0          |
| 1942 |                               |                            |                                | 6 679 0                        |                          | 6 679 0          |
| 1943 |                               |                            |                                | 9.397.0                        |                          | 9.397.0          |
| 1944 |                               |                            |                                | 10 516 0                       |                          | 10 516 0         |
| 1945 |                               |                            |                                | 14,532.0                       |                          | 14,532.0         |
| 1946 |                               |                            |                                | 9 248 0                        |                          | 9 248 0          |
| 1947 |                               |                            |                                | 6 916 0                        |                          | 6 916 0          |
| 1948 |                               |                            |                                | 7 462 0                        |                          | 7 462 0          |
| 1940 |                               |                            |                                | 7,402.0                        |                          | 7,402.0          |
| 1949 |                               |                            |                                | 5,062,0                        |                          | 5 062 0          |
| 1950 |                               |                            |                                | 3,567.0                        |                          | 3 567 0          |
| 1951 |                               |                            |                                | 3,507.0                        |                          | 3,011.0          |
| 1952 |                               |                            |                                | 3,011.0                        |                          | 3,011.0          |
| 1955 |                               |                            |                                | 3,121.0                        |                          | 3,121.0          |
| 1954 |                               |                            |                                | 3,411.0                        |                          | 3,411.0          |
| 1955 |                               |                            |                                | 2 603 0                        |                          | 2 602 0          |
| 1950 |                               |                            |                                | 2,093.0                        |                          | 2,095.0          |
| 1937 |                               |                            |                                | 2,502.0                        |                          | 2,302.0          |
| 1958 |                               |                            |                                | 4,070.0                        |                          | 4,070.0          |
| 1939 |                               |                            |                                | 3,793.0                        |                          | 2,149.0          |
| 1900 |                               |                            |                                | 3,446.0                        |                          | 3,440.0          |
| 1901 |                               |                            |                                | 3,210.0                        |                          | 3,210.0          |
| 1902 |                               |                            |                                | 2,969.0                        |                          | 2,969.0          |
| 1903 |                               |                            |                                | 2,393.0                        | 25.0                     | 2,595.0          |
| 1964 |                               |                            |                                | 3,21/.4                        | 25.0                     | 3,242.4          |
| 1965 |                               |                            |                                | 3,011.5                        | 148.0                    | 3,/39.3          |
| 1900 |                               |                            |                                | 5,841.1                        | 384.0                    | 4,225.1          |
| 196/ |                               |                            |                                | 5,526.6                        | 297.0                    | 5,823.6          |
| 1968 |                               |                            |                                | 6,076.0                        | 61.0                     | 0,137.0          |
| 1969 |                               |                            |                                | 7,828.4                        | 327.0                    | 8,155.4          |
| 1970 |                               |                            |                                | /,511./                        | 449.0                    | 7,960.7          |
| 19/1 |                               |                            |                                | 7,192.5                        | 282.0                    | 7,474.5          |
| 1972 |                               |                            |                                | 6,786.1                        | 141.0                    | 6,927.1          |
| 1973 |                               |                            |                                | 6,061.1                        | 77.0                     | 6,138.1          |
| 1974 |                               |                            |                                | 7,425.4                        | 125.0                    | 7,550.4          |
| 1975 |                               |                            |                                | 8,676.1                        | 112.0                    | 8,788.1          |
| 1976 |                               |                            |                                | 9,877.7                        | 16.0                     | 9,893.7          |
| 1977 |                               |                            |                                | 11,992.8                       |                          | 11,992.8         |
| 1978 |                               |                            |                                | 11,890.1                       |                          | 11,890.1         |
| 1979 |                               |                            |                                | 10,972.3                       |                          | 10,972.3         |
| 1980 |                               |                            |                                | 12,514.9                       |                          | 12,514.9         |
| 1981 | 18.8                          | 4,111.5                    |                                | 12,381.6                       |                          | 16,512.0         |

Table A.10. Coefficients of variation (CV) associated with the landings allocation procedure (AA tables, Wigley et al. 2008) for Gulf of Maine Atlantic cod commercial landings.

| Year | CV    |
|------|-------|
| 1994 | 0.003 |
| 1995 | 0.012 |
| 1996 | 0.003 |
| 1997 | 0.003 |
| 1998 | 0.003 |
| 1999 | 0.007 |
| 2000 | 0.003 |
| 2001 | 0.002 |
| 2002 | 0.003 |
| 2003 | 0.002 |
| 2004 | 0.003 |
| 2005 | 0.002 |
| 2006 | 0.002 |
| 2007 | 0.001 |
| 2008 | 0.001 |
| 2009 | 0.001 |
| 2010 | 0.003 |
| 2011 | 0.002 |

| Table A.11. Relative differences between VTR and VMS-based allocation of Gulf of Mai | ne |
|--------------------------------------------------------------------------------------|----|
| Atlantic cod by stock and year (from Palmer and Wigley 2012).                        |    |

| Veer | Stock |      |  |  |
|------|-------|------|--|--|
| Year | GBK   | GOM  |  |  |
| 2004 | 0.7   | -1.9 |  |  |
| 2005 | 2.2   | -5.0 |  |  |
| 2006 | 0.2   | -0.2 |  |  |
| 2007 | 0.8   | -0.8 |  |  |
| 2008 | 0.6   | -0.4 |  |  |
| 2009 | 1.0   | -0.6 |  |  |
| 2010 | 2.0   | -1.0 |  |  |
| 2011 | 2.0   | -1.0 |  |  |

Table A.12. Estimates of total United States landings of Gulf of Maine Atlantic cod associated with 'non-dealer' transactions from 1994 to 2011. These estimates are obtained from information reported on Vessel Trip Reports (VTRs).

| Year | Home<br>consumption<br>(mt) | Bait (mt) | LUMF (mt) | Total non-<br>dealer<br>transacations<br>(mt) | Total<br>commercial<br>landings (mt) | Percentage of<br>total dealer<br>landings (%) |
|------|-----------------------------|-----------|-----------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|
| 1994 | 0.9                         |           |           | 0.9                                           | 8030.2                               | 0.0                                           |
| 1995 | 3.5                         | 0.1       |           | 3.5                                           | 6606.8                               | 0.1                                           |
| 1996 | 8.3                         | 0.1       |           | 8.4                                           | 7019.8                               | 0.1                                           |
| 1997 | 3.2                         |           |           | 3.2                                           | 5432.1                               | 0.1                                           |
| 1998 | 3.3                         | 0.0       |           | 3.3                                           | 4074.3                               | 0.1                                           |
| 1999 | 4.0                         | 0.0       |           | 4.1                                           | 1407.4                               | 0.3                                           |
| 2000 | 5.3                         | 0.0       |           | 5.4                                           | 3771.8                               | 0.1                                           |
| 2001 | 6.7                         | 0.2       |           | 6.9                                           | 4314.4                               | 0.2                                           |
| 2002 | 6.6                         |           |           | 6.6                                           | 3638.3                               | 0.2                                           |
| 2003 | 6.3                         |           |           | 6.3                                           | 3865.6                               | 0.2                                           |
| 2004 | 4.0                         |           |           | 4.0                                           | 3782.3                               | 0.1                                           |
| 2005 | 3.1                         | 0.0       |           | 3.1                                           | 3557.6                               | 0.1                                           |
| 2006 | 2.4                         |           |           | 2.4                                           | 3029.4                               | 0.1                                           |
| 2007 | 1.6                         | 0.1       |           | 1.7                                           | 3989.8                               | 0.0                                           |
| 2008 | 2.0                         |           |           | 2.0                                           | 5443.5                               | 0.0                                           |
| 2009 | 1.2                         | 0.0       |           | 1.2                                           | 5952.9                               | 0.0                                           |
| 2010 | 3.5                         | 0.0       | 0.5       | 4.0                                           | 5356.4                               | 0.1                                           |
| 2011 | 0.7                         | 0.1       | 0.5       | 1.3                                           | 4597.9                               | 0.0                                           |

Table A.13. Total number of Gulf of Maine Atlantic cod biological samples taken from commercial landings by market category and year between 1969 and 2011.

|      |    | Scrod (0 | 814) |    | l  | Market | (0813) |    |    | Large ( | 0811) |     |       | Total langths | Sampling         |
|------|----|----------|------|----|----|--------|--------|----|----|---------|-------|-----|-------|---------------|------------------|
| Year |    | Quar     | ter  |    |    | Qua    | rte r  |    |    | Quar    | ter   |     | Total | (excludes     | intensity        |
|      | 1  | 2        | 3    | 4  | 1  | 2      | 3      | 4  | 1  | 2       | 3     | 4   | 1014  | unclassified) | (lengths/sample) |
| 1969 |    |          |      |    | ĺ  | ĺ      |        |    |    |         |       |     |       |               |                  |
| 1970 |    |          |      |    | 1  |        |        |    |    |         |       |     | 1     | 100           | 100.0            |
| 1971 |    |          |      |    |    |        |        |    |    |         |       |     |       |               |                  |
| 1972 |    |          |      |    |    |        |        |    |    |         |       |     |       |               |                  |
| 1973 |    |          |      |    |    |        |        |    |    |         |       |     |       |               |                  |
| 1974 | 1  |          |      |    |    |        |        | 1  |    |         |       |     | 2     | 203           | 101.5            |
| 1975 |    | 1        |      | 1  |    |        |        |    |    |         |       |     | 2     | 248           | 124.0            |
| 1976 |    |          |      |    |    |        |        |    |    |         |       |     |       |               |                  |
| 1977 | 1  | 1        | 3    | 3  |    | 1      | 2      | 1  |    | 1       | 1     |     | 14    | 2,525         | 180.4            |
| 1978 | 3  | 2        | 1    |    | 2  | 2      | 2      | 1  |    |         | 1     |     | 14    | 2,256         | 161.1            |
| 1979 | 1  |          | 1    | 2  |    | 1      | 2      | 1  |    |         |       |     | 8     | 755           | 94.4             |
| 1980 | 3  | 1        | 1    |    |    |        |        |    |    |         |       |     | 5     | 364           | 72.8             |
| 1981 | 1  | 1        | 1    | 3  |    |        | 1      | 3  |    |         | 1     |     | 11    | 1,189         | 108.1            |
| 1982 | 2  | 3        | 3    | 2  | 2  | 2      | 3      | 1  |    | 2       | 1     | 2   | 23    | 3,848         | 167.3            |
| 1983 | 3  | 3        | 3    | 3  | 3  | 3      | 3      | 1  | 1  | 2       | 2     | 2   | 29    | 5,241         | 180.7            |
| 1984 | 7  | 5        | 6    | 7  | 4  | 3      | 5      | 6  | 1  | 6       | 3     | 2   | 55    | 3,925         | 71.4             |
| 1985 | 5  | 6        | 7    | 5  | 9  | 6      | 7      | 4  | 7  | 5       | 3     | 6   | 70    | 5,284         | 75.5             |
| 1986 | 5  | 5        | 6    | 3  | 5  | 6      | 8      | 3  | 1  | 5       | 4     | 3   | 54    | 4,069         | 75.4             |
| 1987 | 5  | 4        | 3    | 4  | 4  | 5      | 3      | 5  | 4  | 2       | 3     | 1   | 43    | 3,188         | 74.1             |
| 1988 | 4  | 2        | 4    | 4  | 1  | 5      | 3      | 5  | 1  | 2       | 2     |     | 33    | 2,619         | 79.4             |
| 1989 | 3  | 3        | 4    | 3  | 4  | 2      | 5      | 4  | 2  | 1       | 1     | 1   | 33    | 2,718         | 82.4             |
| 1990 | 3  | 7        | 3    | 5  | 4  | 7      | 4      | 3  |    | 2       | 1     |     | 39    | 2,981         | 76.4             |
| 1991 | 2  | 10       | 4    | 4  | 5  | 11     | 12     | 3  |    | 3       | 3     | 1   | 58    | 4,676         | 80.6             |
| 1992 | 2  | 8        | 6    | 3  | 6  | 7      | 7      | 3  | 3  | 1       | 1     | 4   | 51    | 4,086         | 80.1             |
| 1993 | 3  | 3        | 3    | 1  | 1  | 2      | 4      | 1  | 1  | 1       | 2     | 1   | 23    | 1,686         | 73.3             |
| 1994 |    | 2        | 2    | 4  | 1  | 6      | 3      | 5  |    | 2       | 3     | 2   | 30    | 2,658         | 88.6             |
| 1995 | 4  | 3        | 2    | 4  | 2  | 8      | 2      | 2  |    | 3       |       | 1   | 31    | 2,557         | 82.5             |
| 1996 | 5  | 4        | 7    | 9  | 6  | 9      | 11     | 11 | 1  | 2       | 3     | 3   | 71    | 6,486         | 91.4             |
| 1997 | 7  | 13       | 3    | 10 | 12 | 11     | 10     | 9  | 2  | 8       | 2     | 2   | 89    | 7,559         | 84.9             |
| 1998 | 4  | 7        |      | 3  | 9  | 9      | 9      | 5  | 1  |         | 2     | 1   | 50    | 4,536         | 90.7             |
| 1999 | 6  |          |      |    | 3  | 1      | 1      |    | 2  |         |       |     | 13    | 1,073         | 82.5             |
| 2000 | 13 | 6        | 5    | 7  | 16 | 14     | 5      | 9  |    |         |       | 1   | 76    | 5,921         | 77.9             |
| 2001 | 4  | 4        | 4    | 7  | 4  | 10     | 8      | 16 | 2  | 15      | 18    | 20  | 112   | 7,117         | 63.5             |
| 2002 | 3  | 2        |      | 1  | 16 | 3      | 6      | 5  | 50 | 8       | 16    | 19  | 129   | 5,263         | 40.8             |
| 2003 | 5  | 1        | 17   | 8  | 14 | 8      | 25     | 19 | 50 | 34      | 34    | 33  | 248   | 11,479        | 46.3             |
| 2004 | 17 | 11       | 6    | 22 | 18 | 23     | 15     | 15 | 37 | 20      | 11    | 27  | 222   | 11,210        | 50.5             |
| 2005 | 23 | 29       | 33   | 16 | 14 | 15     | 22     | 19 | 21 | 41      | 72    | 64  | 369   | 10,163        | 27.5             |
| 2006 | 15 | 8        | 8    | 3  | 17 | 21     | 18     | 12 | 48 | 49      | 62    | 63  | 324   | 10,770        | 33.2             |
| 2007 | 10 | 6        | 11   | 8  | 7  | 14     | 18     | 17 | 43 | 73      | 102   | 60  | 371   | 10,623        | 28.6             |
| 2008 | 13 | 7        | 5    | 7  | 12 | 15     | 13     | 11 | 58 | 72      | 73    | 71  | 357   | 10,922        | 30.6             |
| 2009 | 9  |          | 2    | 14 | 10 | 17     | 20     | 37 | 61 | 97      | 114   | 135 | 516   | 14,871        | 28.8             |
| 2010 | 4  | 2        |      | 9  | 30 | 22     | 42     | 21 | 79 | 52      | 77    | 33  | 371   | 17,451        | 47.0             |
| 2011 | 6  | 7        | 3    | 13 | 23 | 33     | 32     | 36 | 23 | 71      | 49    | 41  | 337   | 18,682        | 55.4             |

Table A.14. Total numbers of Gulf of Maine Atlantic cod lengths sampled from commercial landings by market category and year between 1969 and 2011. Sampling intensity is expressed as metric tons landings per 100 lengths sampled (*200 metric tons per 100 lengths is an unofficial NAFO/ICNAF standard*). Cells shaded in grey indicate where lengths were aggregated semi-annually. Cells shaded orange indicate where lengths were aggregated annually. Aggregation occurred when length sampling was insufficient; a general criterion of 100 lengths/block was used to determine sufficiency.

| Year |           | Scrod     | (0814)    |      |      | Market | (0813) |      |      | Large ( | (0811) |      |     | Unclassifie | d (0815) |     |               |               | Metric tons/100 |
|------|-----------|-----------|-----------|------|------|--------|--------|------|------|---------|--------|------|-----|-------------|----------|-----|---------------|---------------|-----------------|
|      | 1         | 2         | 3         | 4    | 1    | 2      | 3      | 4    | 1    | 2       | 3      | 4    | 1   | 2           | 3        | 4   | Total lengths | Landings (mt) | lengths         |
| 1969 |           |           |           |      |      |        |        |      |      |         |        |      |     |             |          | 114 | 114           | 7,828         | 6867.0          |
| 1970 |           |           |           |      | 100  |        |        |      |      |         |        |      | 287 |             |          |     | 387           | 7,512         | 1941.0          |
| 1971 |           |           |           |      |      |        |        |      |      |         |        |      |     |             |          |     | 0             | 7,193         |                 |
| 1972 |           |           |           |      |      |        |        |      |      |         |        |      |     |             |          |     | 0             | 6,786         |                 |
| 1973 |           |           |           |      |      |        |        |      |      |         |        |      |     |             |          |     | 0             | 6,061         |                 |
| 1974 | 102       |           |           |      |      |        |        | 101  |      |         |        |      |     |             |          |     | 203           | 7,425         | 3657.8          |
| 1975 |           | 186       |           | 62   |      |        |        |      |      |         |        |      |     |             |          |     | 248           | 8,676         | 3498.4          |
| 1976 |           |           |           |      |      |        |        |      |      |         |        |      |     | 101         |          | 56  | 157           | 9,878         | 6291.5          |
| 1977 | 101       | 66        | 402       | 1012 | 270  | 277    | 371    | 64   |      | 80      | 152    |      |     |             |          |     | 2,525         | 11,993        | 4/5.0           |
| 19/8 | 40/       | 455       | 65        | 11/  | 3/0  | 304    | 500    | 100  |      |         | 55     |      |     |             |          |     | 2,256         | 11,890        | 527.0           |
| 19/9 | 212       | 100       | 58        | 116  |      | 100    | 237    | 188  |      |         |        |      | 212 |             |          |     | /55           | 10,972        | 1453.3          |
| 1980 | 213       | 100       | 01        | 226  |      |        | 01     | 471  |      |         | 210    |      | 212 |             |          |     | 5/0           | 12,515        | 21/2./          |
| 1981 | 32<br>401 | 37<br>199 | 81<br>191 | 230  | 419  | 200    | 665    | 245  |      | 200     | 210    | 159  | 07  | 102         | 122      |     | 1,189         | 12,582        | 222.0           |
| 1982 | 712       | 400       | 578       | 253  | 306  | 1021   | 583    | 200  | 56   | 206     | 514    | 138  | 31  | 53          | 122      |     | 5 204         | 13,400        | 261.0           |
| 1984 | 3//       | 271       | 3/0       | 378  | 306  | 264    | 1/13   | 551  | 75   | 552     | 204    | 105  | 0/  | 55          |          |     | 4 019         | 10,725        | 201.9           |
| 1985 | 263       | 352       | //0       | 2/1  | 837  | 565    | 677    | 351  | 542  | 3/1     | 204    | 403  | 74  |             |          |     | 5 284         | 10,725        | 200.5           |
| 1985 | 205       | 264       | 310       | 160  | 520  | 608    | 83/    | 320  | 75   | 270     | 205    | 183  |     |             |          |     | 1 069         | 9,670         | 201.5           |
| 1980 | 229       | 204       | 165       | 271  | 320  | 400    | 251    | 323  | 157  | 279     | 209    | 185  |     |             |          |     | 4,007         | 7,070         | 237.0           |
| 1987 | 201       | 232       | 215       | 2/1  | 50   | 520    | 201    | 491  | 50   | 104     | 125    | 90   |     |             |          |     | 2,100         | 7,520         | 200.1           |
| 1900 | 250       | 170       | 215       | 249  | 401  | 204    | 506    | 401  | 105  | 102     | 104    | 09   |     |             |          |     | 2,019         | 10 551        | 200.0           |
| 1969 | 154       | 2(2       | 201       | 1/4  | 401  | 204    | 270    | 409  | 193  | 102     | 104    | 90   |     |             |          |     | 2,/18         | 10,331        | 517.0           |
| 1990 | 100       | 502       | 100       | 260  | 409  | /15    | 3/0    | 300  |      | 130     | 108    | 101  |     |             |          |     | 2,981         | 15,440        | 517.9           |
| 1991 | 100       | 555       | 192       | 215  | 514  | 1034   | 1137   | 2/5  | 207  | 302     | 2/3    | 101  |     |             |          |     | 4,6/6         | 17,959        | 384.1           |
| 1992 | 118       | 443       | 320       | 180  | 633  | /25    | 592    | 263  | 297  | 142     | /5     | 298  |     |             |          |     | 4,086         | 11,019        | 269.7           |
| 1993 | 159       | 173       | 174       | 55   | 97   | 173    | 393    | 106  | 65   | 87      | 141    | 63   |     | 67          |          |     | 1,753         | 8,367         | 477.3           |
| 1994 |           | 102       | 107       | 181  | 97   | 576    | 324    | 567  |      | 184     | 322    | 198  |     |             |          |     | 2,658         | 8,030         | 302.1           |
| 1995 | 211       | 196       | 107       | 249  | 170  | 807    | 215    | 224  |      | 280     |        | 98   |     |             |          |     | 2,557         | 6,607         | 258.4           |
| 1996 | 278       | 275       | 491       | 691  | 596  | 961    | 1165   | 1178 | 68   | 200     | 303    | 280  |     |             |          |     | 6,486         | 7,020         | 108.2           |
| 1997 | 520       | 848       | 188       | 751  | 1235 | 1071   | 991    | 880  | 190  | 539     | 201    | 145  |     |             |          |     | 7,559         | 5,432         | 71.9            |
| 1998 | 295       | 383       |           | 101  | 911  | 951    | 1103   | 436  | 99   |         | 175    | 82   |     |             |          |     | 4,536         | 4,074         | 89.8            |
| 1999 | 385       |           |           |      | 311  | 108    | 58     |      | 211  |         |        |      |     |             |          |     | 1,073         | 1,407         | 131.2           |
| 2000 | 694       | 304       | 294       | 426  | 1588 | 1167   | 409    | 924  |      |         |        | 115  |     |             |          |     | 5,921         | 3,772         | 63.7            |
| 2001 | 189       | 215       | 216       | 404  | 428  | 984    | 697    | 1548 | 172  | 474     | 892    | 898  |     |             |          |     | 7,117         | 4,314         | 60.6            |
| 2002 | 106       | 80        |           | 39   | 1365 | 260    | 411    | 395  | 1192 | 397     | 524    | 494  |     |             |          |     | 5,263         | 3,638         | 69.1            |
| 2003 | 254       | 66        | 214       | 73   | 1121 | 705    | 1762   | 1402 | 1179 | 1432    | 1583   | 1688 |     |             |          |     | 11,479        | 3,866         | 33.7            |
| 2004 | 361       | 299       | 233       | 73   | 1384 | 1887   | 1288   | 994  | 2049 | 1419    | 283    | 940  | 25  |             |          |     | 11,235        | 3,782         | 33.7            |
| 2005 | 73        | 193       | 324       | 506  | 919  | 1095   | 1384   | 1362 | 790  | 709     | 1330   | 1478 |     | 61          | 180      |     | 10,404        | 3,558         | 34.2            |
| 2006 | 494       | 167       | 294       | 125  | 1291 | 1412   | 1075   | 753  | 1552 | 871     | 1348   | 1388 |     |             |          |     | 10,770        | 3,029         | 28.1            |
| 2007 | 291       | 174       | 315       | 293  | 584  | 1188   | 1521   | 1488 | 654  | 811     | 1887   | 1417 |     |             | 66       |     | 10,689        | 3,990         | 37.3            |
| 2008 | 536       | 251       | 203       | 85   | 969  | 1403   | 1196   | 927  | 712  | 1314    | 1753   | 1573 |     |             |          |     | 10,922        | 5,443         | 49.8            |
| 2009 | 407       |           | 62        | 141  | 800  | 1601   | 1791   | 2601 | 954  | 1656    | 2304   | 2554 |     |             |          |     | 14,871        | 5,953         | 40.0            |
| 2010 | 150       | 53        |           | 199  | 2679 | 1762   | 2788   | 1741 | 1428 | 2106    | 2561   | 1984 |     |             |          |     | 17,451        | 5,356         | 30.7            |
| 2011 | 287       | 320       | 144       | 577  | 2005 | 2848   | 2674   | 3260 | 1141 | 2250    | 1884   | 1292 |     |             |          |     | 18,682        | 4,598         | 24.6            |

|      |      |      | Quarter |      | Londings (mt) | Matuia tang/100 agas |                      |
|------|------|------|---------|------|---------------|----------------------|----------------------|
| Year | 1    | 2    | 3       | 4    | Total         | Landings (mi)        | Metric tons/100 ages |
| 1977 | 20   | 114  | 229     | 205  | 568           | 11992.8              | 2111.4               |
| 1978 | 124  | 124  | 115     | 20   | 383           | 11890.1              | 3104.5               |
| 1979 | 10   | 20   | 48      | 52   | 130           | 10972.3              | 8440.2               |
| 1980 | 35   | 27   | 15      |      | 77            | 12514.9              | 16253.1              |
| 1981 | 12   | 15   | 67      | 170  | 264           | 12381.6              | 4690.0               |
| 1982 | 194  | 237  | 251     | 183  | 865           | 13465.9              | 1556.7               |
| 1983 | 277  | 513  | 400     | 158  | 1348          | 13867.4              | 1028.7               |
| 1984 | 245  | 350  | 296     | 337  | 1228          | 10725.3              | 873.4                |
| 1985 | 446  | 377  | 397     | 323  | 1543          | 10645.3              | 689.9                |
| 1986 | 243  | 360  | 398     | 173  | 1174          | 9669.6               | 823.6                |
| 1987 | 252  | 229  | 226     | 228  | 935           | 7526.2               | 804.9                |
| 1988 | 131  | 223  | 187     | 196  | 737           | 7948.2               | 1078.5               |
| 1989 | 206  | 129  | 203     | 165  | 703           | 10550.7              | 1500.8               |
| 1990 | 140  | 302  | 171     | 150  | 763           | 15439.7              | 2023.6               |
| 1991 | 126  | 447  | 385     | 152  | 1110          | 17959.0              | 1617.9               |
| 1992 | 220  | 298  | 264     | 178  | 960           | 11019.4              | 1147.9               |
| 1993 | 72   | 130  | 186     | 49   | 437           | 8366.7               | 1914.6               |
| 1994 | 21   | 195  | 149     | 308  | 673           | 8030.2               | 1193.2               |
| 1995 | 144  | 311  | 101     | 126  | 682           | 6606.8               | 968.7                |
| 1996 | 190  | 315  | 426     | 449  | 1380          | 7019.8               | 508.7                |
| 1997 | 395  | 632  | 331     | 285  | 1643          | 5432.1               | 330.6                |
| 1998 | 192  | 325  | 276     | 199  | 992           | 4074.3               | 410.7                |
| 1999 | 227  | 27   | 11      |      | 265           | 1407.4               | 531.1                |
| 2000 | 639  | 481  | 205     | 396  | 1721          | 3771.8               | 219.2                |
| 2001 | 280  | 574  | 674     | 950  | 2478          | 4314.4               | 174.1                |
| 2002 | 1320 | 301  | 437     | 347  | 2405          | 3638.3               | 151.3                |
| 2003 | 1046 | 1111 | 1948    | 1525 | 5630          | 3865.6               | 68.7                 |
| 2004 | 1880 | 1011 | 425     | 228  | 3544          | 3782.3               | 106.7                |
| 2005 | 494  | 644  | 1117    | 1287 | 3542          | 3557.6               | 100.4                |
| 2006 | 1109 | 806  | 1225    | 1197 | 4337          | 3029.4               | 69.9                 |
| 2007 | 719  | 1020 | 1138    | 1030 | 3907          | 3989.8               | 102.1                |
| 2008 | 858  | 1225 | 1213    | 1173 | 4469          | 5443.5               | 121.8                |
| 2009 | 947  | 1407 | 1684    | 2222 | 6260          | 5952.9               | 95.1                 |
| 2010 | 1335 | 1235 | 1856    | 1103 | 5529          | 5356.4               | 96.9                 |
| 2011 | 735  | 1867 | 1555    | 1412 | 5569          | 4597.9               | 82.6                 |

Table A.15. Total numbers of Gulf of Maine Atlantic cod ages sampled from commercial landings by quarter between 1977 and 2011.

Table A.16. Percent of Gulf of Maine Atlantic cod length observations missing corresponding age information by market category and quarter. Cells shaded in grey indicate where lengths were aggregated semi-annually. Cells where the imputation percentage exceeded 5% are highlighted in bold italics. Cells where no imputation was required are null.

|      |      | Scrod | (0814) |     |     | Marke | et (0813) |      |      | Large (0811)<br>Ouarter |       |      |  |  |
|------|------|-------|--------|-----|-----|-------|-----------|------|------|-------------------------|-------|------|--|--|
| Year |      | Qua   | arter  |     |     | Qu    | arter     |      |      | Qua                     | arter |      |  |  |
|      | 1    | 2     | 3      | 4   | 1   | 2     | 3         | 4    | 1    | 2                       | 3     | 4    |  |  |
| 1982 | 0.5  | 0.4   | 3.3    | 0.3 |     |       |           |      |      | 22.6                    | 12    | .2   |  |  |
| 1983 |      | 0.2   |        |     |     |       |           |      |      | 1.1                     | 0     | .2   |  |  |
| 1984 |      |       | 0.3    | 0.3 |     |       |           |      |      |                         | 0.5   | 1.0  |  |  |
| 1985 |      |       |        |     |     |       |           |      | 0.4  |                         | 1.1   | 0.2  |  |  |
| 1986 |      |       |        |     |     |       |           |      |      | 0.8                     |       | 3.8  |  |  |
| 1987 |      |       |        |     |     |       |           |      | 0.6  |                         | 0     | .6   |  |  |
| 1988 | 1    | .3    |        |     |     |       |           | 0.8  |      |                         | 2     | .2   |  |  |
| 1989 |      |       |        |     |     |       |           | 18.8 |      | 19.6                    | 2     | .5   |  |  |
| 1990 |      |       |        |     |     |       |           |      |      |                         |       |      |  |  |
| 1991 | 44.0 |       | 4.7    | 0.9 | 2.5 |       | 4.3       |      |      | 4.3                     | 11.4  | 33.7 |  |  |
| 1992 | 1.7  |       |        |     |     |       |           |      | 5.4  | 12.0                    | 10    | .2   |  |  |
| 1993 |      |       | 0      | ).4 | 8.  | 1     | 0.5       | 12.3 |      | 2.6                     | 9.    | 3    |  |  |
| 1994 |      |       | 0.9    |     |     |       | 0.3       |      |      | 19.6                    | 7.5   | 1.0  |  |  |
| 1995 | 21.3 |       |        |     | 1.2 |       |           |      |      | 0.7                     | 28    | .6   |  |  |
| 1996 | 3.6  |       |        |     | 0.2 |       |           |      |      |                         | 1.0   | 5.0  |  |  |
| 1997 |      | 0.7   |        | 0.3 | 0.5 |       |           |      | 14.7 | 0.4                     |       | 2.1  |  |  |
| 1998 |      | 5.7   |        |     |     |       |           |      |      | 4.8                     |       |      |  |  |
| 1999 |      |       |        |     |     |       |           |      |      | 2                       | .8    |      |  |  |
| 2000 | 0.1  |       |        |     |     |       |           |      |      | 2                       | .6    |      |  |  |
| 2001 |      |       |        |     |     |       |           |      | 1.7  | 0.6                     | 0.2   | 0.1  |  |  |
| 2002 |      |       |        |     |     |       |           |      | 0.3  | 1.0                     |       |      |  |  |
| 2003 |      |       | 1      | .0  |     |       |           |      | 0.4  | 0.1                     | 0.1   | 0.1  |  |  |
| 2004 |      | 0.7   |        |     |     |       |           |      | 0.1  |                         | 1.1   | 0.7  |  |  |
| 2005 |      |       |        |     |     |       |           |      | 0.4  | 0.1                     | 0.3   | 0.1  |  |  |
| 2006 |      |       |        |     |     |       |           |      | 0.2  | 0.9                     | 0.3   | 0.5  |  |  |
| 2007 |      |       |        |     |     |       |           |      | 0.6  | 0.1                     | 0.7   | 0.4  |  |  |
| 2008 |      |       |        |     |     |       |           |      |      | 0.1                     | 0.2   |      |  |  |
| 2009 |      |       | 0      | .5  |     |       | 0.2       |      |      | 0.2                     |       |      |  |  |
| 2010 |      |       |        |     |     |       |           |      |      |                         | 0.0   | 0.1  |  |  |
| 2011 |      |       |        |     |     |       |           |      |      |                         |       |      |  |  |

| Year | Age0 | Age1   | Age2      | Age3      | Age4      | Age5      | Age6    | Age7   | Age8   | Age9   | Age10  | Age11  | Age12 | Age13 | Age14 | Age15 | Age16 |
|------|------|--------|-----------|-----------|-----------|-----------|---------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
| 1982 |      | 27,609 | 1,335,509 | 1,634,173 | 1,116,072 | 619,571   | 51,241  | 69,146 | 59,375 | 43,415 | 32,683 | 6,285  | 898   |       |       |       |       |
| 1983 |      |        | 833,083   | 2,413,843 | 1,067,910 | 627,331   | 407,393 | 44,212 | 57,669 | 25,845 | 12,747 | 3,800  | 3,515 | 1,719 | 2,599 |       |       |
| 1984 |      | 2,782  | 425,538   | 1,227,232 | 1,504,575 | 396,710   | 195,918 | 96,402 | 9,105  | 16,794 | 14,229 | 11,957 | 2,335 | 3,863 | 1,235 |       |       |
| 1985 |      |        | 387,614   | 1,440,985 | 1,002,193 | 615,000   | 123,315 | 73,198 | 32,430 | 3,962  | 10,619 | 2,438  | 4,573 | 1,583 | 470   |       |       |
| 1986 |      |        | 85,363    | 2,187,322 | 818,717   | 239,742   | 161,736 | 38,700 | 27,497 | 19,813 | 4,745  | 1,497  | 3,940 | 2,434 | 306   |       |       |
| 1987 |      | 442    | 193,735   | 627,766   | 1,116,907 | 267,706   | 64,579  | 45,981 | 5,481  | 8,410  | 9,270  | 182    | 607   |       | 2,129 |       |       |
| 1988 |      |        | 167,468   | 1,356,369 | 907,960   | 400,942   | 58,792  | 21,864 | 20,247 | 3,257  | 2,438  | 1,213  |       |       | 606   |       |       |
| 1989 |      |        | 322,130   | 1,486,592 | 1,354,890 | 451,857   | 70,570  | 58,876 | 7,931  | 2,238  | 9,000  | 3,945  |       | 1,127 | 1,127 |       |       |
| 1990 |      |        | 210,618   | 3,403,626 | 2,227,578 | 452,797   | 151,887 | 25,246 | 24,675 | 7,680  | 16,034 | 11,764 | 2,353 | 3,597 |       |       |       |
| 1991 |      |        | 198,915   | 609,915   | 4,543,525 | 904,421   | 138,556 | 42,961 | 25,983 | 7,877  | 4,698  | 2,571  |       |       |       |       |       |
| 1992 |      |        | 302,552   | 527,720   | 432,280   | 1,969,905 | 213,021 | 77,420 | 5,837  | 4,488  | 1,042  |        |       |       |       |       |       |
| 1993 |      |        | 25,866    | 1,543,228 | 729,548   | 92,745    | 464,198 | 37,780 | 11,264 |        |        |        |       |       |       |       |       |
| 1994 |      |        | 29,014    | 1,055,313 | 1,170,244 | 240,940   | 63,586  | 69,917 | 28,114 | 6,108  | 384    | 1,008  |       |       |       |       |       |
| 1995 |      |        | 183,724   | 938,703   | 1,056,404 | 207,195   | 28,494  | 6,521  | 17,992 | 580    | 2,228  |        |       |       |       |       |       |
| 1996 |      |        | 55,763    | 507,349   | 1,763,068 | 375,559   | 35,144  | 3,903  | 413    | 845    |        |        |       |       |       |       |       |
| 1997 |      |        | 77,455    | 434,378   | 435,036   | 800,750   | 67,415  | 5,368  | 2,080  | 393    | 636    |        |       |       |       |       |       |
| 1998 |      |        | 87,919    | 391,916   | 544,744   | 139,369   | 187,088 | 27,507 | 4,853  | 1,495  | 762    |        |       |       |       |       |       |
| 1999 |      |        | 2,858     | 179,688   | 191,438   | 66,127    | 23,995  | 22,398 | 7,504  | 1,035  |        |        |       |       |       |       |       |
| 2000 |      |        | 102,341   | 258,469   | 501,545   | 124,105   | 66,295  | 9,007  | 6,465  |        |        |        |       |       |       |       |       |
| 2001 |      |        | 43,737    | 471,763   | 326,442   | 206,475   | 65,902  | 38,490 | 5,509  | 8,803  | 1,006  |        |       |       |       |       |       |
| 2002 |      |        | 1,439     | 111,287   | 433,957   | 170,415   | 102,971 | 41,667 | 12,019 | 3,750  | 4,055  | 434    | 80    |       | 40    |       |       |
| 2003 |      |        | 8,113     | 47,543    | 198,476   | 380,859   | 120,697 | 52,001 | 19,769 | 9,173  | 4,250  | 2,812  | 472   |       |       |       |       |
| 2004 |      |        | 492       | 142,749   | 130,172   | 220,142   | 170,502 | 52,305 | 26,442 | 13,941 | 6,789  | 1,414  | 620   |       |       |       |       |
| 2005 |      |        | 1,217     | 37,890    | 423,154   | 64,419    | 178,040 | 83,220 | 21,459 | 12,366 | 5,056  | 3,125  | 1,817 | 500   |       |       |       |
| 2006 |      |        | 777       | 115,306   | 181,958   | 300,653   | 21,412  | 62,692 | 29,111 | 10,477 | 5,994  | 2,537  | 1,242 | 953   | 180   |       |       |
| 2007 |      |        | 5,209     | 95,694    | 629,852   | 99,105    | 178,429 | 5,952  | 15,582 | 7,698  | 3,753  | 1,468  | 1,323 | 1,174 | 126   | 345   |       |
| 2008 |      |        | 4,142     | 283,069   | 465,757   | 600,316   | 53,944  | 82,494 | 2,490  | 6,652  | 3,224  | 986    | 473   | 367   | 234   | 104   | 21    |
| 2009 |      |        | 2,700     | 283,610   | 718,934   | 333,800   | 199,827 | 16,653 | 20,518 | 857    | 2,311  | 1,072  | 952   | 224   | 127   | 61    | 49    |
| 2010 |      |        | 1,683     | 121,449   | 578,192   | 463,641   | 114,076 | 59,845 | 8,069  | 2,947  | 446    | 476    | 162   | 112   | 17    | 28    |       |
| 2011 |      |        | 534       | 97,964    | 296,737   | 396,070   | 256,786 | 26,149 | 29,090 | 4,906  | 1,177  | 196    | 538   | 68    | 178   |       |       |

Table A.17. Total Gulf of Maine Atlantic cod commercial landings-at-age (numbers) from 1982 to 2011.

Table A.18. Coefficients of variation (CV) associated with the estimates of Gulf of Maine Atlantic cod commercial landings numbersat-age from 1982 to 2011. CVs greater than 0.3 are shaded grey.

| Year    | Age 1  | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 | Age 15 | Age 16 |
|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| 1984    | 0.7443 | 0.12  | 0.04  | 0.02  | 0.04  | 0.06  | 0.06  | 0.17  | 0.16  | 0.22   | 0.20   | 0.39   | 0.29   | 0.69   |        |        |
| 1985    |        | 0.08  | 0.06  | 0.04  | 0.03  | 0.05  | 0.05  | 0.10  | 0.25  | 0.14   | 0.27   | 0.35   | 0.48   | 0.76   |        |        |
| 1986    |        | 0.18  | 0.05  | 0.04  | 0.06  | 0.08  | 0.14  | 0.13  | 0.20  | 0.44   | 0.56   | 0.37   | 0.65   | 0.89   |        |        |
| 1987    | 1.3501 | 0.19  | 0.07  | 0.04  | 0.07  | 0.09  | 0.15  | 0.29  | 0.28  | 0.43   | 0.90   | 0.44   |        | 0.68   |        |        |
| 1988    |        | 0.29  | 0.06  | 0.05  | 0.06  | 0.09  | 0.15  | 0.24  | 0.48  | 0.81   | 0.81   |        |        | 1.32   |        |        |
| 1989    |        | 0.38  | 0.08  | 0.09  | 0.07  | 0.14  | 0.24  | 0.33  | 0.56  | 0.23   | 0.34   |        | 0.68   | 0.69   |        |        |
| 1990    |        | 0.26  | 0.07  | 0.08  | 0.13  | 0.24  | 0.47  | 0.36  | 0.41  | 0.26   | 0.28   | 0.67   | 0.00   | 0.07   |        |        |
| 1990    |        | 0.20  | 0.07  | 0.00  | 0.13  | 0.12  | 0.23  | 0.30  | 0.11  | 1.02   | 0.20   | 0.07   | 0.70   |        |        |        |
| 1002    |        | 0.25  | 0.15  | 0.04  | 0.11  | 0.12  | 0.25  | 0.51  | 0.27  | 0.88   | 0.04   |        |        |        |        |        |
| 1992    |        | 0.10  | 0.20  | 0.13  | 0.00  | 0.11  | 0.18  | 0.02  | 0.50  | 0.00   |        |        |        |        |        |        |
| 1995    |        | 0.89  | 0.09  | 0.16  | 0.29  | 0.11  | 0.34  | 0.41  | 0.64  | 1.02   | 0.00   |        |        |        |        |        |
| 1994    |        | 0.49  | 0.10  | 0.07  | 0.27  | 0.25  | 0.21  | 0.22  | 0.64  | 1.02   | 0.89   |        |        |        |        |        |
| 1995    |        | 0.25  | 0.12  | 0.09  | 0.10  | 0.35  | 0.23  | 0.21  | 1.05  | 0.61   |        |        |        |        |        |        |
| 1996    |        | 0.27  | 0.10  | 0.04  | 0.14  | 0.20  | 0.28  | 0.95  | 0.69  |        |        |        |        |        |        |        |
| 1997    |        | 0.20  | 0.09  | 0.07  | 0.06  | 0.14  | 0.32  | 0.27  | 0.62  | 0.60   |        |        |        |        |        |        |
| 1998    |        | 0.16  | 0.11  | 0.07  | 0.15  | 0.15  | 0.27  | 0.37  | 0.49  | 0.99   |        |        |        |        |        |        |
| 1999    |        |       | 0.19  | 0.12  | 0.31  | 0.36  | 0.23  | 0.17  | 0.58  |        |        |        |        |        |        |        |
| 2000    |        | 0.14  | 0.08  | 0.06  | 0.12  | 0.23  | 0.49  | 0.55  |       |        |        |        |        |        |        |        |
| 2001    |        | 0.24  | 0.06  | 0.07  | 0.08  | 0.11  | 0.14  | 0.30  | 0.28  | 0.59   |        |        |        |        |        |        |
| 2002    |        | 1.11  | 0.22  | 0.05  | 0.09  | 0.07  | 0.11  | 0.15  | 0.29  | 0.26   | 0.48   | 1.21   |        | 1.38   |        |        |
| 2003    |        | 0.35  | 0.17  | 0.05  | 0.03  | 0.06  | 0.07  | 0.10  | 0.17  | 0.19   | 0.23   | 0.46   |        |        |        |        |
| 2004    |        | 1.38  | 0.11  | 0.07  | 0.07  | 0.06  | 0.09  | 0.13  | 0.21  | 0.23   | 0.49   | 0.75   |        |        |        |        |
| 2005    |        | 0.66  | 0.15  | 0.05  | 0.08  | 0.09  | 0.08  | 0.12  | 0.12  | 0.15   | 0.21   | 0.26   | 0.42   |        |        |        |
| 2006    |        | 1.02  | 0.17  | 0.06  | 0.04  | 0.14  | 0.09  | 0.09  | 0.14  | 0.11   | 0.17   | 0.22   | 0.27   | 0.56   |        |        |
| 2007    |        | 0.49  | 0.13  | 0.04  | 0.08  | 0.10  | 0.27  | 0.19  | 0.12  | 0.15   | 0.25   | 0.23   | 0.27   | 0.69   | 0.46   |        |
| 2008    |        | 0.72  | 0.10  | 0.05  | 0.05  | 0.13  | 0.08  | 0.39  | 0.16  | 0.17   | 0.29   | 0.38   | 0.44   | 0.56   | 0.80   | 1.43   |
| 2009    |        | 0.52  | 0.10  | 0.05  | 0.09  | 0.07  | 0.18  | 0.12  | 0.25  | 0.17   | 0.26   | 0.26   | 0.40   | 0.59   | 0.90   | 1.01   |
| 2010    |        | 0.50  | 0.12  | 0.04  | 0.04  | 0.08  | 0.10  | 0.13  | 0.16  | 0.38   | 0.34   | 0.66   | 0.67   | 1.38   | 1.42   |        |
| 2011    |        | 0.28  | 0.04  | 0.02  | 0.01  | 0.01  | 0.02  | 0.02  | 0.07  | 0.14   | 0.34   | 0.26   | 0.72   | 0.45   |        |        |
| Average | 1.05   | 0.43  | 0.11  | 0.06  | 0.10  | 0.13  | 0.19  | 0.27  | 0.35  | 0.43   | 0.42   | 0.46   | 0.50   | 0.82   | 0.90   | 1.22   |

| Year    | Age 0 | Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7  | Age 8  | Age 9  | Age 10 | Age 11 | Age 12 | Age 13 | Age 14 | Age 15 | Age 16 |
|---------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1982    |       | 0.831 | 1.177 | 1.669 | 2.790 | 5.006 | 7.097 | 9.580  | 9.945  | 12.789 | 19.365 | 16.480 | 22.443 |        |        |        |        |
| 1983    |       |       | 1.172 | 1.621 | 2.428 | 3.812 | 6.058 | 5.982  | 10.480 | 11.548 | 11.138 | 18.890 | 12.669 | 24.552 | 22.224 |        |        |
| 1984    |       | 0.569 | 1.179 | 1.656 | 2.679 | 3.568 | 5.563 | 8.541  | 10.290 | 13.711 | 14.485 | 14.318 | 15.430 | 17.886 | 19.285 |        |        |
| 1985    |       |       | 1.312 | 1.740 | 2.820 | 4.528 | 5.610 | 8.436  | 11.238 | 12.479 | 14.280 | 13.394 | 16.112 | 16.739 | 22.012 |        |        |
| 1986    |       |       | 1.392 | 1.819 | 2.905 | 4.691 | 6.272 | 7.994  | 9.826  | 13.592 | 13.496 | 15.888 | 15.808 | 20.232 | 16.834 |        |        |
| 1987    |       | 0.998 | 1.369 | 1.719 | 3.252 | 4.805 | 6.912 | 9.318  | 10.769 | 14.810 | 16.101 | 13.418 | 8.066  |        | 22.379 |        |        |
| 1988    |       |       | 1.293 | 1.943 | 2.448 | 5.282 | 5.315 | 6.374  | 9.951  | 10.434 | 17.787 | 9.857  |        |        | 21.886 |        |        |
| 1989    |       |       | 1.314 | 1.763 | 3.055 | 4.242 | 5.943 | 9.379  | 13.425 | 16.500 | 20.410 | 22.606 |        | 27.911 | 27.896 |        |        |
| 1990    |       |       | 1.247 | 1.660 | 2.238 | 4.380 | 7.816 | 11.229 | 12.270 | 15.999 | 16.344 | 22.690 | 23.134 | 22.138 |        |        |        |
| 1991    |       |       | 1.489 | 1.834 | 2.412 | 4.031 | 7.164 | 9.689  | 12.261 | 15.093 | 6.203  | 24.937 |        |        |        |        |        |
| 1992    |       |       | 1.608 | 1.941 | 2.899 | 3.070 | 5.699 | 10.984 | 10.766 | 13.418 | 19.072 |        |        |        |        |        |        |
| 1993    |       |       | 1.356 | 1.930 | 2.350 | 4.595 | 5.802 | 9.649  | 13.673 |        |        |        |        |        |        |        |        |
| 1994    |       |       | 1.434 | 1.955 | 3.186 | 3.349 | 6.350 | 7.787  | 12.422 | 10.012 | 22.008 | 22.643 |        |        |        |        |        |
| 1995    |       |       | 1.588 | 1.774 | 2.838 | 5.187 | 7.054 | 11.466 | 13.223 | 19.756 | 23.143 |        |        |        |        |        |        |
| 1996    |       |       | 1.746 | 2.258 | 2.337 | 3.532 | 7.523 | 11.759 | 14.795 | 16.331 |        |        |        |        |        |        |        |
| 1997    |       |       | 1.846 | 2.291 | 3.093 | 3.162 | 4.829 | 9.027  | 12.177 | 15.625 | 17.749 |        |        |        |        |        |        |
| 1998    |       |       | 1.396 | 2.020 | 2.726 | 4.025 | 4.376 | 7.235  | 12.111 | 17.500 | 15.060 |        |        |        |        |        |        |
| 1999    |       |       | 1.545 | 1.741 | 2.539 | 3.390 | 5.049 | 7.563  | 10.220 | 12.279 |        |        |        |        |        |        |        |
| 2000    |       |       | 1.736 | 2.608 | 3.635 | 4.678 | 6.158 | 5.600  | 8.939  |        |        |        |        |        |        |        |        |
| 2001    |       |       | 1.937 | 2.556 | 3.400 | 5.036 | 6.544 | 7.684  | 9.213  | 8.945  | 17.660 |        |        |        |        |        |        |
| 2002    |       |       | 1.326 | 2.706 | 3.378 | 4.269 | 6.300 | 7.072  | 8.965  | 10.167 | 10.786 | 15.353 | 17.249 |        | 18.746 |        |        |
| 2003    |       |       | 1.871 | 2.475 | 3.279 | 4.321 | 5.544 | 7.584  | 8.892  | 10.909 | 12.121 | 13.709 | 14.362 |        |        |        |        |
| 2004    |       |       | 1.648 | 2.689 | 3.686 | 4.261 | 5.976 | 7.590  | 9.902  | 12.654 | 14.059 | 11.423 | 22.553 |        |        |        |        |
| 2005    |       |       | 1.926 | 2.274 | 3.118 | 4.584 | 4.793 | 6.447  | 8.066  | 11.054 | 13.942 | 14.901 | 15.362 | 19.605 |        |        |        |
| 2006    |       |       | 2.671 | 2.540 | 3.437 | 3.877 | 4.905 | 5.673  | 7.605  | 9.709  | 12.724 | 16.000 | 15.761 | 20.480 | 20.326 |        |        |
| 2007    |       |       | 2.090 | 2.616 | 3.317 | 4.053 | 5.014 | 6.518  | 7.182  | 10.140 | 12.199 | 13.344 | 14.213 | 17.126 | 21.784 | 21.757 |        |
| 2008    |       |       | 1.848 | 2.768 | 3.145 | 3.811 | 4.777 | 6.036  | 6.106  | 8.583  | 11.258 | 13.800 | 16.189 | 19.251 | 19.918 | 18.735 | 25.984 |
| 2009    |       |       | 1.939 | 2.766 | 3.532 | 3.972 | 4.775 | 6.007  | 8.367  | 11.208 | 10.805 | 12.934 | 15.971 | 15.803 | 22.452 | 22.459 | 22.812 |
| 2010    |       |       | 2.228 | 2.731 | 3.528 | 4.268 | 4.874 | 5.550  | 8.478  | 10.152 | 11.016 | 13.209 | 12.519 | 16.891 | 20.103 | 16.834 |        |
| 2011    |       |       | 1.746 | 2.724 | 3.389 | 4.094 | 4.988 | 5.934  | 6.076  | 11.750 | 12.190 | 17.376 | 17.827 | 23.845 | 19.502 |        |        |
| Average |       | 0.799 | 1.614 | 2.160 | 2.995 | 4.196 | 5.836 | 7.990  | 10.254 | 12.755 | 14.823 | 16.056 | 16.216 | 20.189 | 21.096 | 19.946 | 24.398 |

Table A.19. Mean weights-at-age (kg) of commercially landed Gulf of Maine Atlantic cod from 1982 to 2011.

|      |                |          | Fraction of total observed discards |               |                |              |               |                   |                |        |
|------|----------------|----------|-------------------------------------|---------------|----------------|--------------|---------------|-------------------|----------------|--------|
| Voor | Total observed |          |                                     | Otter ti      | awl (mt)       |              | 1             | Sink Gillnet (mt) |                |        |
| Itai | discards (mt)  | Longline | Handline                            | Small mesh (< | Large mesh (>= | Shrimp trawl | Small mesh (< | Large mesh        | Extra large    | Othe r |
|      |                |          |                                     | 5.5")         | 5.5")          |              | 5.5")         | (5.5 - 7.99")     | mesh (>= 8.0") |        |
| 1989 | 4.1            | 0.00     | 0.00                                | 0.03          | 0.37           | 0.37         | 0.00          | 0.23              | 0.00           | 0.00   |
| 1990 | 5.7            | 0.00     | 0.00                                | 0.00          | 0.37           | 0.34         | 0.00          | 0.29              | 0.00           | 0.00   |
| 1991 | 11.3           | 0.00     | 0.00                                | 0.00          | 0.23           | 0.14         | 0.00          | 0.63              | 0.00           | 0.00   |
| 1992 | 9.7            | 0.01     | 0.00                                | 0.00          | 0.35           | 0.06         | 0.00          | 0.58              | 0.00           | 0.00   |
| 1993 | 4.6            | 0.01     | 0.00                                | 0.00          | 0.21           | 0.02         | 0.00          | 0.76              | 0.00           | 0.00   |
| 1994 | 1.0            | 0.00     | 0.00                                | 0.00          | 0.24           | 0.10         | 0.00          | 0.62              | 0.04           | 0.01   |
| 1995 | 2.0            | 0.00     | 0.00                                | 0.10          | 0.50           | 0.02         | 0.00          | 0.33              | 0.06           | 0.00   |
| 1996 | 1.1            | 0.00     | 0.01                                | 0.10          | 0.12           | 0.01         | 0.00          | 0.65              | 0.11           | 0.01   |
| 1997 | 0.4            | 0.00     | 0.00                                | 0.06          | 0.21           | 0.02         | 0.00          | 0.62              | 0.07           | 0.03   |
| 1998 | 0.9            | 0.00     | 0.00                                | 0.00          | 0.01           | 0.00         | 0.00          | 0.96              | 0.02           | 0.01   |
| 1999 | 11.3           | 0.00     | 0.00                                | 0.02          | 0.07           | 0.00         | 0.00          | 0.91              | 0.00           | 0.00   |
| 2000 | 11.3           | 0.00     | 0.00                                | 0.00          | 0.68           | 0.00         | 0.00          | 0.31              | 0.01           | 0.00   |
| 2001 | 14.5           | 0.00     | 0.00                                | 0.00          | 0.66           | 0.00         | 0.00          | 0.32              | 0.01           | 0.00   |
| 2002 | 21.3           | 0.00     | 0.00                                | 0.04          | 0.65           | 0.00         | 0.00          | 0.28              | 0.03           | 0.00   |
| 2003 | 36.5           | 0.02     | 0.00                                | 0.04          | 0.63           | 0.00         | 0.00          | 0.24              | 0.06           | 0.00   |
| 2004 | 34.0           | 0.00     | 0.00                                | 0.02          | 0.34           | 0.00         | 0.00          | 0.43              | 0.21           | 0.00   |
| 2005 | 28.1           | 0.16     | 0.00                                | 0.07          | 0.36           | 0.00         | 0.00          | 0.31              | 0.09           | 0.00   |
| 2006 | 14.3           | 0.17     | 0.00                                | 0.04          | 0.61           | 0.00         | 0.00          | 0.16              | 0.02           | 0.00   |
| 2007 | 13.2           | 0.14     | 0.00                                | 0.01          | 0.67           | 0.00         | 0.00          | 0.14              | 0.03           | 0.00   |
| 2008 | 33.3           | 0.06     | 0.00                                | 0.01          | 0.86           | 0.00         | 0.00          | 0.05              | 0.02           | 0.00   |
| 2009 | 80.9           | 0.02     | 0.00                                | 0.00          | 0.86           | 0.00         | 0.00          | 0.10              | 0.01           | 0.00   |
| 2010 | 33.8           | 0.03     | 0.00                                | 0.01          | 0.61           | 0.00         | 0.00          | 0.26              | 0.07           | 0.01   |
| 2011 | 39.4           | 0.12     | 0.04                                | 0.01          | 0.59           | 0.00         | 0.00          | 0.21              | 0.02           | 0.00   |

Table A.20. Fractions of the total Gulf of Maine Atlantic cod observed to have been discarded by the commercial fishery from 1989 to 2011, broken down by gear type. Gears contributing greater than 5% of the total observed discards in any year are shaded grey.

Table A.21. Preliminary estimates of Gulf of Maine Atlantic cod commercial handline discards from SAW 53 (NEFSC 2012).

|      | -     | v             |      |
|------|-------|---------------|------|
| Year | Trips | Handline (mt) | CV   |
| 1989 |       |               |      |
| 1990 |       |               |      |
| 1991 |       |               |      |
| 1992 | 2     | 0.0           |      |
| 1993 |       |               |      |
| 1994 | 2     |               |      |
| 1995 | 1     |               |      |
| 1996 | 2     |               |      |
| 1997 |       |               |      |
| 1998 |       |               |      |
| 1999 | 1     |               |      |
| 2000 |       |               |      |
| 2001 |       |               |      |
| 2002 |       |               |      |
| 2003 | 1     |               |      |
| 2004 | 3     | 0.0           |      |
| 2005 | 4     | 34.4          | 0.69 |
| 2006 | 2     | 0.0           |      |
| 2007 | 5     | 6.9           | 0.62 |
| 2008 |       |               |      |
| 2009 | 3     | 75.9          | 0.49 |
| 2010 | 10    | 44.1          | 0.98 |
| 2011 | 30    |               |      |

Table A.22. Number of Ruhle and haddock separator trawl trips recorded in the commercial dealer data and in the at-sea observer data from the Gulf of Maine. Fractional trips in the dealer data are a function of the stock allocation process used to partition dealer-reported landings to stock area.

|   | Year | NEGEAR | Number of<br>dealer trips | Number of<br>observed trips |
|---|------|--------|---------------------------|-----------------------------|
|   | 2009 | 054    | 6.0                       |                             |
| Г | 2009 | 057    |                           | 2                           |
|   | 2010 | 054    | 0.3                       |                             |
|   | 2010 | 057    | 12.1                      | 17                          |
|   | 2011 | 054    | 1.0                       |                             |
|   | 2011 | 057    | 5.9                       | 31                          |

Table A.23. Total number of Gulf of Maine trips (statistical areas 464, 465, 467, 511-515) observed from 1989 to 2011, summarized by gear type. *The 2010-11 numbers include trips observed by both at-sea monitors and observers*.

|      |          | Otter      | trawl      |              | Sink (         | Gillnet        |       |
|------|----------|------------|------------|--------------|----------------|----------------|-------|
| Year | Longline | Small mesh | Large mesh | Shrimp trawl | Large mesh     | Extra large    | Total |
|      |          | (< 5.5")   | (>= 5.5")  |              | (5.5" - 7.99") | mesh (>= 8.0") |       |
| 1989 |          | 23         | 44         | 40           | 84             |                | 191   |
| 1990 |          | 8          | 26         | 31           | 120            |                | 185   |
| 1991 | 2        | 29         | 53         | 52           | 801            |                | 937   |
| 1992 | 9        | 15         | 45         | 82           | 896            |                | 1047  |
| 1993 | 2        | 6          | 17         | 81           | 560            |                | 666   |
| 1994 |          |            | 9          | 77           | 82             | 7              | 175   |
| 1995 |          | 30         | 29         | 73           | 62             | 14             | 208   |
| 1996 |          | 40         | 19         | 35           | 39             | 10             | 143   |
| 1997 |          | 3          | 7          | 16           | 31             | 5              | 62    |
| 1998 |          |            | 7          |              | 78             | 6              | 91    |
| 1999 |          | 11         | 25         |              | 70             | 8              | 114   |
| 2000 |          |            | 122        |              | 70             | 19             | 211   |
| 2001 |          | 4          | 136        | 3            | 39             | 21             | 203   |
| 2002 |          | 34         | 199        |              | 62             | 25             | 320   |
| 2003 | 14       | 19         | 278        | 15           | 254            | 95             | 675   |
| 2004 | 8        | 68         | 321        | 12           | 587            | 340            | 1336  |
| 2005 | 58       | 69         | 534        | 17           | 505            | 251            | 1434  |
| 2006 | 36       | 24         | 209        | 20           | 109            | 35             | 433   |
| 2007 | 36       | 16         | 234        | 14           | 92             | 46             | 438   |
| 2008 | 20       | 12         | 260        | 19           | 130            | 49             | 490   |
| 2009 | 35       | 22         | 428        | 12           | 271            | 30             | 798   |
| 2010 | 52       | 30         | 685        | 15           | 1080           | 379            | 2241  |
| 2011 | 80       | 25         | 1098       | 1            | 1382           | 264            | 2850  |

Table A.24. Estimates of total Gulf of Maine Atlantic cod commercial discards (mt) by gear from 1982 to 2011 by gear. Estimates from 1989 to 2011 were estimated using an approach consistent with the Standardized Bycatch Report Methodology (Wigley et al., 2007). Estimates from 1982 to 1988 were hindcasted using an approach documented in this report. *Gear-specific estimates do not account for survival of discarded fish*.

|      |          | Otter      | trawl      |              | Sink (         | Gillnet        |        | Total w/ |
|------|----------|------------|------------|--------------|----------------|----------------|--------|----------|
| Year | Longline | Small mesh | Large mesh | Shrimp trawl | Large mesh     | Extra large    | Total  | discard  |
|      |          | (< 5.5")   | (>= 5.5")  |              | (5.5" - 7.99") | mesh (>= 8.0") |        | survival |
| 1982 |          |            | 882.9      | 144.0        | 108.3          |                | 1135.2 | 805.4    |
| 1983 |          |            | 904.5      | 160.1        | 104.9          |                | 1169.4 | 829.1    |
| 1984 |          |            | 861.4      | 228.6        | 120.0          |                | 1209.9 | 858.9    |
| 1985 |          |            | 943.4      | 311.2        | 105.9          |                | 1360.5 | 962.9    |
| 1986 |          |            | 853.5      | 380.6        | 125.5          |                | 1359.5 | 964.2    |
| 1987 |          |            | 774.1      | 345.9        | 125.1          |                | 1245.0 | 884.0    |
| 1988 |          |            | 612.0      | 216.7        | 128.5          |                | 957.2  | 682.9    |
| 1989 |          | 6.1        | 677.3      | 256.4        | 161.2          |                | 1101.1 | 786.9    |
| 1990 |          | 0.9        | 1567.6     | 410.7        | 219.0          |                | 2198.2 | 1560.6   |
| 1991 | 0.3      | 0.8        | 621.1      | 205.2        | 106.0          |                | 933.5  | 663.9    |
| 1992 | 8.0      | 0.0        | 778.7      | 48.9         | 108.2          |                | 943.8  | 668.6    |
| 1993 | 281.7    | 0.0        | 370.8      | 6.3          | 153.6          |                | 812.4  | 479.8    |
| 1994 |          |            | 163.8      | 7.5          | 105.1          | 4.3            | 280.8  | 207.5    |
| 1995 |          | 8.3        | 152.5      | 4.0          | 129.7          | 20.3           | 314.9  | 235.4    |
| 1996 |          | 3.3        | 25.1       | 3.0          | 145.2          | 23.7           | 200.4  | 157.2    |
| 1997 |          | 16.6       | 27.9       | 4.7          | 59.1           | 6.8            | 115.0  | 87.1     |
| 1998 |          |            | 11.6       |              | 82.4           | 5.5            | 99.5   | 78.5     |
| 1999 |          | 11.6       | 826.5      |              | 536.0          | 8.1            | 1382.1 | 1021.9   |
| 2000 |          |            | 789.0      |              | 473.8          | 18.5           | 1281.3 | 946.1    |
| 2001 |          | 0.2        | 873.0      | 0.0          | 1113.5         | 54.2           | 2040.9 | 1545.4   |
| 2002 |          | 16.4       | 868.6      |              | 828.6          | 58.4           | 1772.0 | 1329.1   |
| 2003 | 66.4     | 22.0       | 553.8      | 2.6          | 321.8          | 71.0           | 1037.6 | 741.0    |
| 2004 | 7.9      | 2.9        | 532.4      | 0.9          | 231.8          | 84.6           | 860.6  | 631.1    |
| 2005 | 123.9    | 3.8        | 166.0      | 1.1          | 109.5          | 26.7           | 431.0  | 269.5    |
| 2006 | 47.7     | 2.6        | 337.7      | 0.3          | 94.3           | 15.8           | 498.4  | 342.3    |
| 2007 | 67.3     | 2.0        | 102.6      | 0.9          | 83.6           | 19.3           | 275.7  | 178.4    |
| 2008 | 58.4     | 6.1        | 343.1      | 0.2          | 84.8           | 21.8           | 514.5  | 349.2    |
| 2009 | 19.1     | 2.1        | 719.9      | 0.1          | 263.2          | 37.4           | 1041.8 | 752.3    |
| 2010 | 11.6     | 6.3        | 159.6      | 0.3          | 52.6           | 10.6           | 241.1  | 170.8    |
| 2011 | 31.9     | 4.6        | 77.9       | 0.0          | 34.5           | 3.7            | 152.6  | 98.8     |

Table A.25. Coefficients of variation (CV) for the Gulf of Maine Atlantic cod commercial discard (mt) estimates from 1989 to 2011 by gear; CVs greater than 0.3 are shaded in grey. *CVs are not available for hindcasted discards (pre-1989)*.

|      |          | Otter                  | trawl                   |              | Sink (                       |                               |       |
|------|----------|------------------------|-------------------------|--------------|------------------------------|-------------------------------|-------|
| Year | Longline | Small mesh<br>(< 5.5") | Large mesh<br>(>= 5.5") | Shrimp trawl | Large mesh<br>(5.5" - 7.99") | Extra large<br>mesh (>= 8.0") | Total |
| 1989 |          | 0.67                   | 0.34                    | 0.25         | 0.29                         |                               | 0.22  |
| 1990 |          | 0.79                   | 0.37                    | 0.42         | 0.23                         |                               | 0.28  |
| 1991 | 0.40     | 0.60                   | 0.37                    | 0.32         | 0.10                         |                               | 0.26  |
| 1992 | 0.64     | 3.72                   | 0.33                    | 0.24         | 0.07                         |                               | 0.27  |
| 1993 | 0.20     |                        | 0.44                    | 0.13         | 0.09                         |                               | 0.22  |
| 1994 |          |                        | 0.63                    | 0.15         | 0.32                         | 0.75                          | 0.38  |
| 1995 |          | 0.24                   | 0.59                    | 0.24         | 0.26                         | 0.45                          | 0.31  |
| 1996 |          | 2.84                   | 0.91                    | 0.34         | 0.30                         | 0.28                          | 0.25  |
| 1997 |          | 0.25                   | 0.44                    | 0.41         | 0.42                         | 0.85                          | 0.25  |
| 1998 |          |                        | 0.55                    |              | 0.28                         | 0.95                          | 0.25  |
| 1999 |          | 0.62                   | 0.56                    |              | 0.37                         | 0.51                          | 0.36  |
| 2000 |          |                        | 0.28                    |              | 0.27                         | 0.31                          | 0.20  |
| 2001 |          | 1.84                   | 0.27                    |              | 0.52                         | 0.58                          | 0.31  |
| 2002 |          | 0.55                   | 0.34                    |              | 0.24                         | 0.59                          | 0.20  |
| 2003 | 0.30     | 0.72                   | 0.29                    | 0.42         | 0.14                         | 0.28                          | 0.16  |
| 2004 | 0.48     | 0.44                   | 0.34                    | 0.37         | 0.13                         | 0.12                          | 0.22  |
| 2005 | 0.24     | 0.27                   | 0.19                    | 0.38         | 0.13                         | 0.12                          | 0.11  |
| 2006 | 0.29     | 0.27                   | 0.39                    | 0.44         | 0.38                         | 0.32                          | 0.28  |
| 2007 | 0.17     | 0.43                   | 0.22                    | 0.70         | 0.29                         | 0.31                          | 0.13  |
| 2008 | 0.42     | 0.37                   | 0.21                    | 0.55         | 0.18                         | 0.49                          | 0.16  |
| 2009 | 0.17     | 0.28                   | 0.14                    | 0.64         | 0.19                         | 0.49                          | 0.11  |
| 2010 | 0.33     | 0.28                   | 0.19                    | 0.90         | 0.11                         | 0.17                          | 0.13  |
| 2011 | 0.18     | 0.41                   | 0.09                    |              | 0.04                         | 0.07                          | 0.06  |

Table A.26. Median, 25<sup>th</sup> and 75<sup>th</sup> percentiles of the discard % death estimates by gear type developed by the Discard Mortality Working Group (expressed as percent dead; NEFSC 2012b). Median estimates were used to adjust discard estimates in the current assessment.

| Percentile               | Commercial handline | Longline | Otter trawl | Recreational hook and line | Sink gillnet |
|--------------------------|---------------------|----------|-------------|----------------------------|--------------|
| Median (50th percentile) | 20                  | 33       | 75          | 30                         | 80           |
| 25th percentile          | 13                  | 26       | 70          | 20                         | 68           |
| 75th percentile          | 25                  | 39       | 80          | 35                         | 86           |

Table A.27. Length sampling of Gulf of Maine Atlantic cod commercial discards from 1989 to 2011 by gear type and semester. Sampling intensity is expressed as metric tons landings per 100 lengths sampled (*200 metric tons per 100 lengths is an unofficial NAFO/ICNAF standard*). Colors denote specific gear/mesh sizes; in all years except 2003-2005, 2007/08 and 2010/11 the length frequency distributions from large mesh gillnet were applied to extra large mesh gillnet due to insufficient sampling. A general criterion of 50 lengths/block was used to determine sufficiency.

| Year | Year Longline |               | Otter trawl - small<br>mesh |        | Otter trav<br>me | wl - large<br>sh | Shrimp  | ) trawl | Gillnet - large mesh |        | Gillnet - e<br>me | xtra large<br>sh | Total | Total<br>discards | mt/100<br>Jongths |
|------|---------------|---------------|-----------------------------|--------|------------------|------------------|---------|---------|----------------------|--------|-------------------|------------------|-------|-------------------|-------------------|
|      | Semi 1        | Semi 2        | Semi 1                      | Semi 2 | Semi 1           | Semi 2           | Semi 1  | Semi 2  | Semi 1               | Semi 2 | Semi 1            | Semi 2           |       | (mt)              | icingtins         |
| 1989 |               |               | 125                         | 14     | 542              | 1053             | 2011    | 77      |                      | 104    |                   |                  | 3926  | 1101.1            | 28.0              |
| 1990 |               |               | **                          | :      | 587              | 818              | 607     | 31      | 138                  | 3      |                   |                  | 2184  | 2198.2            | 100.6             |
| 1991 | *             | :             | **                          | ¢      | 706              | 124              | 397     |         | 65                   | 30     |                   |                  | 1322  | 933.5             | 70.6              |
| 1992 | *             | :             | **                          | ¢      | 924              | 924              | 401     | 10      | 78                   | 130    |                   |                  | 2467  | 943.8             | 38.3              |
| 1993 | 48            |               | **                          | ¢      | 68               | 866              | 591     |         | 90                   | 223    |                   |                  | 1886  | 812.4             | 43.1              |
| 1994 |               |               | **                          | :      | 194              |                  | 563     | 40      | 274                  | 112    |                   | 7                | 1190  | 280.8             | 23.6              |
| 1995 |               |               |                             | 69     | 225              | 473              | 377     | 3       | 60                   | 147    | 20                | 3                | 1377  | 314.9             | 22.9              |
| 1996 |               |               | 52                          | 19     | 15               | 73               | 44      | 21      | 109                  | 31     | 16                | 20               | 400   | 200.4             | 50.1              |
| 1997 |               |               | 7***                        |        | 104              | 1                | 17****  |         | 34                   | 11     | 1                 | 2                | 153   | 115.0             | 75.2              |
| 1998 |               |               | **:                         | *      | 5****            |                  |         |         | 43                   | 40     | 9                 | 3                | 95    | 99.5              | 104.8             |
| 1999 |               |               |                             | 6***   |                  | 220              |         |         | 130                  | 1156   |                   | 14               | 1520  | 1382.1            | 90.9              |
| 2000 |               |               | **:                         | *      | 248              | 85               |         |         | 125                  | 157    | 6                 | 6                | 627   | 1281.3            | 204.3             |
| 2001 |               |               | **:                         | *      | 61               | 647              |         |         | 223                  | 144    | 3                 | 4                | 1082  | 2040.9            | 188.6             |
| 2002 |               |               |                             | 192    | 104              | 1162             |         |         | 412                  | 845    | 1                 | 39               | 2755  | 1772.0            | 64.3              |
| 2003 | 718           |               | 173                         | 131    | 1109             | 234              | 192     |         | 603                  | 1352   | 38                | 205              | 4755  | 1037.6            | 21.8              |
| 2004 | 197           |               | 103                         | 519    | 385              | 771              | 76      |         | 1165                 | 1524   | 27                | 536              | 5303  | 860.6             | 16.2              |
| 2005 | 2283          | 147           | 180                         | 183    | 986              | 2939             | 70      |         | 190                  | 663    | 47                | 104              | 7792  | 431.0             | 5.5               |
| 2006 | 880           | 3             | 43                          | 9      | 1899             | 339              | 96      |         | 44                   | 59     | 6                 | 15               | 3393  | 498.4             | 14.7              |
| 2007 | 817           | 327           | 1                           | 62     | 1172             | 1103             | 12***** |         | 91                   | 310    | 53                | 164              | 4100  | 275.7             | 6.7               |
| 2008 | 958           |               |                             | 18     | 2316             | 1639             | 42***** |         | 142                  | 73     | 72                | 26               | 5244  | 514.5             | 9.8               |
| 2009 | 552           | 187           |                             | 22     | 2219             | 1744             | 2*****  |         | 502                  | 112    | 7                 | 15               | 5360  | 1041.8            | 19.4              |
| 2010 | 239           | 57            | 4                           | 51     | 716              | 2672             | 5*****  |         | 289                  | 903    | 30                | 94               | 5055  | 241.1             | 4.8               |
| 2011 | 1322          | 107           |                             | 27     | 2522             | 3612             |         |         | 792                  | 694    | 33                | 41               | 9150  | 152.6             | 1.7               |
|      | *Borrowed fro | om 1993 LF    |                             |        |                  |                  |         |         |                      |        |                   |                  |       |                   |                   |
|      | **Used 1989-  | 1995 aggregat | e LF                        |        |                  |                  |         |         |                      |        |                   |                  |       |                   |                   |
|      | ****Borrowed  | from 1997 L   | F                           |        |                  |                  |         |         |                      |        |                   |                  |       |                   |                   |
|      | *****Used 19  | 96-1997 agg   | regate LF                   |        |                  |                  |         |         |                      |        |                   |                  |       |                   |                   |
|      | ******Used 2  | 007 - 2010 ag | ggregate LF                 |        |                  |                  |         |         |                      |        |                   |                  |       |                   |                   |

Table A.28. Comparison of the survey-filter discard estimates to direct observer-based discard estimates for large mesh otter trawl, shrimp trawl and large mesh gillnet between 1989 and 1993 for Gulf of Maine Atlantic cod.

| Year | Otter trawl, larg        | e mesh (>= 5.5")               | Shrimp                   | ) trawl                        | Sink gillnet, large mesh (5.5" -<br>7.99") |                                |  |  |
|------|--------------------------|--------------------------------|--------------------------|--------------------------------|--------------------------------------------|--------------------------------|--|--|
|      | Discard estimate<br>(mt) | Survey-filter<br>estimate (mt) | Discard estimate<br>(mt) | Survey-filter<br>estimate (mt) | Discard estimate<br>(mt)                   | Survey-filter<br>estimate (mt) |  |  |
| 1989 | 677.3                    | 499.8                          | 256.4                    | 215.6                          | 161.2                                      | 70.9                           |  |  |
| 1990 | 1567.6                   | 722.0                          | 410.7                    | 273.2                          | 219.0                                      | 80.5                           |  |  |
| 1991 | 621.1                    | 917.3                          | 205.2                    | 243.8                          | 106.0                                      | 71.4                           |  |  |
| 1992 | 778.7                    | 769.4                          |                          |                                | 108.2                                      | 62.4                           |  |  |
| 1993 | 370.8                    | 572.6                          |                          |                                | 153.6                                      | 73.1                           |  |  |

| Voor | Δαρθ    | Δσο1    | Δπο?      | 1003      | Δσο/    | 1005   | 1006   | Age7   | 4008  | ΔαρΟ    | Age10 | Δσο11 | Age12 | Δσο13 | Age14 | Age15 | Age16 |
|------|---------|---------|-----------|-----------|---------|--------|--------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| 1002 | Ageu -  | Age1    | Age2      | Age5      | 50.905  | Ages   | Ageo   | Ager   | Ageo  | Ages    | Agero | Agen  | Age12 | Ageis | Age14 | Agers | Agero |
| 1982 | 12 ( 45 | 547,720 | 1,156,034 | 224,521   | 50,895  | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1983 | 13,645  | 562,544 | 1,281,940 | 158,839   | 5,416   | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1984 | 18,275  | 347,694 | 1,445,433 | 219,644   | 0       | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1985 | 67,101  | 459,681 | 1,162,717 | 516,585   | 0       | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1986 | 17,767  | 731,053 | 1,522,658 | 208,195   | 48,007  | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1987 | 100,702 | 252,248 | 1,375,956 | 406,263   | 0       | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1988 | 3,446   | 405,259 | 1,149,396 | 275,330   | 23,306  | 0      | 0      | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1989 | 43      | 157,339 | 733,450   | 415,475   | 51,442  | 5,129  | 1,380  | 502    | 109   | 0       | 0     | 0     | 0     | 0     | 0     |       |       |
| 1990 | 0       | 61,442  | 539,508   | 1,619,321 | 185,562 | 1,188  | 216    | 0      | 0     | 0       | 0     | 0     | 0     | 0     | 0     |       |       |
| 1991 | 3,251   | 115,661 | 244,750   | 156,398   | 273,359 | 23,658 | 945    | 211    | 0     | 494     | 22    | 0     |       |       |       |       |       |
| 1992 | 23,803  | 364,755 | 481,485   | 278,021   | 32,164  | 91,688 | 2,805  | 119    | 14    | 0       | 0     |       |       |       |       |       |       |
| 1993 | 26,570  | 100,225 | 345,799   | 212,563   | 62,392  | 47     | 682    | 187    | 0     | 0       | 0     | 0     | 0     |       |       |       |       |
| 1994 | 11,734  | 119,195 | 93,081    | 140,124   | 14,606  | 816    | 234    | 270    | 0     | 0       | 0     | 0     |       |       |       |       |       |
| 1995 | 11,572  | 75,059  | 57,584    | 104,772   | 42,720  | 3,914  | 413    | 0      | 0     | 0       | 0     |       |       |       |       |       |       |
| 1996 | 22,067  | 31,719  | 22,411    | 24,451    | 38,147  | 6,928  | 657    | 102    | 78    | 542     | 0     |       |       |       |       |       |       |
| 1997 | 1,472   | 66,116  | 33,817    | 27,941    | 5,256   | 13,811 | 766    | 120    | 0     | 0       | 0     |       |       |       |       |       |       |
| 1998 | 699     | 2,565   | 36,073    | 20,996    | 13,651  | 1,615  | 1,536  | 82     | 0     | 0       | 0     |       |       |       |       |       |       |
| 1999 | 63      | 58,620  | 35,442    | 77,449    | 78,134  | 64,863 | 19,741 | 22,472 | 3,779 | 32      | 0     | 0     | 0     | 0     |       |       |       |
| 2000 | 0       | 10,977  | 192,879   | 122,257   | 137,216 | 26,040 | 8,080  | 1,471  | 315   |         |       |       |       |       |       |       |       |
| 2001 | 0       | 584     | 166,381   | 181,295   | 117,448 | 89,585 | 23,098 | 9,463  | 1,433 | 1,304   | 0     |       |       |       |       |       |       |
| 2002 | 0       | 10,379  | 26,625    | 95,299    | 150,797 | 58,039 | 36,422 | 15,103 | 9,627 | 3,784   | 3,221 | 270   | 220   | 0     | 0     |       |       |
| 2003 | 22,873  | 30,227  | 60,078    | 48,552    | 131,760 | 95,818 | 18,452 | 5,589  | 1,985 | 819     | 315   | 204   | 15    |       |       |       |       |
| 2004 | 187     | 130,674 | 71,594    | 234,041   | 42,241  | 41,615 | 19,027 | 4,267  | 1,900 | 569     | 231   | 88    | 11    |       |       |       |       |
| 2005 | 1,487   | 19,746  | 72,822    | 27,925    | 88,613  | 2,854  | 7,378  | 2,689  | 588   | 435     | 156   | 176   | 80    | 43    |       |       |       |
| 2006 | 204     | 10.521  | 29,696    | 159,504   | 38,366  | 53,974 | 2,405  | 2.150  | 1.902 | 93      | 34    | 5     | 0     | 1     | 0     |       |       |
| 2007 | 407     | 10.720  | 49,447    | 57.421    | 49,909  | 4.291  | 2,782  | 49     | 53    | 6       | 0     | 2     | 0     | 0     | 0     | 0     |       |
| 2008 | 305     | 7,598   | 58.021    | 104.763   | 59,668  | 40,918 | 1.629  | 1.361  | 75    | 17      | 27    | 26    | 0     | 0     | 0     | 0     | 0     |
| 2009 | 81      | 5,791   | 52.840    | 167.603   | 143,740 | 56,239 | 26.856 | 734    | 1.259 | 13      | 33    | 7     | 0     | 8     | 0     | 0     | 0     |
| 2010 | 213     | 4 607   | 23 503    | 52 319    | 27 322  | 15 926 | 3 289  | 989    | 20    | 2       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 2011 | 2.7     | 1.612   | 13.351    | 31,934    | 28.579  | 6.662  | 1.533  | 153    | 29    | 2<br>87 | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Table A.29. Total Gulf of Maine Atlantic cod commercial discards-at-age (numbers) from 1982 to 2011. *These estimates include gear-specific assumptions of discard survival*.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6   | Age7   | Age8   | Age9   | Age10  | Age11  | Age12  | Age13  | Age14 | Age15 | Age16 |
|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|
| 1982 | 0.000 | 0.315 | 0.500 | 0.608 | 0.648 |       |        |        |        |        |        |        |        |        |       |       |       |
| 1983 | 0.024 | 0.218 | 0.509 | 0.649 | 0.752 |       |        |        |        |        |        |        |        |        |       |       |       |
| 1984 | 0.001 | 0.225 | 0.485 | 0.610 |       |       |        |        |        |        |        |        |        |        |       |       |       |
| 1985 | 0.039 | 0.194 | 0.541 | 0.589 |       |       |        |        |        |        |        |        |        |        |       |       |       |
| 1986 | 0.005 | 0.274 | 0.439 | 0.621 | 0.573 |       |        |        |        |        |        |        |        |        |       |       |       |
| 1987 | 0.004 | 0.143 | 0.492 | 0.559 |       |       |        |        |        |        |        |        |        |        |       |       |       |
| 1988 | 0.003 | 0.121 | 0.442 | 0.554 | 0.615 |       |        |        |        |        |        |        |        |        |       |       |       |
| 1989 | 0.046 | 0.224 | 0.490 | 0.751 | 1.751 | 4.112 | 5.534  | 9.336  | 6.408  |        |        |        |        |        |       |       |       |
| 1990 |       | 0.195 | 0.645 | 0.703 | 0.846 | 4.340 | 4.564  |        |        |        |        |        |        |        |       |       |       |
| 1991 | 0.014 | 0.238 | 0.859 | 0.917 | 0.993 | 1.401 | 6.746  | 8.389  |        | 18.191 | 3.705  |        |        |        |       |       |       |
| 1992 | 0.023 | 0.053 | 0.680 | 0.773 | 1.082 | 1.154 | 1.614  | 5.239  | 2.425  |        |        |        |        |        |       |       |       |
| 1993 | 0.021 | 0.073 | 0.684 | 0.944 | 0.926 | 1.953 | 4.309  | 7.342  |        |        |        |        |        |        |       |       |       |
| 1994 | 0.022 | 0.049 | 0.629 | 0.827 | 1.798 | 3.872 | 12.083 | 9.439  |        |        |        |        |        |        |       |       |       |
| 1995 | 0.027 | 0.093 | 0.809 | 0.925 | 1.637 | 4.928 | 4.682  |        |        |        |        |        |        |        |       |       |       |
| 1996 | 0.033 | 0.067 | 0.676 | 1.126 | 1.840 | 3.752 | 6.768  | 11.559 | 12.656 | 17.406 |        |        |        |        |       |       |       |
| 1997 | 0.017 | 0.058 | 0.590 | 0.928 | 1.984 | 1.785 | 4.381  | 8.657  |        |        |        |        |        |        |       |       |       |
| 1998 | 0.007 | 0.200 | 0.603 | 1.093 | 1.686 | 3.316 | 3.287  | 3.285  |        |        |        |        |        |        |       |       |       |
| 1999 | 0.052 | 0.201 | 0.595 | 1.940 | 3.353 | 4.626 | 6.586  | 6.605  | 9.634  | 12.279 |        |        |        |        |       |       |       |
| 2000 |       | 0.292 | 0.962 | 1.843 | 3.041 | 3.882 | 4.881  | 4.279  | 6.121  |        |        |        |        |        |       |       |       |
| 2001 |       | 0.316 | 0.669 | 2.023 | 3.777 | 4.898 | 5.908  | 6.594  | 7.159  | 8.790  |        |        |        |        |       |       |       |
| 2002 |       | 0.203 | 0.923 | 1.415 | 2.987 | 4.222 | 6.258  | 7.030  | 9.453  | 12.322 | 10.912 | 10.519 | 14.222 |        |       |       |       |
| 2003 | 0.038 | 0.133 | 0.804 | 1.364 | 1.672 | 2.772 | 4.085  | 6.911  | 9.868  | 8.622  | 11.658 | 10.100 | 12.774 |        |       |       |       |
| 2004 | 0.025 | 0.106 | 0.455 | 1.128 | 1.879 | 2.800 | 4.834  | 6.755  | 8.763  | 11.588 | 11.820 | 10.579 | 11.694 |        |       |       |       |
| 2005 | 0.027 | 0.109 | 0.564 | 1.170 | 1.400 | 3.246 | 3.573  | 5.707  | 7.370  | 10.673 | 15.830 | 16.405 | 17.950 | 23.098 |       |       |       |
| 2006 | 0.069 | 0.276 | 0.665 | 1.066 | 1.494 | 1.604 | 1.871  | 3.857  | 2.822  | 7.902  | 8.238  | 13.434 |        | 13.434 |       |       |       |
| 2007 | 0.024 | 0.227 | 0.658 | 1.063 | 1.394 | 1.710 | 2.171  | 4.447  | 5.197  | 6.529  |        | 7.736  |        |        |       |       |       |
| 2008 | 0.078 | 0.203 | 0.770 | 1.273 | 1.572 | 1.741 | 3.047  | 6.283  | 6.021  | 5.514  | 10.341 | 10.660 |        |        |       |       |       |
| 2009 | 0.026 | 0.356 | 0.913 | 1.515 | 2.010 | 2.109 | 2.402  | 3.970  | 3.288  | 8.250  | 8.733  | 7.259  |        | 10.510 |       |       |       |
| 2010 | 0.023 | 0.251 | 1.047 | 1.251 | 1.743 | 1.912 | 1.962  | 2.184  | 4.322  | 8.210  |        |        |        |        |       |       |       |
| 2011 | 0.122 | 0.361 | 0.875 | 1.181 | 1.303 | 1.473 | 1.592  | 1.669  | 2.623  | 16.409 |        |        |        |        |       |       |       |

Table A.30. Mean weights-at-age (kg) of commercially discarded Gulf of Maine Atlantic cod from 1982 to 2011.

Table A.31. Proportion of recreationally harvested (type A, and B1 catch) Gulf of Maine Atlantic cod by mode and area as estimated by the Marine Recreational Information Program from 1981 to 2011. *\*The summary only includes catch from Maine, New Hampshire and Massachusetts. The 'Shore' category includes man-made and beach catch. Due to the proration step that is required to split Massachusetts landed fish between the Gulf of Maine and Georges Bank, these estimates are not directly translatable to the aggregate estimates of Gulf of Maine recreational catch; they are provided for informational purposes only.* 

|         | Shore (beach/ | bank/structure) |        | Party/charter   |                 |        | Private/rental  |                 |
|---------|---------------|-----------------|--------|-----------------|-----------------|--------|-----------------|-----------------|
| Year    | Inland        | Ocean ≤ 3 miles | Inland | Ocean ≤ 3 miles | Ocean ≥ 3 miles | Inland | Ocean ≤ 3 miles | Ocean ≥ 3 miles |
| 1981    | 0.00          | 0.00            | 0.04   | 0.06            | 0.54            | 0.03   | 0.28            | 0.05            |
| 1982    | 0.00          | 0.00            | 0.00   | 0.02            | 0.46            | 0.10   | 0.32            | 0.09            |
| 1983    | 0.00          | 0.01            | 0.01   | 0.02            | 0.35            | 0.01   | 0.40            | 0.20            |
| 1984    | 0.01          | 0.00            | 0.01   | 0.05            | 0.36            | 0.03   | 0.28            | 0.26            |
| 1985    | 0.01          | 0.00            | 0.00   | 0.07            | 0.27            | 0.13   | 0.26            | 0.27            |
| 1986    | 0.00          | 0.05            | 0.00   | 0.08            | 0.59            | 0.05   | 0.12            | 0.10            |
| 1987    | 0.00          | 0.00            | 0.00   | 0.19            | 0.53            | 0.01   | 0.14            | 0.14            |
| 1988    | 0.00          | 0.02            | 0.01   | 0.03            | 0.36            | 0.03   | 0.09            | 0.47            |
| 1989    | 0.00          | 0.00            | 0.05   | 0.05            | 0.37            | 0.22   | 0.08            | 0.22            |
| 1990    | 0.00          | 0.01            | 0.01   | 0.05            | 0.53            | 0.02   | 0.10            | 0.27            |
| 1991    | 0.00          | 0.00            | 0.00   | 0.00            | 0.34            | 0.05   | 0.10            | 0.51            |
| 1992    | 0.00          | 0.03            | 0.00   | 0.00            | 0.39            | 0.02   | 0.09            | 0.47            |
| 1993    | 0.00          | 0.00            | 0.00   | 0.01            | 0.66            | 0.03   | 0.10            | 0.19            |
| 1994    | 0.00          | 0.00            | 0.00   | 0.02            | 0.37            | 0.17   | 0.16            | 0.28            |
| 1995    | 0.00          | 0.00            | 0.00   | 0.04            | 0.69            | 0.04   | 0.05            | 0.17            |
| 1996    | 0.00          | 0.00            | 0.02   | 0.03            | 0.56            | 0.01   | 0.05            | 0.34            |
| 1997    | 0.00          | 0.00            | 0.01   | 0.09            | 0.65            | 0.02   | 0.04            | 0.17            |
| 1998    | 0.00          | 0.00            | 0.00   | 0.05            | 0.57            | 0.02   | 0.09            | 0.28            |
| 1999    | 0.00          | 0.00            | 0.00   | 0.03            | 0.51            | 0.00   | 0.11            | 0.34            |
| 2000    | 0.00          | 0.00            | 0.01   | 0.01            | 0.51            | 0.04   | 0.16            | 0.28            |
| 2001    | 0.00          | 0.00            | 0.02   | 0.01            | 0.24            | 0.12   | 0.20            | 0.41            |
| 2002    | 0.00          | 0.00            | 0.00   | 0.00            | 0.17            | 0.03   | 0.23            | 0.57            |
| 2003    | 0.00          | 0.00            | 0.00   | 0.00            | 0.26            | 0.00   | 0.11            | 0.63            |
| 2004    | 0.00          | 0.00            | 0.00   | 0.00            | 0.29            | 0.18   | 0.09            | 0.43            |
| 2005    | 0.00          | 0.00            | 0.00   | 0.00            | 0.39            | 0.03   | 0.14            | 0.43            |
| 2006    | 0.00          | 0.00            | 0.00   | 0.00            | 0.56            | 0.02   | 0.08            | 0.34            |
| 2007    | 0.00          | 0.00            | 0.00   | 0.02            | 0.42            | 0.17   | 0.02            | 0.37            |
| 2008    | 0.00          | 0.00            | 0.00   | 0.00            | 0.32            | 0.07   | 0.02            | 0.58            |
| 2009    | 0.00          | 0.00            | 0.02   | 0.00            | 0.47            | 0.04   | 0.01            | 0.47            |
| 2010    | 0.00          | 0.00            | 0.01   | 0.00            | 0.27            | 0.02   | 0.02            | 0.69            |
| 2011    | 0.00          | 0.00            | 0.22   | 0.03            | 0.31            | 0.04   | 0.02            | 0.37            |
| Average | 0.00          | 0.00            | 0.01   | 0.03            | 0.43            | 0.06   | 0.13            | 0.34            |

Table A.32. Proportion of recreationally landed Gulf of Maine Atlantic cod reported on Vessel Trip Reports (VTRs) by month from 1994 to 2011. Recreational vessels are prohibited from possessing Gulf of Maine Atlantic cod in the months shaded grey. Since May 1, 2006 recreational possession was prohibited from November 1<sup>st</sup> to March 31<sup>st</sup>. In 2009 the prohibition period was extended to November 1<sup>st</sup> to April 15<sup>th</sup>.

| Year    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1994    | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.17 | 0.15 | 0.22 | 0.13 | 0.16 | 0.03 | 0.11 |
| 1995    | 0.02 | 0.02 | 0.02 | 0.10 | 0.16 | 0.16 | 0.12 | 0.16 | 0.10 | 0.05 | 0.06 | 0.01 |
| 1996    | 0.00 | 0.00 | 0.02 | 0.14 | 0.22 | 0.18 | 0.14 | 0.15 | 0.09 | 0.05 | 0.00 | 0.00 |
| 1997    | 0.00 | 0.00 | 0.01 | 0.14 | 0.23 | 0.16 | 0.15 | 0.15 | 0.10 | 0.05 | 0.01 | 0.00 |
| 1998    | 0.00 | 0.00 | 0.01 | 0.15 | 0.21 | 0.19 | 0.17 | 0.12 | 0.10 | 0.04 | 0.01 | 0.00 |
| 1999    | 0.00 | 0.00 | 0.02 | 0.20 | 0.24 | 0.14 | 0.13 | 0.12 | 0.09 | 0.05 | 0.01 | 0.00 |
| 2000    | 0.00 | 0.01 | 0.03 | 0.18 | 0.22 | 0.15 | 0.13 | 0.12 | 0.11 | 0.05 | 0.01 | 0.00 |
| 2001    | 0.01 | 0.03 | 0.06 | 0.15 | 0.18 | 0.16 | 0.16 | 0.12 | 0.09 | 0.04 | 0.01 | 0.00 |
| 2002    | 0.01 | 0.02 | 0.05 | 0.25 | 0.19 | 0.14 | 0.14 | 0.10 | 0.07 | 0.02 | 0.01 | 0.00 |
| 2003    | 0.00 | 0.00 | 0.02 | 0.12 | 0.24 | 0.16 | 0.15 | 0.15 | 0.09 | 0.04 | 0.01 | 0.01 |
| 2004    | 0.00 | 0.01 | 0.01 | 0.14 | 0.27 | 0.17 | 0.13 | 0.12 | 0.09 | 0.04 | 0.02 | 0.00 |
| 2005    | 0.00 | 0.00 | 0.03 | 0.15 | 0.17 | 0.21 | 0.13 | 0.14 | 0.10 | 0.03 | 0.03 | 0.00 |
| 2006    | 0.01 | 0.02 | 0.09 | 0.19 | 0.18 | 0.18 | 0.13 | 0.09 | 0.08 | 0.03 | 0.00 | 0.00 |
| 2007    | 0.00 | 0.00 | 0.00 | 0.16 | 0.23 | 0.17 | 0.14 | 0.12 | 0.12 | 0.05 | 0.00 | 0.00 |
| 2008    | 0.00 | 0.00 | 0.00 | 0.20 | 0.26 | 0.17 | 0.13 | 0.11 | 0.08 | 0.06 | 0.00 | 0.00 |
| 2009    | 0.00 | 0.00 | 0.00 | 0.17 | 0.30 | 0.17 | 0.10 | 0.09 | 0.11 | 0.06 | 0.00 | 0.00 |
| 2010    | 0.00 | 0.00 | 0.00 | 0.14 | 0.25 | 0.23 | 0.12 | 0.13 | 0.08 | 0.04 | 0.00 | 0.00 |
| 2011    | 0.00 | 0.00 | 0.00 | 0.13 | 0.27 | 0.24 | 0.15 | 0.11 | 0.08 | 0.03 | 0.00 | 0.00 |
| Average | 0.00 | 0.01 | 0.02 | 0.15 | 0.21 | 0.18 | 0.14 | 0.13 | 0.09 | 0.05 | 0.01 | 0.01 |

Table A.33. Proportion of recreationally caught (type A, B1 and B2) Gulf of Maine Atlantic cod by sampling wave as estimated by the Marine Recreational Information Program between 1981 and 2011.

| Veen    | Wave |      |      |      |      |  |  |  |  |
|---------|------|------|------|------|------|--|--|--|--|
| Year    | 2    | 3    | 4    | 5    | 6    |  |  |  |  |
| 1981    | 0.16 | 0.63 | 0.11 | 0.10 | 0.00 |  |  |  |  |
| 1982    | 0.33 | 0.29 | 0.22 | 0.16 | 0.01 |  |  |  |  |
| 1983    | 0.11 | 0.29 | 0.26 | 0.32 | 0.02 |  |  |  |  |
| 1984    | 0.08 | 0.40 | 0.39 | 0.12 | 0.01 |  |  |  |  |
| 1985    | 0.19 | 0.53 | 0.16 | 0.09 | 0.02 |  |  |  |  |
| 1986    | 0.22 | 0.13 | 0.21 | 0.26 | 0.18 |  |  |  |  |
| 1987    | 0.41 | 0.26 | 0.11 | 0.12 | 0.11 |  |  |  |  |
| 1988    | 0.04 | 0.41 | 0.12 | 0.41 | 0.02 |  |  |  |  |
| 1989    | 0.04 | 0.35 | 0.25 | 0.29 | 0.06 |  |  |  |  |
| 1990    | 0.11 | 0.46 | 0.15 | 0.25 | 0.03 |  |  |  |  |
| 1991    | 0.14 | 0.49 | 0.06 | 0.20 | 0.10 |  |  |  |  |
| 1992    | 0.26 | 0.24 | 0.19 | 0.29 | 0.03 |  |  |  |  |
| 1993    | 0.17 | 0.39 | 0.17 | 0.20 | 0.07 |  |  |  |  |
| 1994    | 0.05 | 0.31 | 0.20 | 0.14 | 0.31 |  |  |  |  |
| 1995    | 0.18 | 0.23 | 0.08 | 0.41 | 0.10 |  |  |  |  |
| 1996    | 0.12 | 0.32 | 0.19 | 0.21 | 0.15 |  |  |  |  |
| 1997    | 0.31 | 0.28 | 0.18 | 0.07 | 0.16 |  |  |  |  |
| 1998    | 0.30 | 0.26 | 0.23 | 0.06 | 0.16 |  |  |  |  |
| 1999    | 0.33 | 0.22 | 0.16 | 0.23 | 0.06 |  |  |  |  |
| 2000    | 0.22 | 0.37 | 0.16 | 0.20 | 0.04 |  |  |  |  |
| 2001    | 0.12 | 0.31 | 0.22 | 0.23 | 0.12 |  |  |  |  |
| 2002    | 0.17 | 0.28 | 0.19 | 0.17 | 0.19 |  |  |  |  |
| 2003    | 0.19 | 0.40 | 0.18 | 0.15 | 0.09 |  |  |  |  |
| 2004    | 0.06 | 0.39 | 0.13 | 0.27 | 0.14 |  |  |  |  |
| 2005    | 0.21 | 0.36 | 0.25 | 0.12 | 0.07 |  |  |  |  |
| 2006    | 0.20 | 0.32 | 0.31 | 0.15 | 0.03 |  |  |  |  |
| 2007    | 0.22 | 0.30 | 0.25 | 0.12 | 0.10 |  |  |  |  |
| 2008    | 0.07 | 0.54 | 0.27 | 0.12 | 0.00 |  |  |  |  |
| 2009    | 0.11 | 0.57 | 0.16 | 0.12 | 0.03 |  |  |  |  |
| 2010    | 0.13 | 0.45 | 0.20 | 0.22 | 0.00 |  |  |  |  |
| 2011    | 0.04 | 0.69 | 0.17 | 0.08 | 0.02 |  |  |  |  |
| Average | 0.17 | 0.37 | 0.19 | 0.19 | 0.08 |  |  |  |  |

| Year    | СТ   | FL   | MA   | ME   | NH   | NJ   | NK   | NY   | RI   | VA   |
|---------|------|------|------|------|------|------|------|------|------|------|
| 1994    | 0.00 | 0.00 | 0.59 | 0.32 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1995    | 0.00 | 0.00 | 0.72 | 0.18 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1996    | 0.00 | 0.00 | 0.69 | 0.21 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1997    | 0.00 | 0.00 | 0.63 | 0.25 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1998    | 0.00 | 0.00 | 0.59 | 0.27 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1999    | 0.00 | 0.00 | 0.67 | 0.19 | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
| 2000    | 0.00 | 0.00 | 0.67 | 0.17 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2001    | 0.00 | 0.00 | 0.71 | 0.13 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2002    | 0.00 | 0.00 | 0.64 | 0.11 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2003    | 0.00 | 0.00 | 0.66 | 0.14 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2004    | 0.00 | 0.00 | 0.60 | 0.12 | 0.26 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| 2005    | 0.00 | 0.00 | 0.56 | 0.10 | 0.33 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| 2006    | 0.00 | 0.00 | 0.55 | 0.13 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2007    | 0.00 | 0.00 | 0.48 | 0.17 | 0.34 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
| 2008    | 0.00 | 0.00 | 0.52 | 0.15 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2009    | 0.00 | 0.00 | 0.50 | 0.17 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2010    | 0.00 | 0.00 | 0.54 | 0.11 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2011    | 0.00 | 0.02 | 0.62 | 0.07 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Average | 0.00 | 0.00 | 0.61 | 0.17 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Table A.34. Proportion of recreationally landed Gulf of Maine Atlantic cod reported on Vessel Trip Reports (VTRs) by state from 1994 to 2011.

| Table A.35. Proportion of recreationally | / landed Gulf of Maine | Atlantic cod reported on | Vessel Trip Reports | (VTRs) by statistical area |
|------------------------------------------|------------------------|--------------------------|---------------------|----------------------------|
| from 1994 to 2011.                       |                        |                          |                     |                            |

| Year    | 464  | 465  | 510  | 511  | 512  | 513  | 514  | 515  |
|---------|------|------|------|------|------|------|------|------|
| 1994    | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.29 | 0.43 | 0.26 |
| 1995    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.51 | 0.12 |
| 1996    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.59 | 0.03 |
| 1997    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.48 | 0.51 | 0.01 |
| 1998    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.49 | 0.50 | 0.01 |
| 1999    | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.39 | 0.58 | 0.02 |
| 2000    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.61 | 0.05 |
| 2001    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 | 0.66 | 0.03 |
| 2002    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.60 | 0.03 |
| 2003    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.54 | 0.10 |
| 2004    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.62 | 0.04 |
| 2005    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.57 | 0.04 |
| 2006    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 0.54 | 0.05 |
| 2007    | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.45 | 0.52 | 0.01 |
| 2008    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.44 | 0.54 | 0.02 |
| 2009    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 0.58 | 0.00 |
| 2010    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.45 | 0.50 | 0.06 |
| 2011    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 | 0.66 | 0.03 |
| Average | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.56 | 0.05 |

Table A.36. Length sampling intensity of recreationally harvested (type A, and B1) Gulf of Maine Atlantic cod by semester and year as estimated by the Marine Recreational Information Program from 1981 to 2011. Sampling intensity is expressed as metric tons of landings per 100 lengths sampled (*200 metric tons per 100 lengths is an unofficial NAFO/ICNAF standard*).

| Year | Semester |     |       | A D1 astimated | A D 1 L andings | Longths nor | mt nor 100 |
|------|----------|-----|-------|----------------|-----------------|-------------|------------|
|      | 1        | 2   | Total | numbers (000s) | (mt)            | 1000 fish   | lengths    |
| 1981 | 355      | 366 | 721   | 2011.2         | 4111.5          | 0.4         | 570.3      |
| 1982 | 320      | 276 | 596   | 1368.7         | 2816.7          | 0.4         | 472.6      |
| 1983 | 609      | 560 | 1169  | 937.1          | 1772.8          | 1.2         | 151.7      |
| 1984 | 394      | 391 | 785   | 678.9          | 1266.8          | 1.2         | 161.4      |
| 1985 | 272      | 155 | 427   | 1212.5         | 2765.9          | 0.4         | 647.7      |
| 1986 | 77       | 90  | 167   | 734.0          | 1928.4          | 0.2         | 1154.8     |
| 1987 | 167      | 367 | 534   | 1504.5         | 3547.2          | 0.4         | 664.3      |
| 1988 | 325      | 213 | 538   | 943.2          | 1688.5          | 0.6         | 313.9      |
| 1989 | 208      | 352 | 560   | 893.2          | 1957.2          | 0.6         | 349.5      |
| 1990 | 160      | 210 | 370   | 930.9          | 2246.7          | 0.4         | 607.2      |
| 1991 | 377      | 83  | 460   | 1023.1         | 2287.2          | 0.4         | 497.2      |
| 1992 | 710      | 268 | 978   | 238.4          | 623.6           | 4.1         | 63.8       |
| 1993 | 136      | 200 | 336   | 568.3          | 1011.9          | 0.6         | 301.2      |
| 1994 | 333      | 485 | 818   | 392.9          | 721.7           | 2.1         | 88.2       |
| 1995 | 663      | 434 | 1097  | 378.6          | 627.2           | 2.9         | 57.2       |
| 1996 | 585      | 515 | 1100  | 260.0          | 498.6           | 4.2         | 45.3       |
| 1997 | 190      | 392 | 582   | 105.0          | 236.3           | 5.5         | 40.6       |
| 1998 | 447      | 215 | 662   | 144.2          | 353.1           | 4.6         | 53.3       |
| 1999 | 111      | 117 | 228   | 184.7          | 577.2           | 1.2         | 253.1      |
| 2000 | 70       | 77  | 147   | 388.5          | 967.1           | 0.4         | 657.9      |
| 2001 | 124      | 121 | 245   | 755.6          | 1967.6          | 0.3         | 803.1      |
| 2002 | 181      | 196 | 377   | 409.1          | 1254.8          | 0.9         | 332.8      |
| 2003 | 361      | 322 | 683   | 454.9          | 1607.7          | 1.5         | 235.4      |
| 2004 | 422      | 473 | 895   | 379.4          | 1150.9          | 2.4         | 128.6      |
| 2005 | 391      | 382 | 773   | 446.9          | 1346.9          | 1.7         | 174.2      |
| 2006 | 681      | 155 | 836   | 188.7          | 702.3           | 4.4         | 84.0       |
| 2007 | 479      | 220 | 699   | 303.5          | 1042.2          | 2.3         | 149.1      |
| 2008 | 590      | 231 | 821   | 382.6          | 1267.2          | 2.1         | 154.3      |
| 2009 | 852      | 488 | 1340  | 386.9          | 1357.1          | 3.5         | 101.3      |
| 2010 | 621      | 508 | 1129  | 503.9          | 1758.2          | 2.2         | 155.7      |
| 2011 | 711      | 496 | 1207  | 516.0          | 1799.1          | 2.3         | 149.1      |

Table A.37. Percentage of recreationally discarded (type B2) Gulf of Maine Atlantic cod by mode and area as estimated by the Marine Recreational Information Program from 1981 to 2011. *\*The summary only includes catch from Maine, New Hampshire and Massachusetts. The 'Shore' category includes man-made and beach catch. Due to the proration step that is required to split Massachusetts landed fish between the Gulf of Maine and Georges Bank, these estimates are not directly translatable to the aggregate estimates of Gulf of Maine recreational catch; they are provided for informational purposes only.* 

|         | Shore (beach/bank/structure) |                      |        | Party/charter  |               | Private/rental |                 |                     |
|---------|------------------------------|----------------------|--------|----------------|---------------|----------------|-----------------|---------------------|
| Year    | Inland                       | $Ocean \leq 3 miles$ | Inland | Ocean ≤3 miles | Ocean≥3 miles | Inland         | Ocean ≤ 3 miles | $Ocean \ge 3 miles$ |
| 1981    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.16          | 0.11           | 0.63            | 0.10                |
| 1982    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.44          | 0.01           | 0.26            | 0.29                |
| 1983    | 0.00                         | 0.04                 | 0.00   | 0.00           | 0.15          | 0.10           | 0.54            | 0.17                |
| 1984    | 0.01                         | 0.00                 | 0.00   | 0.03           | 0.26          | 0.00           | 0.45            | 0.25                |
| 1985    | 0.01                         | 0.00                 | 0.00   | 0.23           | 0.35          | 0.02           | 0.03            | 0.36                |
| 1986    | 0.00                         | 0.00                 | 0.01   | 0.16           | 0.36          | 0.06           | 0.19            | 0.21                |
| 1987    | 0.00                         | 0.00                 | 0.00   | 0.29           | 0.47          | 0.02           | 0.08            | 0.14                |
| 1988    | 0.00                         | 0.00                 | 0.02   | 0.04           | 0.49          | 0.01           | 0.12            | 0.31                |
| 1989    | 0.00                         | 0.00                 | 0.04   | 0.06           | 0.37          | 0.14           | 0.08            | 0.30                |
| 1990    | 0.00                         | 0.00                 | 0.02   | 0.06           | 0.44          | 0.02           | 0.08            | 0.38                |
| 1991    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.35          | 0.04           | 0.09            | 0.51                |
| 1992    | 0.00                         | 0.03                 | 0.00   | 0.00           | 0.34          | 0.05           | 0.07            | 0.50                |
| 1993    | 0.00                         | 0.00                 | 0.00   | 0.01           | 0.65          | 0.04           | 0.14            | 0.16                |
| 1994    | 0.00                         | 0.00                 | 0.00   | 0.01           | 0.37          | 0.22           | 0.13            | 0.27                |
| 1995    | 0.00                         | 0.00                 | 0.00   | 0.05           | 0.68          | 0.04           | 0.06            | 0.17                |
| 1996    | 0.00                         | 0.00                 | 0.01   | 0.03           | 0.56          | 0.02           | 0.06            | 0.34                |
| 1997    | 0.00                         | 0.00                 | 0.03   | 0.10           | 0.56          | 0.04           | 0.06            | 0.22                |
| 1998    | 0.00                         | 0.00                 | 0.00   | 0.06           | 0.52          | 0.02           | 0.12            | 0.28                |
| 1999    | 0.00                         | 0.00                 | 0.00   | 0.03           | 0.44          | 0.01           | 0.11            | 0.42                |
| 2000    | 0.00                         | 0.00                 | 0.01   | 0.01           | 0.48          | 0.03           | 0.18            | 0.29                |
| 2001    | 0.00                         | 0.00                 | 0.03   | 0.01           | 0.21          | 0.13           | 0.22            | 0.39                |
| 2002    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.14          | 0.03           | 0.25            | 0.58                |
| 2003    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.23          | 0.00           | 0.12            | 0.65                |
| 2004    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.29          | 0.20           | 0.10            | 0.41                |
| 2005    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.39          | 0.04           | 0.13            | 0.44                |
| 2006    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.55          | 0.03           | 0.07            | 0.36                |
| 2007    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.41          | 0.14           | 0.02            | 0.44                |
| 2008    | 0.00                         | 0.00                 | 0.00   | 0.00           | 0.34          | 0.09           | 0.02            | 0.55                |
| 2009    | 0.00                         | 0.00                 | 0.01   | 0.00           | 0.46          | 0.05           | 0.00            | 0.47                |
| 2010    | 0.00                         | 0.00                 | 0.01   | 0.00           | 0.25          | 0.02           | 0.02            | 0.71                |
| 2011    | 0.00                         | 0.00                 | 0.23   | 0.03           | 0.28          | 0.04           | 0.02            | 0.41                |
| Average | 0.00                         | 0.00                 | 0.01   | 0.04           | 0.39          | 0.06           | 0.14            | 0.36                |
Table A.38. Length sampling intensity of recreationally discarded (type B2) Gulf of Maine Atlantic cod by semester and year as estimated by the Marine Recreational Information Program from 2005 to 2011. Length samples of recreationally discarded (i9 samples) Atlantic cod were unavailable prior to 2005. Sampling intensity is expressed as metric tons landings per 100 lengths sampled (*200 metric tons per 100 lengths is an unofficial NAFO/ICNAF standard*).

|      | Sem  | ester    |       | B2       | B2       | Lengths per | Metric tons |
|------|------|----------|-------|----------|----------|-------------|-------------|
| Year | 1    | 2        | Total | releases | releases | thousand    | per 100     |
|      | 1    | <u>_</u> |       | (000s)   | (mt)     | fish        | lengths     |
| 2005 | 577  | 624      | 1201  | 1038.1   | 891.0    | 1.2         | 208.1       |
| 2006 | 952  | 599      | 1551  | 708.4    | 646.7    | 2.2         | 162.9       |
| 2007 | 728  | 846      | 1574  | 964.4    | 1056.2   | 1.6         | 216.2       |
| 2008 | 1258 | 709      | 1967  | 952.1    | 1051.2   | 2.1         | 156.4       |
| 2009 | 765  | 889      | 1654  | 826.0    | 974.8    | 2.0         | 216.2       |
| 2010 | 715  | 1024     | 1739  | 1049.4   | 1281.6   | 1.7         | 243.2       |
| 2011 | 493  | 937      | 1430  | 892.4    | 1114.1   | 1.6         | 290.1       |

|      | M             | RIP                    | MR            | FSS                    | Ratio         |              |  |  |
|------|---------------|------------------------|---------------|------------------------|---------------|--------------|--|--|
|      | Landings, AB1 |                        | Landings, AB1 |                        |               |              |  |  |
| Year | (numbers)     | Releases, B2 (numbers) | (numbers)     | Releases B2, (numbers) | Landings, AB1 | Releases, B2 |  |  |
| 2004 | 379,444       | 736,820                | 536,147       | 885,537                | 0.708         | 0.832        |  |  |
| 2005 | 446,894       | 1,038,133              | 590,390       | 1,356,379              | 0.757         | 0.765        |  |  |
| 2006 | 188,699       | 708,360                | 227,980       | 763,402                | 0.828         | 0.928        |  |  |
| 2007 | 303,540       | 964,427                | 309,786       | 1,180,096              | 0.980         | 0.817        |  |  |
| 2008 | 382,555       | 952,120                | 477,913       | 1,281,510              | 0.800         | 0.743        |  |  |
| 2009 | 386,913       | 826,019                | 478,765       | 1,130,115              | 0.808         | 0.731        |  |  |
| 2010 | 503,887       | 1,049,409              | 1,041,480     | 2,000,702              | 0.484         | 0.525        |  |  |
| 2011 | 516,049       | 892,438                | 526,101       | 882,038                | 0.981         | 1.012        |  |  |
| Sum  | 3,107,981     | 7,167,726              | 4,188,561     | 9,479,780              | 0.742         | 0.756        |  |  |

Table A.39. Annual ratios of Marine Recreational Fisheries Statistical Survey (MRFSS) and Marine Recreational Information Program (MRIP) catch estimates and aggregate time series ratios (ratio of means).

Table A.40. Relative difference between SAW 53 recreational catch estimates (numbers) and the unadjusted updated Marine Recreational Fisheries Statistical Survey (MRFSS) estimates. Positive numbers indicate SAW 53 estimates were larger (e.g., 0.50 implies the updated estimates are 50% lower than the SAW 53 estimates).

| Relative d | ifference between S | ARC 53 numbers a | nd adjusted MRFSS     | S numbers          |
|------------|---------------------|------------------|-----------------------|--------------------|
| Year       | Туре А              | Туре В           | Type AB1<br>(harvest) | Type B2 (releases) |
| 1981       | -0.04               | 0.00             | -0.02                 | 0.00               |
| 1982       | 0.01                | 0.00             | 0.00                  | 0.00               |
| 1983       | -0.01               | 0.00             | 0.00                  | 0.00               |
| 1984       | -0.01               | 0.00             | 0.00                  | 0.00               |
| 1985       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1986       | 0.01                | 0.00             | 0.00                  | 0.00               |
| 1987       | 0.01                | 0.00             | 0.00                  | 0.00               |
| 1988       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1989       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1990       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1991       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1992       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1993       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1994       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1995       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1996       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1997       | -0.04               | 0.00             | -0.01                 | 0.00               |
| 1998       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 1999       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 2000       | -0.01               | 0.00             | 0.00                  | 0.00               |
| 2001       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 2002       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 2003       | 0.00                | 0.00             | 0.00                  | 0.00               |
| 2004       | -0.19               | 0.06             | -0.01                 | 0.01               |
| 2005       | 0.03                | -0.01            | 0.00                  | -0.08              |
| 2006       | -0.01               | 0.00             | 0.00                  | -0.12              |
| 2007       | -0.03               | 0.00             | -0.01                 | -0.15              |
| 2008       | -0.02               | 0.00             | 0.00                  | -0.10              |
| 2009       | -0.01               | 0.00             | 0.00                  | -0.07              |
| 2010       | -0.11               | -0.03            | -0.04                 | -0.07              |

Table A.41. Relative difference between SAW 53 recreational catch estimates (numbers) and the updated Marine Recreational Information Program (MRIP) estimates. Positive numbers indicate SAW 53 estimates were larger (e.g., 0.50 implies the updated estimates are 50% lower than the SAW 53 estimates).

| Vear | Type AB1  | Type B2    |
|------|-----------|------------|
| rear | (harvest) | (releases) |
| 1981 | 0.24      | 0.24       |
| 1982 | 0.26      | 0.24       |
| 1983 | 0.25      | 0.24       |
| 1984 | 0.25      | 0.24       |
| 1985 | 0.26      | 0.24       |
| 1986 | 0.26      | 0.24       |
| 1987 | 0.26      | 0.24       |
| 1988 | 0.26      | 0.24       |
| 1989 | 0.26      | 0.24       |
| 1990 | 0.26      | 0.24       |
| 1991 | 0.26      | 0.24       |
| 1992 | 0.26      | 0.24       |
| 1993 | 0.26      | 0.24       |
| 1994 | 0.26      | 0.24       |
| 1995 | 0.26      | 0.24       |
| 1996 | 0.26      | 0.24       |
| 1997 | 0.25      | 0.24       |
| 1998 | 0.26      | 0.24       |
| 1999 | 0.26      | 0.24       |
| 2000 | 0.26      | 0.24       |
| 2001 | 0.26      | 0.24       |
| 2002 | 0.26      | 0.24       |
| 2003 | 0.26      | 0.24       |
| 2004 | 0.29      | 0.18       |
| 2005 | 0.24      | 0.18       |
| 2006 | 0.17      | -0.04      |
| 2007 | 0.01      | 0.06       |
| 2008 | 0.20      | 0.18       |
| 2009 | 0.19      | 0.22       |
| 2010 | 0.50      | 0.44       |

|      |               | Numbers                                       | s (000s)                                     |                                         |               |                                               |                                              |                                         |                           |
|------|---------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------|
| Year | Harvest (AB1) | Released (B2) w/<br>100% discard<br>mortality | Released (B2) w/<br>30% discard<br>mortality | Total catch w/ 30%<br>discard mortality | Harvest (AB1) | Released (B2) w/<br>100% discard<br>mortality | Released (B2) w/<br>30% discard<br>mortality | Total catch w/ 30%<br>discard mortality | Released:harvest<br>ratio |
| 1981 | 2011.2        | 145.1                                         | 43.5                                         | 2054.7                                  | 4111.5        | 62.8                                          | 18.8                                         | 4130.4                                  | 0.07                      |
| 1982 | 1368.7        | 71.6                                          | 21.5                                         | 1390.2                                  | 2816.7        | 27.2                                          | 8.1                                          | 2824.9                                  | 0.05                      |
| 1983 | 937.1         | 174.2                                         | 52.2                                         | 989.4                                   | 1772.8        | 58.6                                          | 17.6                                         | 1790.4                                  | 0.19                      |
| 1984 | 678.9         | 148.7                                         | 44.6                                         | 723.6                                   | 1266.8        | 55.3                                          | 16.6                                         | 1283.4                                  | 0.22                      |
| 1985 | 1212.5        | 150.9                                         | 45.3                                         | 1257.8                                  | 2765.9        | 56.2                                          | 16.9                                         | 2782.7                                  | 0.12                      |
| 1986 | 734.0         | 91.9                                          | 27.6                                         | 761.6                                   | 1928.4        | 33.7                                          | 10.1                                         | 1938.5                                  | 0.13                      |
| 1987 | 1504.5        | 428.5                                         | 128.6                                        | 1633.1                                  | 3547.2        | 160.0                                         | 48.0                                         | 3595.2                                  | 0.28                      |
| 1988 | 943.2         | 133.3                                         | 40.0                                         | 983.2                                   | 1688.5        | 45.2                                          | 13.5                                         | 1702.1                                  | 0.14                      |
| 1989 | 893.2         | 432.6                                         | 129.8                                        | 1023.0                                  | 1957.2        | 253.6                                         | 76.1                                         | 2033.2                                  | 0.48                      |
| 1990 | 930.9         | 357.6                                         | 107.3                                        | 1038.2                                  | 2246.7        | 222.4                                         | 66.7                                         | 2313.4                                  | 0.38                      |
| 1991 | 1023.1        | 310.3                                         | 93.1                                         | 1116.1                                  | 2287.2        | 226.7                                         | 68.0                                         | 2355.3                                  | 0.30                      |
| 1992 | 238.4         | 180.8                                         | 54.2                                         | 292.7                                   | 623.6         | 118.2                                         | 35.5                                         | 659.0                                   | 0.76                      |
| 1993 | 568.3         | 568.0                                         | 170.4                                        | 738.7                                   | 1011.9        | 339.8                                         | 101.9                                        | 1113.9                                  | 1.00                      |
| 1994 | 392.9         | 543.6                                         | 163.1                                        | 556.0                                   | 721.7         | 335.3                                         | 100.6                                        | 822.3                                   | 1.38                      |
| 1995 | 378.6         | 516.2                                         | 154.8                                        | 533.5                                   | 627.2         | 320.5                                         | 96.2                                         | 723.4                                   | 1.36                      |
| 1996 | 260.0         | 340.8                                         | 102.2                                        | 362.3                                   | 498.6         | 270.1                                         | 81.0                                         | 579.7                                   | 1.31                      |
| 1997 | 105.0         | 227.0                                         | 68.1                                         | 173.1                                   | 236.3         | 195.9                                         | 58.8                                         | 295.1                                   | 2.16                      |
| 1998 | 144.2         | 289.6                                         | 86.9                                         | 231.1                                   | 353.1         | 240.8                                         | 72.2                                         | 425.3                                   | 2.01                      |
| 1999 | 184.7         | 359.7                                         | 107.9                                        | 292.6                                   | 577.2         | 238.8                                         | 71.7                                         | 648.8                                   | 1.95                      |
| 2000 | 388.5         | 696.2                                         | 208.8                                        | 597.4                                   | 967.1         | 458.7                                         | 137.6                                        | 1104.7                                  | 1.79                      |
| 2001 | 755.6         | 992.0                                         | 297.6                                        | 1053.2                                  | 1967.6        | 758.3                                         | 227.5                                        | 2195.0                                  | 1.31                      |
| 2002 | 409.1         | 823.5                                         | 247.1                                        | 656.1                                   | 1254.8        | 956.2                                         | 286.9                                        | 1541.7                                  | 2.01                      |
| 2003 | 454.9         | 837.8                                         | 251.3                                        | 706.3                                   | 1607.7        | 941.4                                         | 282.4                                        | 1890.1                                  | 1.84                      |
| 2004 | 379.4         | 736.8                                         | 221.0                                        | 600.5                                   | 1150.9        | 671.2                                         | 201.4                                        | 1352.2                                  | 1.94                      |
| 2005 | 446.9         | 1038.1                                        | 311.4                                        | 758.3                                   | 1346.9        | 891.0                                         | 267.3                                        | 1614.2                                  | 2.32                      |
| 2006 | 188.7         | 708.4                                         | 212.5                                        | 401.2                                   | 702.3         | 646.7                                         | 194.0                                        | 896.3                                   | 3.75                      |
| 2007 | 303.5         | 964.4                                         | 289.3                                        | 592.9                                   | 1042.2        | 1056.2                                        | 316.9                                        | 1359.1                                  | 3.18                      |
| 2008 | 382.6         | 952.1                                         | 285.6                                        | 668.2                                   | 1267.2        | 1051.2                                        | 315.4                                        | 1582.6                                  | 2.49                      |
| 2009 | 386.9         | 826.0                                         | 247.8                                        | 634.7                                   | 1357.1        | 974.8                                         | 292.4                                        | 1649.6                                  | 2.13                      |
| 2010 | 503.9         | 1049.4                                        | 314.8                                        | 818.7                                   | 1758.2        | 1281.6                                        | 384.5                                        | 2142.6                                  | 2.08                      |
| 2011 | 516.0         | 892.4                                         | 267.7                                        | 783.8                                   | 1799.1        | 1114.1                                        | 334.2                                        | 2133.3                                  | 1.73                      |

Table A.42. Estimates of Gulf of Maine Atlantic cod recreational catch in numbers (000's) and weight (mt). Recreational releases are shown using both the 100% discard mortality (grey) and Discard WG revised 30% mortality assumptions.

Table A.43. Percent standard error (PSE) of Gulf of Maine Atlantic cod recreational catch estimates (A, B1 and B2) by state by the Marine Recreational Information Program between 1981 and 2011. \*Note: due to the proration step that is required to split Massachusetts landed fish between the Gulf of Maine and Georges Bank, these estimates of PSE are not directly translatable to the aggregate estimates of Gulf of Maine recreational catch. The PSEs are provided for informational purposes only.

| Year    | Maine | New Hampshire | Massachusetts |
|---------|-------|---------------|---------------|
| 1981    | 35.7  | 24.6          | 23.4          |
| 1982    | 22.0  | 47.1          | 39.1          |
| 1983    | 20.6  | 18.5          | 13.6          |
| 1984    | 16.7  | 14.7          | 13.9          |
| 1985    | 24.2  | 26.3          | 23.3          |
| 1986    | 18.4  | 24.0          | 22.6          |
| 1987    | 40.4  | 36.1          | 14.3          |
| 1988    | 75.4  | 25.6          | 10.6          |
| 1989    | 21.1  | 19.6          | 14.6          |
| 1990    | 29.8  | 24.9          | 11.2          |
| 1991    | 33.9  | 36.5          | 9.5           |
| 1992    | 43.3  | 31.1          | 13.5          |
| 1993    | 33.6  | 30.2          | 13.1          |
| 1994    | 32.2  | 31.3          | 9.2           |
| 1995    | 34.9  | 16.3          | 11.2          |
| 1996    | 38.6  | 20.2          | 13.2          |
| 1997    | 36.3  | 23.8          | 17.6          |
| 1998    | 47.0  | 17.9          | 17.4          |
| 1999    | 43.7  | 14.7          | 17.7          |
| 2000    | 21.9  | 12.6          | 14.5          |
| 2001    | 26.1  | 10.6          | 8.0           |
| 2002    | 20.3  | 11.9          | 9.1           |
| 2003    | 28.1  | 11.7          | 9.5           |
| 2004    | 40.5  | 15.5          | 19.7          |
| 2005    | 21.5  | 14.8          | 15.1          |
| 2006    | 16.6  | 10.9          | 13.9          |
| 2007    | 32.7  | 14.4          | 16.8          |
| 2008    | 23.0  | 14.9          | 17.7          |
| 2009    | 17.1  | 13.6          | 18.0          |
| 2010    | 20.0  | 12.1          | 17.6          |
| 2011    | 27.6  | 18.9          | 12.0          |
| Average | 30.4  | 20.8          | 15.5          |

| Year | Age0 | Age1    | Age2    | Age3    | Age4    | Age5    | Age6   | Age7   | Age8   | Age9  | Age10  | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 |
|------|------|---------|---------|---------|---------|---------|--------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-------|
| 1981 |      | 159,922 | 623,992 | 622,091 | 426,564 | 69,951  | 42,612 | 7,392  | 29,365 |       | 25,105 |       | 4,184 |       |       |       |       |
| 1982 | 765  | 67,908  | 420,464 | 427,446 | 263,437 | 129,184 | 14,639 | 24,905 | 13,178 | 3,904 | 574    |       | 2,296 |       |       |       |       |
| 1983 |      | 14,924  | 315,694 | 339,632 | 128,267 | 76,679  | 45,287 | 5,810  | 4,873  | 1,777 | 1,390  | 802   | 2,004 |       |       |       |       |
| 1984 |      | 11,741  | 224,928 | 226,199 | 139,013 | 40,743  | 23,707 | 9,247  | 390    | 420   | 350    | 627   |       | 432   | 1,153 |       |       |
| 1985 |      | 35,163  | 368,684 | 438,416 | 149,622 | 123,096 | 38,047 | 33,994 | 15,929 | 2,206 | 5,509  | 316   | 1,005 | 532   |       |       |       |
| 1986 |      | 21,723  | 120,551 | 351,802 | 124,583 | 39,540  | 40,989 | 9,316  | 10,691 | 6,281 | 3,579  | 865   | 3,202 | 865   |       |       |       |
| 1987 |      | 16,878  | 348,751 | 517,856 | 457,592 | 77,647  | 24,836 | 35,051 | 8,978  | 8,452 | 6,339  | 1,878 | 282   |       |       |       |       |
| 1988 |      | 3,134   | 197,888 | 449,655 | 225,659 | 46,787  | 8,638  | 3,696  | 6,000  |       |        | 1,753 |       |       |       |       |       |
| 1989 |      | 3,619   | 116,660 | 436,314 | 242,898 | 64,122  | 15,197 | 10,911 | 1,329  | 2,127 |        |       |       |       |       |       |       |
| 1990 |      | 2,812   | 40,204  | 449,749 | 295,754 | 87,368  | 36,966 | 4,457  | 11,742 | 1,887 |        |       |       |       |       |       |       |
| 1991 |      | 3,614   | 35,323  | 152,702 | 701,569 | 106,170 | 11,169 | 12,368 |        |       | 143    |       |       |       |       |       |       |
| 1992 |      | 2,101   | 21,451  | 43,626  | 35,194  | 123,077 | 10,143 | 2,642  | 193    |       |        |       |       |       |       |       |       |
| 1993 |      | 1,913   | 42,807  | 343,796 | 133,450 | 10,536  | 32,237 | 3,594  |        |       |        |       |       |       |       |       |       |
| 1994 |      | 475     | 13,965  | 243,207 | 103,423 | 24,535  | 2,404  | 3,971  | 600    | 370   |        |       |       |       |       |       |       |
| 1995 |      | 25      | 35,494  | 187,086 | 144,820 | 9,965   | 1,024  |        | 192    |       |        |       |       |       |       |       |       |
| 1996 |      |         | 11,977  | 64,661  | 162,532 | 19,752  | 850    | 34     |        | 236   |        |       |       |       |       |       |       |
| 1997 |      | 78      | 5,075   | 31,836  | 21,300  | 42,823  | 3,631  | 35     | 192    |       |        |       |       |       |       |       |       |
| 1998 | 218  |         | 9,310   | 52,886  | 52,992  | 11,547  | 15,851 | 1,107  | 315    |       |        |       |       |       |       |       |       |
| 1999 |      | 552     | 5,301   | 53,525  | 61,018  | 39,039  | 9,650  | 14,515 | 1,105  |       |        |       |       |       |       |       |       |
| 2000 |      |         | 52,606  | 130,285 | 163,854 | 25,350  | 10,670 | 2,007  | 3,741  |       |        |       |       |       |       |       |       |
| 2001 |      |         | 42,329  | 386,498 | 214,243 | 84,322  | 17,177 | 9,279  | 1,320  | 464   |        |       |       |       |       |       |       |
| 2002 |      |         | 310     | 57,771  | 233,715 | 73,361  | 23,839 | 9,622  | 6,047  | 785   | 1,454  |       | 2,170 |       |       |       |       |
| 2003 |      |         | 4,884   | 37,189  | 149,359 | 188,046 | 41,113 | 18,104 | 7,470  | 5,073 | 1,170  | 1,724 | 817   |       |       |       |       |
| 2004 |      |         | 97      | 98,544  | 72,720  | 129,126 | 58,696 | 11,806 | 4,675  | 1,764 | 1,182  | 224   | 609   |       |       |       |       |
| 2005 |      |         | 3,181   | 47,690  | 280,723 | 19,902  | 57,931 | 23,160 | 6,401  | 4,575 | 1,601  | 830   | 649   | 251   |       |       |       |
| 2006 |      |         | 167     | 29,903  | 47,416  | 78,493  | 5,155  | 14,283 | 7,461  | 2,864 | 1,753  | 636   | 344   | 184   | 41    |       |       |
| 2007 |      |         | 1,762   | 35,777  | 186,312 | 25,702  | 42,350 | 1,937  | 3,598  | 2,781 | 1,394  | 737   | 392   | 595   | 96    | 109   |       |
| 2008 |      |         | 3,945   | 93,103  | 123,240 | 101,819 | 27,956 | 26,590 | 1,476  | 2,097 | 2,330  |       |       |       |       |       |       |
| 2009 |      |         | 1,529   | 74,035  | 162,755 | 66,702  | 66,208 | 3,325  | 8,426  | 210   | 1,685  | 931   | 914   | 192   |       |       |       |
| 2010 |      |         | 10,155  | 93,506  | 204,897 | 141,754 | 37,562 | 9,467  | 3,124  | 1,413 | 223    |       | 1,785 |       |       |       |       |
| 2011 |      |         | 3,419   | 88,254  | 176,415 | 150,699 | 77,558 | 8,261  | 9,161  | 1,523 | 394    | 143   | 95    | 107   | 21    |       |       |

Table A.44. Total Gulf of Maine Atlantic cod recreational landings-at-age (numbers) from 1982 to 2011.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7   | Age8   | Age9   | Age10  | Age11  | Age12  | Age13  | Age14  | Age15  | Age16 |
|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| 1981 |       | 0.341 | 0.995 | 1.524 | 2.915 | 4.715 | 5.645 | 5.863  | 8.359  |        | 12.339 |        | 18.100 |        |        |        |       |
| 1982 | 0.022 | 0.372 | 0.848 | 1.401 | 2.209 | 5.362 | 6.955 | 9.732  | 8.990  | 11.008 | 11.547 |        | 21.416 |        |        |        |       |
| 1983 |       | 0.378 | 0.791 | 1.398 | 2.401 | 3.772 | 6.032 | 6.745  | 8.393  | 9.627  | 15.175 | 19.306 | 19.182 |        |        |        |       |
| 1984 |       | 0.372 | 0.775 | 1.365 | 2.668 | 4.005 | 5.349 | 6.559  | 6.583  | 8.955  | 11.743 | 13.474 |        | 17.780 | 27.103 |        |       |
| 1985 |       | 0.346 | 0.752 | 1.281 | 2.810 | 5.310 | 6.771 | 8.645  | 11.257 | 11.854 | 12.252 | 8.049  | 9.297  | 8.332  |        |        |       |
| 1986 |       | 0.375 | 0.668 | 1.589 | 2.770 | 5.308 | 7.418 | 8.584  | 11.185 | 11.839 | 14.266 | 14.560 | 22.376 | 14.560 |        |        |       |
| 1987 |       | 0.243 | 0.900 | 1.472 | 2.696 | 4.196 | 8.162 | 10.978 | 11.301 | 12.673 | 13.141 | 13.835 | 8.332  |        |        |        |       |
| 1988 |       | 0.170 | 0.787 | 1.528 | 2.188 | 4.550 | 4.414 | 5.123  | 10.614 |        |        | 10.175 |        |        |        |        |       |
| 1989 |       | 0.539 | 0.989 | 1.500 | 2.700 | 4.579 | 6.191 | 8.715  | 7.616  | 17.137 |        |        |        |        |        |        |       |
| 1990 |       | 0.132 | 0.916 | 1.439 | 2.261 | 4.965 | 7.351 | 8.502  | 10.658 | 13.166 |        |        |        |        |        |        |       |
| 1991 |       | 0.180 | 1.088 | 1.499 | 2.025 | 3.388 | 6.933 | 13.033 |        |        | 3.838  |        |        |        |        |        |       |
| 1992 |       | 0.106 | 1.360 | 1.715 | 2.541 | 2.923 | 4.437 | 9.324  | 2.516  |        |        |        |        |        |        |        |       |
| 1993 |       | 0.184 | 0.805 | 1.566 | 1.827 | 2.890 | 3.791 | 11.707 |        |        |        |        |        |        |        |        |       |
| 1994 |       | 0.136 | 1.169 | 1.514 | 2.262 | 2.270 | 5.374 | 5.751  | 18.165 | 2.156  |        |        |        |        |        |        |       |
| 1995 |       | 0.509 | 1.432 | 1.514 | 1.769 | 3.381 | 2.479 |        | 4.244  |        |        |        |        |        |        |        |       |
| 1996 |       |       | 1.483 | 1.809 | 1.863 | 2.502 | 9.632 | 8.622  |        | 13.434 |        |        |        |        |        |        |       |
| 1997 |       | 0.307 | 1.626 | 1.924 | 2.389 | 2.396 | 2.964 | 6.038  | 11.932 |        |        |        |        |        |        |        |       |
| 1998 | 0.010 |       | 1.600 | 2.071 | 2.435 | 3.491 | 3.179 | 4.591  | 12.220 |        |        |        |        |        |        |        |       |
| 1999 |       | 0.290 | 1.296 | 1.943 | 2.951 | 3.687 | 5.490 | 5.561  | 7.637  |        |        |        |        |        |        |        |       |
| 2000 |       |       | 1.561 | 1.961 | 2.718 | 3.199 | 5.103 | 5.023  | 10.277 |        |        |        |        |        |        |        |       |
| 2001 |       |       | 1.709 | 2.199 | 2.659 | 3.732 | 5.019 | 6.259  | 10.560 | 5.813  |        |        |        |        |        |        |       |
| 2002 |       |       | 1.275 | 2.135 | 2.581 | 3.048 | 5.265 | 6.429  | 7.919  | 8.984  | 10.569 |        | 21.420 |        |        |        |       |
| 2003 |       |       | 1.954 | 2.237 | 2.525 | 3.225 | 4.822 | 8.064  | 9.802  | 11.167 | 11.115 | 15.401 | 21.534 |        |        |        |       |
| 2004 |       |       | 1.545 | 2.045 | 2.612 | 2.829 | 3.911 | 5.747  | 9.387  | 12.100 | 13.609 | 13.256 | 20.155 |        |        |        |       |
| 2005 |       |       | 1.510 | 1.968 | 2.374 | 3.566 | 3.904 | 6.089  | 7.852  | 9.766  | 13.574 | 14.627 | 16.347 | 17.544 |        |        |       |
| 2006 |       |       | 2.321 | 2.270 | 2.969 | 3.301 | 4.683 | 5.470  | 8.339  | 10.105 | 12.466 | 15.021 | 15.090 | 18.390 | 17.774 |        |       |
| 2007 |       |       | 2.226 | 2.503 | 2.965 | 3.535 | 4.418 | 5.147  | 7.863  | 11.709 | 12.713 | 14.426 | 14.231 | 16.520 | 15.964 | 19.820 |       |
| 2008 |       |       | 1.922 | 2.746 | 2.910 | 3.415 | 2.747 | 5.124  | 10.004 | 12.290 | 18.942 |        |        |        |        |        |       |
| 2009 |       |       | 2.197 | 2.506 | 3.066 | 3.518 | 4.444 | 6.371  | 8.034  | 9.777  | 10.005 | 12.269 | 18.736 | 19.782 |        |        |       |
| 2010 |       |       | 2.563 | 2.728 | 3.151 | 3.771 | 4.115 | 7.441  | 9.409  | 9.584  | 9.850  |        | 15.000 |        |        |        |       |
| 2011 |       |       | 1.798 | 2.474 | 3.032 | 3.707 | 4.577 | 5.274  | 5.624  | 12.022 | 16.019 | 18.353 | 14.407 | 19.306 | 13.835 |        |       |

Table A.45. Mean weights-at-age (kg) of recreationally landed Gulf of Maine Atlantic cod from 1982 to 2011.

Table A.46. Total Gulf of Maine Atlantic cod recreational discards-at-age (numbers) from 1982 to 2011. *These estimates include assumptions of 30% discard survival.* 

| Year | Age0 | Age1   | Age2    | Age3    | Age4    | Age5   | Age6   | Age7  | Age8 | Age9 | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 |
|------|------|--------|---------|---------|---------|--------|--------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| 1981 |      | 13,575 | 24,578  | 5,363   |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1982 |      | 5,612  | 14,535  | 1,052   | 278     |        |        |       |      |      |       |       |       |       |       |       |       |
| 1983 |      | 20,028 | 31,320  | 901     |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1984 |      | 8,107  | 33,657  | 2,856   |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1985 |      | 10,816 | 25,312  | 9,151   |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1986 |      | 7,925  | 18,474  | 492     | 675     |        |        |       |      |      |       |       |       |       |       |       |       |
| 1987 |      | 12,226 | 99,875  | 16,449  |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1988 |      | 6,688  | 28,038  | 5,279   |         |        |        |       |      |      |       |       |       |       |       |       |       |
| 1989 |      | 5,478  | 74,963  | 46,707  | 2,626   |        |        |       |      |      |       |       |       |       |       |       |       |
| 1990 |      | 1,273  | 22,214  | 75,071  | 8,729   |        |        |       |      |      |       |       |       |       |       |       |       |
| 1991 |      | 2,352  | 20,600  | 23,716  | 42,819  | 3,603  |        |       |      |      |       |       |       |       |       |       |       |
| 1992 |      | 3,446  | 24,659  | 18,197  | 2,446   | 5,287  | 198    |       |      |      |       |       |       |       |       |       |       |
| 1993 |      | 3,791  | 97,835  | 49,454  | 19,319  |        |        |       |      |      |       |       |       |       |       |       |       |
| 1994 |      | 4,326  | 65,863  | 86,959  | 5,930   |        |        |       |      |      |       |       |       |       |       |       |       |
| 1995 |      | 3,848  | 42,660  | 91,272  | 16,491  | 579    |        |       |      |      |       |       |       |       |       |       |       |
| 1996 |      | 5,817  | 21,418  | 31,232  | 40,139  | 3,642  |        |       |      |      |       |       |       |       |       |       |       |
| 1997 |      | 2,950  | 21,137  | 25,402  | 6,176   | 11,777 | 660    |       |      |      |       |       |       |       |       |       |       |
| 1998 |      | 3,376  | 37,760  | 26,503  | 17,554  | 289    | 1,398  |       |      |      |       |       |       |       |       |       |       |
| 1999 |      | 14,776 | 47,252  | 37,178  | 6,006   | 2,315  | 313    | 84    |      |      |       |       |       |       |       |       |       |
| 2000 |      | 13,781 | 137,217 | 45,526  | 11,069  | 1,145  | 112    |       |      |      |       |       |       |       |       |       |       |
| 2001 |      |        | 141,504 | 124,214 | 26,316  | 5,148  | 423    |       |      |      |       |       |       |       |       |       |       |
| 2002 |      | 6,452  | 13,217  | 110,592 | 94,169  | 21,982 | 244    |       | 394  |      |       |       |       |       |       |       |       |
| 2003 |      | 14,672 | 52,512  | 34,528  | 102,484 | 41,375 | 5,760  |       |      |      |       |       |       |       |       |       |       |
| 2004 |      | 18,746 | 33,734  | 134,010 | 14,587  | 16,564 | 3,407  |       |      |      |       |       |       |       |       |       |       |
| 2005 |      | 3,799  | 102,844 | 46,076  | 153,325 | 2,048  | 3,247  | 79    | 9    | 14   |       |       |       |       |       |       |       |
| 2006 | 27   | 8,728  | 28,442  | 121,853 | 22,392  | 28,622 | 1,369  | 530   | 542  | 5    |       |       |       |       |       |       |       |
| 2007 | 23   | 1,451  | 52,053  | 110,524 | 110,351 | 8,306  | 6,602  | 9     | 11   |      |       |       |       |       |       |       |       |
| 2008 | 110  | 4,558  | 64,400  | 117,489 | 58,727  | 37,397 | 2,826  | 131   |      |      |       |       |       |       |       |       |       |
| 2009 | 18   | 4,860  | 44,423  | 97,205  | 67,844  | 21,111 | 11,863 | 184   | 303  |      |       |       |       |       |       |       |       |
| 2010 |      | 3,552  | 48,239  | 127,212 | 78,138  | 46,935 | 9,364  | 1,382 |      |      |       |       |       |       |       |       |       |
| 2011 | 626  | 7,071  | 43,222  | 104,012 | 87,852  | 20,425 | 4,033  | 363   | 128  |      |       |       |       |       |       |       |       |

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1981 |       | 0.367 | 0.456 | 0.492 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1982 |       | 0.307 | 0.400 | 0.450 | 0.509 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1983 |       | 0.260 | 0.386 | 0.326 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1984 |       | 0.288 | 0.387 | 0.436 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1985 |       | 0.272 | 0.395 | 0.426 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1986 |       | 0.319 | 0.380 | 0.429 | 0.499 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1987 |       | 0.221 | 0.393 | 0.371 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1988 |       | 0.185 | 0.357 | 0.438 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1989 |       | 0.395 | 0.524 | 0.692 | 0.867 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1990 |       | 0.231 | 0.528 | 0.637 | 0.786 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1991 |       | 0.234 | 0.536 | 0.776 | 0.819 | 0.818 |       |       |       |       |       |       |       |       |       |       |       |
| 1992 |       | 0.217 | 0.590 | 0.724 | 0.837 | 0.902 | 0.868 |       |       |       |       |       |       |       |       |       |       |
| 1993 |       | 0.252 | 0.487 | 0.769 | 0.794 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1994 |       | 0.283 | 0.470 | 0.740 | 0.683 |       |       |       |       |       |       |       |       |       |       |       |       |
| 1995 |       | 0.302 | 0.520 | 0.635 | 0.870 | 0.931 |       |       |       |       |       |       |       |       |       |       |       |
| 1996 |       | 0.277 | 0.655 | 0.827 | 0.902 | 0.918 |       |       |       |       |       |       |       |       |       |       |       |
| 1997 |       | 0.196 | 0.685 | 0.915 | 1.095 | 1.092 | 1.294 |       |       |       |       |       |       |       |       |       |       |
| 1998 |       | 0.203 | 0.630 | 1.007 | 1.072 | 1.211 | 1.365 |       |       |       |       |       |       |       |       |       |       |
| 1999 |       | 0.301 | 0.535 | 0.869 | 1.078 | 1.157 | 1.097 | 1.456 |       |       |       |       |       |       |       |       |       |
| 2000 |       | 0.275 | 0.574 | 0.911 | 1.109 | 1.003 | 1.211 |       |       |       |       |       |       |       |       |       |       |
| 2001 |       |       | 0.581 | 0.886 | 1.098 | 1.105 | 1.290 |       |       |       |       |       |       |       |       |       |       |
| 2002 |       | 0.156 | 0.468 | 1.035 | 1.406 | 1.444 | 1.371 |       | 1.937 |       |       |       |       |       |       |       |       |
| 2003 |       | 0.345 | 0.544 | 1.223 | 1.327 | 1.507 | 1.422 |       |       |       |       |       |       |       |       |       |       |
| 2004 |       | 0.142 | 0.523 | 0.963 | 1.429 | 1.528 | 1.721 |       |       |       |       |       |       |       |       |       |       |
| 2005 |       | 0.213 | 0.509 | 1.012 | 1.050 | 1.034 | 1.316 | 1.940 | 2.516 | 1.734 |       |       |       |       |       |       |       |
| 2006 | 0.086 | 0.304 | 0.565 | 0.869 | 1.216 | 1.346 | 1.263 | 1.773 | 1.656 | 2.851 |       |       |       |       |       |       |       |
| 2007 | 0.048 | 0.167 | 0.642 | 1.062 | 1.289 | 1.603 | 1.548 | 2.768 | 3.977 |       |       |       |       |       |       |       |       |
| 2008 | 0.105 | 0.320 | 0.817 | 1.119 | 1.296 | 1.285 | 1.744 | 5.263 |       |       |       |       |       |       |       |       |       |
| 2009 | 0.057 | 0.315 | 0.803 | 1.194 | 1.338 | 1.381 | 1.544 | 2.142 | 1.739 |       |       |       |       |       |       |       |       |
| 2010 |       | 0.282 | 0.952 | 1.059 | 1.448 | 1.528 | 1.449 | 3.196 |       |       |       |       |       |       |       |       |       |
| 2011 | 0.084 | 0.322 | 0.873 | 1.341 | 1.328 | 1.497 | 1.631 | 1.834 | 2.221 |       |       |       |       |       |       |       |       |

Table A.47. Mean weights-at-age (kg) of recreationally discarded Gulf of Maine Atlantic cod from 1982 to 2011.

| Year | Age0  | Age1  | Age2   | Age3   | Age4   | Age5   | Age6  | Age7  | Age8 | Age9+ |
|------|-------|-------|--------|--------|--------|--------|-------|-------|------|-------|
| 1982 | 1.3   | 448.8 | 2926.5 | 2287.2 | 1430.7 | 748.8  | 65.9  | 94.1  | 72.6 | 90.1  |
| 1983 | 13.6  | 597.5 | 2462.0 | 2913.2 | 1201.6 | 704.0  | 452.7 | 50.0  | 62.5 | 56.2  |
| 1984 | 18.3  | 370.3 | 2129.6 | 1675.9 | 1643.6 | 437.5  | 219.6 | 105.6 | 9.5  | 53.4  |
| 1985 | 67.1  | 505.7 | 1944.3 | 2405.1 | 1151.8 | 738.1  | 161.4 | 107.2 | 48.4 | 33.2  |
| 1986 | 17.8  | 760.7 | 1747.0 | 2747.8 | 992.0  | 279.3  | 202.7 | 48.0  | 38.2 | 47.5  |
| 1987 | 100.7 | 281.8 | 2018.3 | 1568.3 | 1574.5 | 345.4  | 89.4  | 81.0  | 14.5 | 37.5  |
| 1988 | 3.4   | 415.1 | 1542.8 | 2086.6 | 1156.9 | 447.7  | 67.4  | 25.6  | 26.2 | 9.3   |
| 1989 | 0.0   | 166.4 | 1247.2 | 2385.1 | 1651.9 | 521.1  | 87.1  | 70.3  | 9.4  | 19.6  |
| 1990 | 0.0   | 65.5  | 812.5  | 5547.8 | 2717.6 | 541.4  | 189.1 | 29.7  | 36.4 | 43.3  |
| 1991 | 3.3   | 121.6 | 499.6  | 942.7  | 5561.3 | 1037.9 | 150.7 | 55.5  | 26.0 | 15.8  |
| 1992 | 23.8  | 370.3 | 830.1  | 867.6  | 502.1  | 2190.0 | 226.2 | 80.2  | 6.0  | 5.5   |
| 1993 | 26.6  | 105.9 | 512.3  | 2149.0 | 944.7  | 103.3  | 497.1 | 41.6  | 11.3 | 0.0   |
| 1994 | 11.7  | 124.0 | 201.9  | 1525.6 | 1294.2 | 266.3  | 66.2  | 74.2  | 28.7 | 7.9   |
| 1995 | 11.6  | 78.9  | 319.5  | 1321.8 | 1260.4 | 221.7  | 29.9  | 6.5   | 18.2 | 2.8   |
| 1996 | 22.1  | 37.5  | 111.6  | 627.7  | 2003.9 | 405.9  | 36.7  | 4.0   | 0.5  | 1.6   |
| 1997 | 1.5   | 69.1  | 137.5  | 519.6  | 467.8  | 869.2  | 72.5  | 5.5   | 2.3  | 1.0   |
| 1998 | 0.9   | 5.9   | 171.1  | 492.3  | 628.9  | 152.8  | 205.9 | 28.7  | 5.2  | 2.3   |
| 1999 | 0.1   | 73.9  | 90.9   | 347.8  | 336.6  | 172.3  | 53.7  | 59.5  | 12.4 | 1.1   |
| 2000 | 0.0   | 24.8  | 485.0  | 556.5  | 813.7  | 176.6  | 85.2  | 12.5  | 10.5 | 0.0   |
| 2001 | 0.0   | 0.6   | 394.0  | 1163.8 | 684.4  | 385.5  | 106.6 | 57.2  | 8.3  | 11.6  |
| 2002 | 0.0   | 16.8  | 41.6   | 374.9  | 912.6  | 323.8  | 163.5 | 66.4  | 28.1 | 20.3  |
| 2003 | 22.9  | 44.9  | 125.6  | 167.8  | 582.1  | 706.1  | 186.0 | 75.7  | 29.2 | 26.8  |
| 2004 | 0.2   | 149.4 | 105.9  | 609.3  | 259.7  | 407.4  | 251.6 | 68.4  | 33.0 | 27.4  |
| 2005 | 1.5   | 23.5  | 180.1  | 159.6  | 945.8  | 89.2   | 246.6 | 109.1 | 28.5 | 31.7  |
| 2006 | 0.2   | 19.2  | 59.1   | 426.6  | 290.1  | 461.7  | 30.3  | 79.7  | 39.0 | 27.3  |
| 2007 | 0.4   | 12.2  | 108.5  | 299.4  | 976.4  | 137.4  | 230.2 | 7.9   | 19.2 | 22.0  |
| 2008 | 0.4   | 12.2  | 130.5  | 598.4  | 707.4  | 780.5  | 86.4  | 110.6 | 4.0  | 16.6  |
| 2009 | 0.1   | 10.7  | 101.5  | 622.5  | 1093.3 | 477.9  | 304.8 | 20.9  | 30.5 | 9.6   |
| 2010 | 0.2   | 8.2   | 83.6   | 394.5  | 888.5  | 668.3  | 164.3 | 71.7  | 11.2 | 7.6   |
| 2011 | 0.7   | 8.7   | 60.5   | 322.2  | 589.6  | 573.9  | 339.9 | 34.9  | 38.4 | 9.4   |

Table A.48. Total catch-at-age (numbers, 000s of fish) of Gulf of Maine Atlantic cod from 1982 to 2011 with an age  $9^+$  group. \*Only ages 1 through the  $9^+$  group are used as assessment model inputs.

Table A.49. Mean weights-at-age (kg) of the total catch Gulf of Maine Atlantic cod from 1982 to 2011 an age  $9^+$  group. Mean catch weights-at-age in the  $9^+$  group were estimated using a numbers weighted approach. Cells shaded grey were imputed using a 5-year centered moving average, cells shaded red were imputed using a time series average. \*Only ages 1 through the  $9^+$  group are used as assessment model inputs.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7   | Age8   | Age9+  |
|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| 1982 | 0.012 | 0.356 | 0.858 | 1.514 | 2.606 | 5.067 | 7.065 | 9.620  | 9.771  | 15.664 |
| 1983 | 0.024 | 0.224 | 0.768 | 1.542 | 2.418 | 3.808 | 6.055 | 6.071  | 10.317 | 13.325 |
| 1984 | 0.001 | 0.234 | 0.653 | 1.478 | 2.678 | 3.609 | 5.540 | 8.368  | 10.138 | 14.828 |
| 1985 | 0.039 | 0.206 | 0.733 | 1.404 | 2.819 | 4.658 | 5.884 | 8.502  | 11.244 | 13.676 |
| 1986 | 0.005 | 0.277 | 0.501 | 1.698 | 2.774 | 4.778 | 6.504 | 8.109  | 10.206 | 14.646 |
| 1987 | 0.004 | 0.154 | 0.642 | 1.323 | 3.090 | 4.668 | 7.259 | 10.036 | 11.099 | 14.582 |
| 1988 | 0.003 | 0.122 | 0.577 | 1.666 | 2.360 | 5.205 | 5.200 | 6.193  | 10.103 | 12.993 |
| 1989 | 0.046 | 0.236 | 0.752 | 1.518 | 2.959 | 4.282 | 5.980 | 9.276  | 12.519 | 20.913 |
| 1990 | 0.021 | 0.193 | 0.811 | 1.349 | 2.141 | 4.474 | 7.721 | 10.820 | 11.750 | 18.718 |
| 1991 | 0.014 | 0.236 | 1.113 | 1.601 | 2.281 | 3.894 | 7.144 | 10.429 | 12.261 | 14.031 |
| 1992 | 0.023 | 0.055 | 1.033 | 1.530 | 2.747 | 2.976 | 5.587 | 10.921 | 10.483 | 14.483 |
| 1993 | 0.021 | 0.081 | 0.690 | 1.748 | 2.150 | 4.420 | 5.670 | 9.817  | 13.673 | 15.701 |
| 1994 | 0.022 | 0.058 | 0.730 | 1.712 | 3.085 | 3.251 | 6.335 | 7.684  | 12.542 | 11.846 |
| 1995 | 0.027 | 0.103 | 1.288 | 1.591 | 2.649 | 5.090 | 6.865 | 11.466 | 13.128 | 22.443 |
| 1996 | 0.033 | 0.100 | 1.293 | 2.096 | 2.260 | 3.462 | 7.558 | 11.728 | 14.455 | 16.269 |
| 1997 | 0.017 | 0.064 | 1.351 | 2.128 | 3.022 | 3.074 | 4.699 | 9.000  | 12.156 | 16.938 |
| 1998 | 0.008 | 0.202 | 1.071 | 1.931 | 2.633 | 3.972 | 4.255 | 7.122  | 12.118 | 16.676 |
| 1999 | 0.052 | 0.222 | 0.635 | 1.723 | 2.777 | 3.892 | 5.670 | 6.704  | 9.811  | 12.279 |
| 2000 | 0.030 | 0.282 | 1.081 | 2.150 | 3.316 | 4.325 | 5.898 | 5.352  | 9.331  | 12.680 |
| 2001 | 0.045 | 0.316 | 0.890 | 2.176 | 3.144 | 4.666 | 6.140 | 7.273  | 9.072  | 9.559  |
| 2002 | 0.032 | 0.185 | 0.795 | 1.797 | 2.906 | 3.792 | 6.132 | 6.969  | 8.808  | 12.205 |
| 2003 | 0.038 | 0.202 | 0.809 | 1.843 | 2.378 | 3.654 | 5.112 | 7.649  | 9.191  | 12.058 |
| 2004 | 0.025 | 0.111 | 0.483 | 1.606 | 2.965 | 3.547 | 5.350 | 7.220  | 9.764  | 13.303 |
| 2005 | 0.027 | 0.126 | 0.558 | 1.625 | 2.401 | 4.233 | 4.502 | 6.349  | 8.002  | 12.549 |
| 2006 | 0.071 | 0.289 | 0.648 | 1.493 | 2.932 | 3.357 | 4.463 | 5.562  | 7.430  | 12.146 |
| 2007 | 0.025 | 0.220 | 0.744 | 1.731 | 2.922 | 3.735 | 4.771 | 6.167  | 7.302  | 12.394 |
| 2008 | 0.085 | 0.247 | 0.862 | 2.179 | 2.818 | 3.530 | 3.988 | 5.819  | 7.528  | 12.044 |
| 2009 | 0.032 | 0.337 | 0.911 | 2.153 | 3.126 | 3.575 | 4.368 | 5.959  | 8.000  | 12.887 |
| 2010 | 0.023 | 0.264 | 1.200 | 1.995 | 3.203 | 3.914 | 4.447 | 5.708  | 8.730  | 11.612 |
| 2011 | 0.086 | 0.329 | 0.933 | 2.056 | 2.874 | 3.870 | 4.839 | 5.717  | 5.953  | 12.984 |

Table A.50. Mean January 1/spawning stock weights-at-age (kg) of Gulf of Maine Atlantic cod from 1982 to 2011 an age  $9^+$  group. Weights were estimated from catch weights using Rivard (1980, 1982) approach. Cells shaded grey were imputed using a 5-year centered moving average, cells shaded red were imputed using a time series average. \*Only ages 1 through the  $9^+$  group are used as assessment model inputs.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8   | Age9+  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| 1982 | 0.002 | 0.241 | 0.594 | 1.165 | 2.127 | 4.635 | 7.622 | 9.289 | 9.695  | 15.664 |
| 1983 | 0.008 | 0.050 | 0.501 | 1.114 | 1.894 | 3.136 | 5.539 | 6.549 | 9.962  | 13.325 |
| 1984 | 0.000 | 0.075 | 0.372 | 1.019 | 2.021 | 2.952 | 4.593 | 7.118 | 7.845  | 14.828 |
| 1985 | 0.015 | 0.014 | 0.403 | 0.910 | 2.013 | 3.532 | 4.608 | 6.863 | 9.700  | 13.676 |
| 1986 | 0.001 | 0.104 | 0.316 | 1.077 | 1.917 | 3.670 | 5.504 | 6.908 | 9.315  | 14.646 |
| 1987 | 0.001 | 0.028 | 0.406 | 0.777 | 2.273 | 3.574 | 5.889 | 8.079 | 9.487  | 14.582 |
| 1988 | 0.000 | 0.022 | 0.293 | 0.980 | 1.709 | 4.010 | 4.927 | 6.705 | 10.069 | 12.993 |
| 1989 | 0.022 | 0.027 | 0.292 | 0.887 | 2.179 | 3.172 | 5.578 | 6.945 | 8.799  | 20.913 |
| 1990 | 0.006 | 0.095 | 0.431 | 0.937 | 1.742 | 3.627 | 5.750 | 8.043 | 10.440 | 18.718 |
| 1991 | 0.007 | 0.071 | 0.450 | 1.083 | 1.689 | 2.846 | 5.654 | 8.972 | 11.518 | 14.060 |
| 1992 | 0.012 | 0.028 | 0.476 | 1.215 | 2.026 | 2.564 | 4.629 | 8.832 | 10.453 | 14.483 |
| 1993 | 0.012 | 0.046 | 0.191 | 1.254 | 1.702 | 3.449 | 4.083 | 7.388 | 12.219 | 15.708 |
| 1994 | 0.010 | 0.038 | 0.236 | 1.003 | 2.244 | 2.571 | 5.294 | 6.601 | 11.095 | 11.846 |
| 1995 | 0.012 | 0.051 | 0.275 | 0.946 | 2.021 | 3.934 | 4.722 | 8.526 | 10.045 | 22.443 |
| 1996 | 0.022 | 0.060 | 0.356 | 1.462 | 1.784 | 2.971 | 6.185 | 8.967 | 12.844 | 16.357 |
| 1997 | 0.005 | 0.049 | 0.391 | 1.466 | 2.407 | 2.571 | 3.973 | 8.245 | 11.940 | 16.938 |
| 1998 | 0.002 | 0.059 | 0.256 | 1.445 | 2.245 | 3.423 | 3.558 | 5.739 | 10.442 | 16.676 |
| 1999 | 0.022 | 0.044 | 0.343 | 1.196 | 2.237 | 3.139 | 4.752 | 5.301 | 8.351  | 12.279 |
| 2000 | 0.009 | 0.120 | 0.461 | 1.063 | 2.257 | 3.422 | 4.773 | 5.508 | 7.882  | 12.661 |
| 2001 | 0.023 | 0.097 | 0.456 | 1.305 | 2.420 | 3.851 | 5.091 | 6.513 | 6.912  | 9.538  |
| 2002 | 0.012 | 0.089 | 0.465 | 1.050 | 2.249 | 3.247 | 5.296 | 6.514 | 7.924  | 12.152 |
| 2003 | 0.022 | 0.089 | 0.346 | 1.053 | 1.742 | 2.977 | 4.118 | 6.837 | 8.011  | 12.023 |
| 2004 | 0.011 | 0.066 | 0.351 | 0.971 | 2.110 | 2.620 | 4.199 | 5.908 | 8.627  | 13.288 |
| 2005 | 0.008 | 0.060 | 0.248 | 0.821 | 1.654 | 3.338 | 3.841 | 5.758 | 7.593  | 12.546 |
| 2006 | 0.043 | 0.089 | 0.295 | 0.808 | 1.890 | 2.467 | 4.076 | 4.912 | 6.744  | 12.137 |
| 2007 | 0.009 | 0.124 | 0.450 | 0.925 | 1.771 | 3.005 | 3.723 | 5.020 | 6.329  | 12.394 |
| 2008 | 0.046 | 0.085 | 0.420 | 1.117 | 1.888 | 2.892 | 3.630 | 5.147 | 6.803  | 12.040 |
| 2009 | 0.014 | 0.171 | 0.480 | 1.248 | 2.283 | 2.908 | 3.658 | 4.735 | 6.735  | 12.878 |
| 2010 | 0.006 | 0.100 | 0.589 | 1.168 | 2.328 | 3.198 | 3.685 | 4.778 | 7.153  | 11.612 |
| 2011 | 0.084 | 0.087 | 0.492 | 1.353 | 1.972 | 3.262 | 4.114 | 4.788 | 5.751  | 12.995 |

Table A.51. Summary of vessels and trawl doors used in the Northeast Fisheries Science Center (NEFSC) spring and fall surveys from 1963 to 2012. All survey indices are standardized to Albatross IV, Polyvalent door equivalents. \**Note, the spring survey did not begin until 1968, 2012 fall survey data are not available at time of this report.* 

| Year | Spring                   | Autumn                   | Door         |
|------|--------------------------|--------------------------|--------------|
| 1963 |                          | Albatross IV             | BMV          |
| 1964 |                          | Albatross IV             | BMV          |
| 1965 |                          | Albatross IV             | BMV          |
| 1966 |                          | Albatross IV             | BMV          |
| 1967 |                          | Albatross IV             | BMV          |
| 1968 | Albatross IV             | Albatross IV             | BMV          |
| 1969 | Albatross IV             | Albatross IV             | BMV          |
| 1970 | Albatross IV             | Albatross IV             | BMV          |
| 1971 | Albatross IV             | Albatross IV             | BMV          |
| 1972 | Albatross IV             | Albatross IV             | BMV          |
| 1973 | Albatross IV             | Albatross IV             | BMV          |
| 1974 | Albatross IV             | Albatross IV             | BMV          |
| 1975 | Albatross IV             | Albatross IV             | BMV          |
| 1976 | Albatross IV             | Albatross IV             | BMV          |
| 1977 | Albatross IV             | Delaware II              | BMV          |
| 1978 | Albatross IV             | Delaware II              | BMV          |
| 1979 | Albatross IV/Delaware II | Albatross IV/Delaware II | BMV          |
| 1980 | Albatross IV/Delaware II | Delaware II              | BMV          |
| 1981 | Delaware II              | Albatross IV/Delaware II | BMV          |
| 1982 | Delaware II              | Albatross IV             | BMV          |
| 1983 | Albatross IV             | Albatross IV             | BMV          |
| 1984 | Albatross IV             | Albatross IV             | BMV          |
| 1985 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1986 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1987 | Albatross IV/Delaware II | Albatross IV             | Polyvalent   |
| 1988 | Albatross IV             | Albatross IV/Delaware II | Polyvalent   |
| 1989 | Delaware II              | Delaware II              | Polyvalent   |
| 1990 | Delaware II              | Delaware II              | Polyvalent   |
| 1991 | Delaware II              | Delaware II              | Polyvalent   |
| 1992 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1993 | Albatross IV             | Delaware II              | Polyvalent   |
| 1994 | Delaware II              | Albatross IV             | Polyvalent   |
| 1995 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1996 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1997 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1998 | Albatross IV             | Albatross IV             | Polyvalent   |
| 1999 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2000 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2001 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2002 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2003 | Delaware II              | Albatross IV             | Polyvalent   |
| 2004 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2005 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2006 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2007 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2008 | Albatross IV             | Albatross IV             | Polyvalent   |
| 2009 | Henry B. Bigelow         | Henry B. Bigelow         | PolyIce oval |
| 2010 | Henry B. Bigelow         | Henry B. Bigelow         | PolyIce oval |
| 2011 | Henry B. Bigelow         | Henry B. Bigelow         | PolyIce oval |
| 2012 | Henry B. Bigelow         |                          | PolyIce oval |

Table A.52. Summary of survey calibration coefficients for converting survey index values to Albatross IV, Polyvalent door equivalent units.

| Calibration type            | Index               | Length     | Calibration | Lower 95% | Upper 95% | Source                 |
|-----------------------------|---------------------|------------|-------------|-----------|-----------|------------------------|
|                             | D: ( 11)            | (сш)       | coemcient   | 0.520     | 0.070     |                        |
| Deleware II to Albatross IV | Biomass (weight)    | NA         | 0.670       | 0.530     | 0.870     |                        |
|                             | Abundance (numbers) | NA         | 0.790       | 0.690     | 0.940     | Forrester et al., 1997 |
| BMV door to Polyvalent door | Biomass (weight)    | NA         | 1.620       | 1.370     | 1.940     |                        |
|                             | Abundance (numbers) | NA         | 1.560       | 1.330     | 1.880     | Miller et el 2010      |
|                             | Biomass (weight)    | NA<br>< 20 | 1.580       | 0.906     | 1.643     | Miller et al. 2010     |
|                             |                     | $\leq 20$  | 5.724       | 4.100     | 7.604     |                        |
|                             |                     | 21         | 5.000       | 4.094     | 7.001     |                        |
|                             |                     | 22         | 5 353       | 3 950     | 7.438     |                        |
|                             |                     | 23         | 5 230       | 3.930     | 7.250     |                        |
|                             |                     | 24         | 5.106       | 3.805     | 6 852     |                        |
|                             |                     | 25         | 4 983       | 3 733     | 6 651     |                        |
|                             |                     | 20         | 4.965       | 3 660     | 6 451     |                        |
|                             |                     | 28         | 4 736       | 3 588     | 6 251     |                        |
|                             |                     | 20         | 4 612       | 3 515     | 6.052     |                        |
|                             |                     | 30         | 4 489       | 3 442     | 5 854     |                        |
|                             |                     | 31         | 4 365       | 3 369     | 5.657     |                        |
|                             |                     | 32         | 4.242       | 3.295     | 5.460     |                        |
|                             |                     | 33         | 4.118       | 3.221     | 5.265     |                        |
|                             |                     | 34         | 3.995       | 3.147     | 5.071     |                        |
|                             |                     | 35         | 3.871       | 3.072     | 4.879     |                        |
| <b>D</b>                    |                     | 36         | 3.748       | 2.996     | 4.688     |                        |
| Bigelow to Albatross IV     | Abundance (numbers) | 37         | 3.624       | 2.919     | 4.499     | Brooks et al. 2010     |
|                             |                     | 38         | 3.501       | 2.841     | 4.313     |                        |
|                             |                     | 39         | 3.377       | 2.762     | 4.130     |                        |
|                             |                     | 40         | 3.254       | 2.680     | 3.950     |                        |
|                             |                     | 41         | 3.130       | 2.596     | 3.774     |                        |
|                             |                     | 42         | 3.007       | 2.509     | 3.604     |                        |
|                             |                     | 43         | 2.883       | 2.417     | 3.440     |                        |
|                             |                     | 44         | 2.760       | 2.320     | 3.284     |                        |
|                             |                     | 45         | 2.636       | 2.216     | 3.136     |                        |
|                             |                     | 46         | 2.513       | 2.105     | 2.999     |                        |
|                             |                     | 47         | 2.389       | 1.986     | 2.874     |                        |
|                             |                     | 48         | 2.266       | 1.860     | 2.760     |                        |
|                             |                     | 49         | 2.142       | 1.726     | 2.659     |                        |
|                             |                     | 50         | 2.019       | 1.586     | 2.569     |                        |
|                             |                     | 51         | 1.895       | 1.442     | 2.491     |                        |
|                             |                     | 52         | 1.772       | 1.295     | 2.423     |                        |
|                             |                     | 53         | 1.648       | 1.147     | 2.368     |                        |
|                             |                     | $\geq$ 54  | 1.602       | 1.092     | 2.350     |                        |

Table A.53. Summary of the differences in survey protocol from the FSV Albatross IV survey (2008 and earlier) and FSV Henry B. Bigelow (2009 - present). Adapted from Brooks et al. (2010).

| Measure                       | FSV Henry B Bigelow                           | FSV Albatross IV                             |
|-------------------------------|-----------------------------------------------|----------------------------------------------|
| Tow speed                     | 3.0 knots SOG                                 | 3.8 knots SOG                                |
| Tow duration                  | 20min                                         | 30 mins                                      |
| Headrope height               | 3.5-4m                                        | 1-2m                                         |
| Ground gear                   | Rockhopper Sweep                              | Roller Sweep                                 |
| (cookies, rock hoppers, etc.) | Total Length-25.5m                            | Total Length-24.5m                           |
|                               | Center- 8.9m length, 16" rockhoppers.         | Center-5m length, 16" rollers.               |
|                               | Wings- 8.2m each                              | Wings- 9.75m each, 4" cookies.               |
|                               | 14" rockhoppers                               |                                              |
| Mesh                          | Poly webbing                                  | Nylon webbing                                |
|                               | Forward Portion of trawl (jibs, upper         | Body of trawl= 12.7cm                        |
|                               | and lower wing ends, $1^{st} \& 2^{nd}$ side  |                                              |
|                               | panels, 1 <sup>st</sup> bottom belly)12cm,4mm |                                              |
|                               | Square aft to codend:6cm, 2.5mm               | Codend- 11.5cm                               |
|                               | Codend: 12cm, 4mm dbl.                        | Liner (codend and aft portion of top belly)- |
|                               |                                               | 1.27cm knotless                              |
|                               | Codend Liner: 2.54cm, knotless                |                                              |
| Net design                    | 4 Seam, 3 Bridle                              | Yankee 36 (recent years)                     |
| Door type                     | 550 kg PolyIce oval                           | 450 kg polyvalent                            |
| Other comments                | Wing End to Door distance= 36.5m              | Wing End to Door Distance= 9m                |

Table A.54. Summary of the sampling of Northeast Fisheries Science Center (NEFSC) Gulf of Maine offshore survey strata broken down by survey (spring/fall) and time of day (day/night) between 1963 and spring 2011. The day/night classification is based on sunrise/sunset (zenith angle of 90°50'). *\*Note that the spring survey did not begin until 1968.* 

| Year   Spring   Fall   Spring   Night   Day   Night   Night                                                                              |      |        | Strata samp | oled   |       | _        | Tows samp | oled |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------------|--------|-------|----------|-----------|------|----------|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Year | Spring |             | Fall   |       | Spring   |           | Fall |          |
| 1963892235 $1964$ 1091532 $1966$ 0992523 $1966$ 9992221 $1967$ 81027231931 $1969$ 9991027231931 $1966$ 81091017352132 $1971$ 1098928272431 $1973$ 10981023252034 $1974$ 108971030341738 $1975$ 878925272828 $1975$ 8781037302645 $1978$ 10101037302645 $1978$ 10101034182726 $1984$ 9107931192931 $1985$ 99101032212133 $1984$ 9107931192031 $1984$ 9107935181832 $1984$ 9107935181832 $1984$ 91081030232428 $1984$ 9<                                                                                                                                                                                                                                                                                                                               |      | Day    | Night       | Day    | Night | Day      | Night     | Day  | Night    |
| 1964 10 9 15 32   1965 10 9 25 23   1966 9 9 19 30   1968 8 10 9 10 27 23 19 31   1969 9 9 10 127 23 19 31   1970 6 9 10 10 17 35 21 32   1971 10 9 8 9 28 27 24 31   1973 10 9 8 10 23 25 27 38   1976 8 7 8 9 25 27 27 38   1976 8 9 10 10 30 34 17 38   1977 10 10 8 10 37 30 26 45   1978 10 10 10 34 18 27 26   1980 9 10 10 32                                                                                                                                                                                                                                                                                                                                                                                                                 | 1963 |        |             | 8      | 9     |          |           | 22   | 35       |
| 1965109252319669992221196781027231931196999102526183319706910173521321971109892827243119731098102325203419741089710303417381974108971030341738197687810373026451978101010937295466197991010242828281981109101032212133198010810322121331981109101032212133198491079311920311985999102720173319869102923292929198491081033242819878799252719341987                                                                                                                                                                                                                                                                                                                                                                                                    | 1964 |        |             | 10     | 9     |          |           | 15   | 32       |
| 1966 9 9 22 21   1967 8 10 27 23 19 30   1968 8 10 9 10 27 23 19 31   1969 9 9 10 125 26 18 33   1970 6 9 10 10 28 29 20 35   1972 10 9 8 9 28 27 24 31   1973 10 9 8 10 23 25 20 34   1974 10 10 8 10 37 30 26 45   1977 10 10 8 10 37 30 26 45   1978 10 10 10 44 28 56 73   1980 10 8 10 10 32 21 21 33   1984 9 10 7 9 31 19 20 31                                                                                                                                                                                                                                                                                                                                                                                                               | 1965 |        |             | 10     | 9     |          |           | 25   | 23       |
| 196781027231930196881091027231931196999101017352132197110910102829203519721098928272431197310989291828291975878925272738197689710303417381977101081037302645197810109372954661979991010262423281981107893419192919849107931192031198599910272017331986910792527193419871099102329232919849107923292329198491081023292329199110991029232420311992<                                                                                                                                                                                                                                                                                                                                                                                                    | 1966 |        |             | 9      | 9     |          |           | 22   | 21       |
| 1968810910272319311969999101025261833197069101028292035197210989282724311973109810232520341974108992918282919758789252727381977101081037302645197810101093729546619799910102624232819801081010262423281981109101032212133198310789341919291984910792527193419859991027201733198599910272328281985999102923282919869108827242031198699910292328 <td>1967</td> <td></td> <td></td> <td>8</td> <td>10</td> <td></td> <td></td> <td>19</td> <td>30</td>                                                                                                                                                                                                                                                                                                  | 1967 |        |             | 8      | 10    |          |           | 19   | 30       |
| 1969 9 9 10 25 26 18 33   1970 6 9 10 10 17 35 21 32   1971 10 9 8 9 28 27 24 31   1973 10 9 8 9 28 27 24 31   1973 10 9 8 9 29 18 28 29   1975 8 7 8 9 25 27 27 38   1976 8 9 7 10 30 34 17 38   1977 10 10 8 10 37 30 26 45   1978 10 10 10 44 28 56 73   1980 10 7 8 34 19 19 29   1981 10 9 10 10 32 21 31   1984 9 10 7 9 34                                                                                                                                                                                                                                                                                                                                                                                                                    | 1968 | 8      | 10          | 9      | 10    | 27       | 23        | 19   | 31       |
| 1970691010173521321971109892827243119731098102325203419741089929182829197587892527273819768971030341738197710108103729546619781010109372954661978101010262423281981109101034182726198299101032212133198310789341919291984910792527193419859991027201733198691079252719341987810882724203119869102923213030198981088272420311990910292321303319909                                                                                                                                                                                                                                                                                                                                                                                                    | 1969 | 9      | 9           | 9      | 10    | 25       | 26        | 18   | 33       |
| 1971109101028292035197210989282724311973109810232520341974108992918282919758789252727381976897103034173819771010109372954661979991010442856731980109101034182726198299101034182726198310789341919291984910793119203119859991027201733198691079281923281988109810232929351923291984910810232923293519232919841099102923242031311990910292324203130 <td>1970</td> <td>6</td> <td>9</td> <td>10</td> <td>10</td> <td>17</td> <td>35</td> <td>21</td> <td>32</td>                                                                                                                                                                                                                                                                                        | 1970 | 6      | 9           | 10     | 10    | 17       | 35        | 21   | 32       |
| 19721098928272431 $1973$ 10981023252034 $1974$ 1089929182829 $1975$ 878925272738 $1976$ 8971030341738 $1977$ 101081037302645 $1978$ 101010937295466 $1979$ 99101044285673 $1980$ 108101032212133 $1981$ 1078934191929 $1984$ 9107931192031 $1985$ 9991027201733 $1986$ 9107928192329 $1988$ 8108827242031 $1990$ 9102923213030 $1993$ 9991029232130 $1994$ 1091039363334 $1999$ 91029232428 $1994$ 109933192727 <td< td=""><td>1971</td><td>10</td><td>9</td><td>10</td><td>10</td><td>28</td><td>29</td><td>20</td><td>35</td></td<>                                                                                                                                                                                                                | 1971 | 10     | 9           | 10     | 10    | 28       | 29        | 20   | 35       |
| 1973109810232520341974108992918282919758789252727381976897103034173819771010810373026451978101010937295466197999101034182726198010810103418272619829910103418272619829910793119203119831078934191929232819849107925271934198787992819232819881098102329292919898108827242031199099102923213019921099102923213019941098103518183219951099103936 <td>1972</td> <td>10</td> <td>9</td> <td>8</td> <td>9</td> <td>28</td> <td>27</td> <td>24</td> <td>31</td>                                                                                                                                                                                                                                                                                            | 1972 | 10     | 9           | 8      | 9     | 28       | 27        | 24   | 31       |
| 19741089929182829 $1975$ 878925272738 $1976$ 8971030341738 $1977$ 101081037302645 $1978$ 101010937295466 $1979$ 99101044285673 $1980$ 108101032212133 $1983$ 1078934191929 $1984$ 9107931192031 $1985$ 9991027201733 $1985$ 9991027201733 $1986$ 9107925271934 $1987$ 879928192328 $1988$ 10880232923292329 $1990$ 910292321203331 $1992$ 10991029232427 $1994$ 10981035181832 $1995$ 1099102923233337 $2004$ 1010                                                                                                                                                                                                                                                                                                                                   | 1973 | 10     | 9           | 8      | 10    | 23       | 25        | 20   | 34       |
| 1975878925272738197689710303417381977101081037295466197999101044285673198010810102624232819811091010322121331983107893419192919849107931192031198599910272017331986910792527193419878799281923281988109893519232919898108102329232919909102921203331199099992723242719941098103518183219951099102923233337199710108103022213119969993319272727 <td>1974</td> <td>10</td> <td>8</td> <td>9</td> <td>9</td> <td>29</td> <td>18</td> <td>28</td> <td>29</td>                                                                                                                                                                                                                                                                                            | 1974 | 10     | 8           | 9      | 9     | 29       | 18        | 28   | 29       |
| 1976897103034173819771010810373926451978101010937295466197999101044285673198010810102624232819811091010322121331983107893419192919849107931192031198599910272017331986910792819232919881098935192329198810981023292329198981088272420311990910292120333419911099102923213019921099102923213019921099103023242719941091030232428199510991030232428                                                                                                                                                                                                                                                                                                                                                                                                    | 1975 | 8      | 7           | 8      | 9     | 25       | 27        | 27   | 38       |
| 19771010810373026451978101010937295466197999101044285673198010810102624232819811091010341827261982991010322121331983107893419192919849107925271934198599910272017331986910792819232819881098935192329198810991029212033199091081023292329199110991027262037199210991027262037199210991029232428199399910302221311994109810302324281995109910302221 <td< td=""><td>1976</td><td>8</td><td>9</td><td>7</td><td>10</td><td>30</td><td>34</td><td>17</td><td>38</td></td<>                                                                                                                                                                                                                                                                               | 1976 | 8      | 9           | 7      | 10    | 30       | 34        | 17   | 38       |
| 19781010109372954661979991010442856731980108101026242328198110910103418272619829910103221213319831078934191929198491079311920311985999102720173319869107925271934198787992819232819881098102329232919898108802329232919911099102923213019921099102726203719941099103023242819951099103936333419961099103926272220041088933192727200210101010292323 <td< td=""><td>1977</td><td>10</td><td>10</td><td>8</td><td>10</td><td>37</td><td>30</td><td>26</td><td>45</td></td<>                                                                                                                                                                                                                                                                             | 1977 | 10     | 10          | 8      | 10    | 37       | 30        | 26   | 45       |
| 197999101044285673 $1980$ 108101026242328 $1981$ 109101034182726 $1982$ 99101032212133 $1983$ 1078934191929 $1984$ 9107931192031 $1985$ 9991027201733 $1986$ 9107925271934 $1987$ 879928192328 $1988$ 1098935192329 $1989$ 81088023292321 $1990$ 9102923213030 $1990$ 999927232427 $1994$ 10981035181832 $1995$ 1099102923233337 $2000$ 9991039363334 $1999$ 10103936333434 $1999$ 9102923291932 $2001$ 10010393633 <td>1978</td> <td>10</td> <td>10</td> <td>10</td> <td>9</td> <td>37</td> <td>29</td> <td>54</td> <td>66</td>                                                                                                                                                                                                                     | 1978 | 10     | 10          | 10     | 9     | 37       | 29        | 54   | 66       |
| 1980108101026242328198110910103418272619829910103221213319831078934191929198491079311920311985999102720173319869107925271934198787992819232819881098935192329198981088023292321199091081023292321199110991029232130199210991029232130199210991027262037199410981035181832199510991030232428199510991030232428199510993319272525271997101099332021                                                                                                                                                                                                                                                                                                                                                                                                    | 1979 | 9      | 9           | 10     | 10    | 44       | 28        | 56   | 73       |
| 1981109101034182726198299101032212133198310789341919291984910793119203119859991027201733198691079252719341987879928192328198810989351923291989810810232923291990910810232923291991109910292321301992109910272620371994109810351818321995109103936333419951099103923242819981010993319272720009993319272720011010102926272220037910933262533200410                                                                                                                                                                                                                                                                                                                                                                                                    | 1980 | 10     | 8           | 10     | 10    | 26       | 24        | 23   | 28       |
| 198299101032212133 $1983$ 1078934191929 $1984$ 9107931192031 $1985$ 9991027201733 $1986$ 9107925271934 $1987$ 879928192329 $1988$ 1098935192329 $1989$ 8108827242031 $1990$ 91081023292329 $1991$ 10991029232130 $1992$ 10991029232427 $1994$ 10981035181832 $1995$ 1091029232428 $1998$ 101091039363334 $1999$ 101030222131 $1996$ 1099933192727 $2004$ 1088932182127 $2005$ 1069933262533 $2004$ 108933262533 <td< td=""><td>1981</td><td>10</td><td>9</td><td>10</td><td>10</td><td>34</td><td>18</td><td>27</td><td>26</td></td<>                                                                                                                                                                                                                | 1981 | 10     | 9           | 10     | 10    | 34       | 18        | 27   | 26       |
| 1983107893419192919849107931192031198599910272017331986910792527193419878799281923291988109893519232919898108827242031199091081023292329199110991029232130199210999272324271994109810351818321995109910272620371996109103936333419999109331927272000101010292333372000999331927272002101010292627222003791093326253320041089332625333020051069 <td>1982</td> <td>9</td> <td>9</td> <td>10</td> <td>10</td> <td>32</td> <td>21</td> <td>21</td> <td>33</td>                                                                                                                                                                                                                                                                                           | 1982 | 9      | 9           | 10     | 10    | 32       | 21        | 21   | 33       |
| 19849107931192031 $1985$ 9991027201733 $1986$ 9107925271934 $1987$ 879928192328 $1988$ 1098935192329 $1989$ 8108827242031 $1990$ 91081023292329 $1991$ 10991029212033 $1992$ 10991029232427 $1994$ 10981035181832 $1995$ 10991027262037 $1996$ 1091039363334 $1999$ 91091039363334 $1999$ 910923291932 $2000$ 9991030222131 $2000$ 9991029233337 $2000$ 99933192727 $2002$ 10101029233337 $2004$ 1088932182127 <td>1983</td> <td>10</td> <td>7</td> <td>8</td> <td>9</td> <td>34</td> <td>19</td> <td>19</td> <td>29</td>                                                                                                                                                                                                                            | 1983 | 10     | 7           | 8      | 9     | 34       | 19        | 19   | 29       |
| 198599910 $27$ $20$ $17$ $33$ $1986$ 91079 $25$ $27$ 19 $34$ $1987$ 8799 $28$ 19 $23$ $28$ $1988$ 10989 $35$ 19 $23$ $29$ $1989$ 81088 $27$ $24$ $20$ $31$ $1990$ 910810 $23$ $29$ $23$ $29$ $1991$ 109910 $29$ $21$ $20$ $33$ $1992$ 109910 $29$ $23$ $21$ $30$ $1993$ 9999 $27$ $23$ $24$ $27$ $1994$ 109810 $35$ $18$ $18$ $32$ $1995$ 109910 $27$ $26$ $20$ $37$ $1996$ 10910 $39$ $36$ $33$ $34$ $1998$ 1010910 $29$ $23$ $33$ $37$ $2000$ 99910 $29$ $23$ $33$ $37$ $2000$ 9999 $33$ $19$ $27$ $27$ $2003$ 79109 $23$ $29$ $19$ $32$ $2004$ 10889 $32$ $18$ $21$ $27$ $2005$ 10699 <td>1984</td> <td>9</td> <td>10</td> <td>7</td> <td>9</td> <td>31</td> <td>19</td> <td>20</td> <td>31</td>                                                  | 1984 | 9      | 10          | 7      | 9     | 31       | 19        | 20   | 31       |
| 19869107925271934198787992819232819881098935192329198981088272420311990910810232923291991109910292120331992109992723242719941098103518183219951099102726203719961091093936333419999109103936333419999109102923213120011099930222131200110999331927272002101010102926272220037910932182127200210699321821272005106993326253320041088932182127                                                                                                                                                                                                                                                                                                                                                                                                         | 1985 | 9      | 9           | 9      | 10    | 27       | 20        | 17   | 33       |
| 1987879928192328 $1988$ 1098935192329 $1989$ 8108827242031 $1990$ 91081023292329 $1991$ 10991029212033 $1992$ 1099927232427 $1994$ 10981035181832 $1995$ 10991027262037 $1996$ 10910927252527 $1997$ 101081030232428 $1998$ 101091039363334 $1999$ 91029233337 $2000$ 9991029233334 $1999$ 910929233337 $2000$ 9991030222131 $2001$ 10101029262722 $203$ 7910932182127 $2002$ 1069932182127 $2005$ 1069933262533 </td <td>1986</td> <td>9</td> <td>10</td> <td>7</td> <td>9</td> <td>25</td> <td>27</td> <td>19</td> <td>34</td>                                                                                                                                                                                                                     | 1986 | 9      | 10          | 7      | 9     | 25       | 27        | 19   | 34       |
| 1988 $10$ $9$ $8$ $9$ $35$ $19$ $23$ $29$ $1989$ $8$ $10$ $8$ $8$ $27$ $24$ $20$ $31$ $1990$ $9$ $10$ $23$ $29$ $23$ $29$ $1991$ $10$ $9$ $9$ $10$ $29$ $21$ $20$ $33$ $1992$ $10$ $9$ $9$ $10$ $29$ $23$ $21$ $30$ $1993$ $9$ $9$ $9$ $9$ $27$ $23$ $24$ $27$ $1994$ $10$ $9$ $8$ $10$ $35$ $18$ $18$ $32$ $1995$ $10$ $9$ $9$ $10$ $27$ $26$ $20$ $37$ $1996$ $10$ $9$ $10$ $30$ $23$ $24$ $28$ $1998$ $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $10$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $29$ $23$ $23$ $31$ $2001$ $10$ $10$ $10$ $29$ $26$ $27$ $22$ $2003$ $7$ $9$ $10$ $9$ $32$ $19$ $21$ $30$ $2004$ $10$ $8$ $8$ $9$ $33$ $26$ $25$ $33$ $2004$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2006$ $10$ $10$ $8$ $9$ $3$ | 1987 | 8      | 7           | 9      | 9     | 28       | 19        | 23   | 28       |
| 19898108827242031 $1990$ 91081023292329 $1991$ 10991029212033 $1992$ 109991029232130 $1993$ 999927232427 $1994$ 10981035181832 $1995$ 10991027262037 $1996$ 1091030232428 $1997$ 101081030232428 $1998$ 101091029233334 $1999$ 91039363334 $1998$ 101099232919 $2000$ 999933192727 $2002$ 1010101029262722 $2003$ 7910932192130 $2004$ 1088932182127 $205$ 1069933262533 $2007$ 10109927232330 $2008$ 10998393122<                                                                                                                                                                                                                                                                                                                                   | 1988 | 10     | 9           | 8      | 9     | 35       | 19        | 23   | 29       |
| 199091081023292329 $1991$ 10991029212033 $1992$ 109991029232130 $1993$ 999927232427 $1994$ 10981035181832 $1995$ 10991027262037 $1996$ 10910927252527 $1997$ 101081030232428 $1998$ 101091039363334 $1999$ 91091029233337 $2000$ 999933192727 $2001$ 10101029262722 $2003$ 79109321932 $2004$ 1088932182127 $2005$ 1069933262533 $2006$ 10109927232330 $2006$ 10109933262533 $2007$ 1099839312231 $2009$ 1099839 <t< td=""><td>1989</td><td>8</td><td>10</td><td>8</td><td>8</td><td>27</td><td>24</td><td>20</td><td>31</td></t<>                                                                                                                                                                                                                   | 1989 | 8      | 10          | 8      | 8     | 27       | 24        | 20   | 31       |
| 1991 $10$ $9$ $9$ $10$ $29$ $21$ $20$ $33$ $1992$ $10$ $9$ $9$ $10$ $29$ $23$ $21$ $30$ $1993$ $9$ $9$ $9$ $9$ $27$ $23$ $24$ $27$ $1994$ $10$ $9$ $8$ $10$ $35$ $18$ $18$ $32$ $1995$ $10$ $9$ $9$ $10$ $27$ $26$ $20$ $37$ $1996$ $10$ $9$ $10$ $9$ $27$ $25$ $25$ $27$ $1997$ $10$ $10$ $8$ $10$ $30$ $23$ $24$ $28$ $1998$ $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $29$ $26$ $27$ $22$ $2003$ $7$ $9$ $10$ $9$ $23$ $29$ $19$ $32$ $2004$ $10$ $8$ $8$ $9$ $32$ $18$ $21$ $27$ $205$ $10$ $6$ $9$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $8$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $9$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$ $2006$ $10$ $9$ < | 1990 | 9      | 10          | 8      | 10    | 23       | 29        | 23   | 29       |
| 1992 $10$ $9$ $9$ $10$ $29$ $23$ $21$ $30$ $1993$ $9$ $9$ $9$ $9$ $27$ $23$ $24$ $27$ $1994$ $10$ $9$ $8$ $10$ $35$ $18$ $18$ $32$ $1995$ $10$ $9$ $9$ $10$ $27$ $26$ $20$ $37$ $1996$ $10$ $9$ $10$ $9$ $27$ $25$ $25$ $27$ $1997$ $10$ $10$ $8$ $10$ $30$ $23$ $24$ $28$ $1998$ $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $10$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $29$ $23$ $33$ $37$ $2001$ $10$ $9$ $9$ $9$ $33$ $19$ $27$ $27$ $2002$ $10$ $10$ $10$ $9$ $23$ $29$ $19$ $32$ $2004$ $10$ $8$ $8$ $9$ $32$ $18$ $21$ $27$ $205$ $10$ $6$ $9$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $8$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2004$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $33$ $2007$ $10$ | 1991 | 10     | 9           | 9      | 10    | 29       | 21        | 20   | 33       |
| 1993999927232427 $1994$ 10981035181832 $1995$ 10991027262037 $1996$ 10910927252527 $1997$ 101081030232428 $1998$ 101091039363334 $1999$ 91091029233337 $2000$ 999930222131 $2001$ 10101029262722 $2003$ 7910923291932 $2004$ 1088932182127 $2005$ 1069933262533 $2006$ 10109927232330 $2006$ 10109933262533 $2007$ 10109930212132 $2008$ 1099839312231 $2009$ 1099839312231                                                                                                                                                                                                                                                                                                                                                                          | 1992 | 10     | 9           | 9      | 10    | 29       | 23        | 21   | 30       |
| 1994 $10$ $9$ $8$ $10$ $35$ $18$ $18$ $32$ $1995$ $10$ $9$ $9$ $10$ $27$ $26$ $20$ $37$ $1996$ $10$ $9$ $10$ $9$ $27$ $25$ $25$ $27$ $1997$ $10$ $10$ $8$ $10$ $30$ $23$ $24$ $28$ $1998$ $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $10$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $30$ $22$ $21$ $31$ $2001$ $10$ $9$ $9$ $9$ $33$ $19$ $27$ $27$ $2002$ $10$ $10$ $10$ $9$ $23$ $29$ $19$ $32$ $2003$ $7$ $9$ $10$ $9$ $23$ $29$ $19$ $32$ $2004$ $10$ $8$ $8$ $9$ $32$ $18$ $21$ $27$ $2005$ $10$ $6$ $9$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $8$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2008$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$ $2009$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$            | 1993 | 9      | 9           | 9      | 9     | 27       | 23        | 24   | 27       |
| 1995109910272620371996109109272525271997101081030232428199810109103936333419999109102923333720009999302221312001109993319272720021010101029262722200379109232919322004108893218212720051069933262533200610109927232330200810910103021213220091099839312231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1994 | 10     | 9           | 8      | 10    | 35       | 18        | 18   | 32       |
| 199610910927252525271997101081030232428199810109103936333419999109102923333720009999302221312001109993319272720021010101029262722200379109232919322004108893218212720051069933262533200610109927232330200810910103021213220091099839312231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1995 | 10     | 9           | 9      | 10    | 27       | 26        | 20   | 37       |
| 1997 $10$ $10$ $8$ $10$ $30$ $23$ $24$ $28$ $1998$ $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $10$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $30$ $22$ $21$ $31$ $2001$ $10$ $9$ $9$ $9$ $33$ $19$ $27$ $27$ $2002$ $10$ $10$ $10$ $10$ $29$ $26$ $27$ $22$ $2003$ $7$ $9$ $10$ $9$ $23$ $29$ $19$ $32$ $2004$ $10$ $8$ $8$ $9$ $32$ $18$ $21$ $27$ $2005$ $10$ $6$ $9$ $9$ $32$ $19$ $21$ $30$ $2006$ $10$ $10$ $8$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2008$ $10$ $9$ $10$ $10$ $30$ $21$ $21$ $32$ $2009$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$                                                                                                   | 1996 | 10     | 9           | 10     | 9     | 27       | 25        | 25   | 27       |
| 1998 $10$ $10$ $9$ $10$ $39$ $36$ $33$ $34$ $1999$ $9$ $10$ $9$ $10$ $29$ $23$ $33$ $37$ $2000$ $9$ $9$ $9$ $10$ $30$ $22$ $21$ $31$ $2001$ $10$ $9$ $9$ $9$ $33$ $19$ $27$ $27$ $2002$ $10$ $10$ $10$ $10$ $29$ $26$ $27$ $22$ $2003$ $7$ $9$ $10$ $9$ $23$ $29$ $19$ $32$ $2004$ $10$ $8$ $8$ $9$ $32$ $18$ $21$ $27$ $2005$ $10$ $6$ $9$ $9$ $32$ $19$ $21$ $30$ $2006$ $10$ $10$ $8$ $9$ $33$ $26$ $25$ $33$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2006$ $10$ $10$ $9$ $9$ $27$ $23$ $23$ $30$ $2008$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$ $2009$ $10$ $9$ $9$ $8$ $39$ $31$ $22$ $31$                                                                                                                                                   | 1997 | 10     | 10          | 8      | 10    | 30       | 23        | 24   | 28       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1998 | 10     | 10          | 9      | 10    | 39       | 36        | 33   | 34       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1999 | 9      | 10          | 9      | 10    | 29       | 23        | 33   | 37       |
| 2001 10 9 9 9 33 19 27 27   2002 10 10 10 10 29 26 27 22   2003 7 9 10 9 23 29 19 32   2004 10 8 8 9 32 18 21 27   2005 10 6 9 9 32 19 21 30   2006 10 10 8 9 33 26 25 33   2007 10 10 9 9 27 23 23 30   2008 10 9 10 10 30 21 21 32   2009 10 9 8 39 31 22 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000 | 9      | 9           | 9      | 10    | 30       | 22        | 21   | 31       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2001 | 10     | 9           | 9      | 9     | 33       | 19        | 27   | 27       |
| 2003 7 9 10 9 23 29 19 32   2004 10 8 8 9 32 18 21 27   2005 10 6 9 9 32 19 21 30   2006 10 10 8 9 33 26 25 33   2007 10 10 9 9 27 23 23 30   2008 10 9 10 10 30 21 21 32   2009 10 9 8 39 31 22 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2002 | 10     | 10          | 10     | 10    | 29       | 26        | 27   | 22       |
| 2004 10 8 8 9 32 18 21 27   2005 10 6 9 9 32 19 21 30   2006 10 10 8 9 33 26 25 33   2007 10 10 9 9 27 23 23 30   2008 10 9 10 10 30 21 21 32   2009 10 9 8 39 31 22 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2003 | /      | 9           | 10     | 9     | 23       | 29        | 19   | 32       |
| 2003   10   6   9   9   52   19   21   30     2006   10   10   8   9   33   26   25   33     2007   10   10   9   9   27   23   23   30     2008   10   9   10   10   30   21   21   32     2009   10   9   8   39   31   22   31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2004 | 10     | 8           | 8      | 9     | 32<br>22 | 18        | 21   | 27       |
| 2000   10   10   8   9   55   26   25   35     2007   10   10   9   9   27   23   23   30     2008   10   9   10   10   30   21   21   32     2009   10   9   8   39   31   22   31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2005 | 10     | 0           | 9<br>0 | 9     | 32<br>22 | 19        | 21   | 30       |
| 2007   10   10   9   9   27   25   25   30     2008   10   9   10   10   30   21   21   32     2009   10   9   9   8   39   31   22   31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 | 10     | 10          | ð<br>0 | 9     | 23<br>27 | 20        | 25   | 20       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2007 | 10     | 10          | 9      | 9     | 27       | 25        | 25   | 20       |
| 2007 10 7 7 6 37 31 22 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2008 | 10     | 9           | 10     | 0     | 20       | 21<br>21  | 21   | 3Z<br>21 |
| 2010 x 10 0 24 20 22 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2009 | 0      | 9<br>10     | 9      | 0     | 24       | 20        | 22   | 20       |
| 2010 0 10 7 7 54 50 22 29<br>2011 8 9 28 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2010 | 0<br>8 | 9           | 7      | 7     | 28       | 25        | 22   | 29       |

Table A.55. Northeast Fisheries Science Center (NEFSC) spring and fall bottom trawl survey indices for Gulf of Maine Atlantic cod from 1963 to 2012. \**Note: the spring survey did not begin until 1968, 2012 fall survey data not available at time of this report.* 

| Vear      | Abundance (num | bers/tow) | Biomass (kg/tow) |              |  |  |  |  |
|-----------|----------------|-----------|------------------|--------------|--|--|--|--|
| Ital      | Spring         | Fall      | Spring           | Fall         |  |  |  |  |
| 1963      |                | 5.914     |                  | 17.95        |  |  |  |  |
| 1964      |                | 4.015     |                  | 22.79        |  |  |  |  |
| 1965      |                | 4.500     |                  | 12.089       |  |  |  |  |
| 1966      |                | 3.720     |                  | 12.83        |  |  |  |  |
| 1967      |                | 2.602     |                  | 9.31         |  |  |  |  |
| 1968      | 5.329          | 4.374     | 17.480           | 19.43        |  |  |  |  |
| 1969      | 3.215          | 2.758     | 13.100           | 15.15        |  |  |  |  |
| 1970      | 2.191          | 4.905     | 11.089           | 16.442       |  |  |  |  |
| 1971      | 1.429          | 4.361     | 7.004            | 16.52        |  |  |  |  |
| 1972      | 2.057          | 9.301     | 8.031            | 12.98        |  |  |  |  |
| 1973      | 7.525          | 4.452     | 18.807           | 8.76         |  |  |  |  |
| 1974      | 2.902          | 4.328     | 7.419            | 8.95         |  |  |  |  |
| 1975      | 2.512          | 6.143     | 6.039            | 8.61         |  |  |  |  |
| 1976      | 2.782          | 2.148     | 7.556            | 6.74         |  |  |  |  |
| 1977      | 3.872          | 3.073     | 8.541            | 10.19        |  |  |  |  |
| 1978      | 2.050          | 5.773     | 7.697            | 12.89        |  |  |  |  |
| 1979      | 3.644          | 3.142     | 7.555            | 13.92        |  |  |  |  |
| 1980      | 2.155          | 7.035     | 6.232            | 14.20        |  |  |  |  |
| 1981      | 4.832          | 2.349     | 10.650           | 7.53         |  |  |  |  |
| 1982      | 3.763          | 7.769     | 8.616            | 15.91        |  |  |  |  |
| 1983      | 3.912          | 2.786     | 10.962           | 8.41         |  |  |  |  |
| 1984      | 3.667          | 2.449     | 6.143            | 8.73         |  |  |  |  |
| 1985      | 2.517          | 2.821     | 7.645            | 8.26         |  |  |  |  |
| 1986      | 1.957          | 1.950     | 3.476            | 4.71         |  |  |  |  |
| 1987      | 1.083          | 2.996     | 1.976            | 3.39         |  |  |  |  |
| 1988      | 3.127          | 5.903     | 3.603            | 6.61         |  |  |  |  |
| 1989      | 2.112          | 4,553     | 2.424            | 4.53         |  |  |  |  |
| 1990      | 2.362          | 2.986     | 3.077            | 4.91         |  |  |  |  |
| 1991      | 2.393          | 1.252     | 2.891            | 2.78         |  |  |  |  |
| 1992      | 2.435          | 1.434     | 8.627            | 2.44         |  |  |  |  |
| 1993      | 2.507          | 1.232     | 5.875            | 1.00         |  |  |  |  |
| 1994      | 1.271          | 2.130     | 2.428            | 2.73         |  |  |  |  |
| 1995      | 1.930          | 2.008     | 2.432            | 3.66         |  |  |  |  |
| 1996      | 2.465          | 1.327     | 5.427            | 2.35         |  |  |  |  |
| 1997      | 2.192          | 0.872     | 5.616            | 1.87         |  |  |  |  |
| 1998      | 1.710          | 0.843     | 4.180            | 1.50         |  |  |  |  |
| 1999      | 2 301          | 1 807     | 5 090            | 3 50         |  |  |  |  |
| 2000      | 3 083          | 2.604     | 3 211            | 4 65         |  |  |  |  |
| 2001      | 2.147          | 1 980     | 6.215            | 7 32         |  |  |  |  |
| 2002      | 3 724          | 5 328     | 10.934           | 24.65        |  |  |  |  |
| 2003      | 3.677          | 2.529     | 9 4 9 5          | 5.98         |  |  |  |  |
| 2004      | 0.981          | 3 533     | 2.412            | 4 90         |  |  |  |  |
| 2005      | 1 765          | 1 338     | 2 701            | 2.89         |  |  |  |  |
| 2005      | 1.763          | 3 594     | 2.701            | 4 22         |  |  |  |  |
| 2000      | 12 393         | 1 992     | 15 811           | 2 71         |  |  |  |  |
| 2008      | 7 990          | 3 460     | 10.823           | 5 30         |  |  |  |  |
| 2000      | 3 500          | 3 117     | 7 161            | 5.50         |  |  |  |  |
| 2009      | 1 206          | 0.0497    | 2 226            | ).04<br>) 57 |  |  |  |  |
| 2010      | 0.804          | 0.948     | 2 122            | 2.57         |  |  |  |  |
| 2011      | 0.094          | 0.990     | 2.155            | 2.04         |  |  |  |  |
| 2012<br>a | 2 078          | 2 2 4 2   | 6 906            | 0.22         |  |  |  |  |
| 5<br>n    | 0.802          | 0.842     | 1 645            | 0.33         |  |  |  |  |
| 11<br>)Y  | 12 202         | 0.045     | 1.045            | 24.65        |  |  |  |  |
| 1.7.      | 12.393         | 9.001     | 10.007           | 24.00        |  |  |  |  |

Table A.56. Coefficients of variation (CV) for the Northeast Fisheries Science Center (NEFSC) spring and fall bottom trawl survey indices for Gulf of Maine cod from 1963 to 2012. \**Note: the spring survey did not begin until 1968, 2012 fall survey data not available at time of this report.* 

| Vacr | Abundance (nur | nbers/tow) | Biomass (kg/tow) |       |  |  |  |
|------|----------------|------------|------------------|-------|--|--|--|
| icar | Spring         | Fall       | Spring           | Fall  |  |  |  |
| 1963 |                | 0.250      |                  | 0.391 |  |  |  |
| 1964 |                | 0.412      |                  | 0.496 |  |  |  |
| 1965 |                | 0.274      |                  | 0.273 |  |  |  |
| 1966 |                | 0.217      |                  | 0.227 |  |  |  |
| 1967 |                | 0.223      |                  | 0.219 |  |  |  |
| 1968 | 0.127          | 0.181      | 0.153            | 0.198 |  |  |  |
| 1969 | 0.328          | 0.152      | 0.329            | 0.217 |  |  |  |
| 1970 | 0.214          | 0.318      | 0.237            | 0.248 |  |  |  |
| 1971 | 0.190          | 0.205      | 0.211            | 0.307 |  |  |  |
| 1972 | 0.208          | 0.535      | 0.233            | 0.199 |  |  |  |
| 1973 | 0.328          | 0.151      | 0.415            | 0.267 |  |  |  |
| 1974 | 0.188          | 0.260      | 0.199            | 0.201 |  |  |  |
| 1975 | 0.222          | 0.226      | 0.249            | 0.153 |  |  |  |
| 1976 | 0.181          | 0.197      | 0.166            | 0.214 |  |  |  |
| 1977 | 0.269          | 0.124      | 0.208            | 0.126 |  |  |  |
| 1978 | 0.191          | 0.188      | 0.207            | 0.151 |  |  |  |
| 1979 | 0.234          | 0.112      | 0.176            | 0.128 |  |  |  |
| 1980 | 0.171          | 0.261      | 0.182            | 0.153 |  |  |  |
| 1981 | 0.194          | 0.224      | 0.205            | 0.233 |  |  |  |
| 1982 | 0.219          | 0.636      | 0.223            | 0.670 |  |  |  |
| 1983 | 0.263          | 0.170      | 0.225            | 0.188 |  |  |  |
| 1984 | 0.443          | 0.220      | 0.324            | 0.334 |  |  |  |
| 1985 | 0.202          | 0.176      | 0.223            | 0.354 |  |  |  |
| 1986 | 0.314          | 0.230      | 0.197            | 0.228 |  |  |  |
| 1987 | 0.257          | 0.308      | 0.314            | 0.234 |  |  |  |
| 1988 | 0.211          | 0.349      | 0.281            | 0.232 |  |  |  |
| 1989 | 0.184          | 0.223      | 0.207            | 0.181 |  |  |  |
| 1990 | 0.249          | 0.190      | 0.280            | 0.204 |  |  |  |
| 1991 | 0.251          | 0.267      | 0.240            | 0.246 |  |  |  |
| 1992 | 0.317          | 0.213      | 0.374            | 0.243 |  |  |  |
| 1993 | 0.223          | 0.259      | 0.347            | 0.263 |  |  |  |
| 1994 | 0.223          | 0.309      | 0.216            | 0.292 |  |  |  |
| 1995 | 0.273          | 0.301      | 0.257            | 0.325 |  |  |  |
| 1996 | 0.240          | 0.254      | 0.275            | 0.249 |  |  |  |
| 1997 | 0.168          | 0.299      | 0.192            | 0.307 |  |  |  |
| 1998 | 0.344          | 0.346      | 0.324            | 0.287 |  |  |  |
| 1999 | 0.242          | 0.181      | 0.320            | 0.193 |  |  |  |
| 2000 | 0.221          | 0.306      | 0.155            | 0.332 |  |  |  |
| 2001 | 0.311          | 0.271      | 0.327            | 0.279 |  |  |  |
| 2002 | 0.203          | 0.578      | 0.215            | 0.686 |  |  |  |
| 2003 | 0.223          | 0.307      | 0.368            | 0.251 |  |  |  |
| 2004 | 0.256          | 0.327      | 0.293            | 0.214 |  |  |  |
| 2005 | 0.241          | 0.065      | 0.248            | 0.228 |  |  |  |
| 2006 | 0.203          | 0.301      | 0.249            | 0.188 |  |  |  |
| 2007 | 0.665          | 0.368      | 0.540            | 0.277 |  |  |  |
| 2008 | 0.716          | 0.389      | 0.609            | 0.285 |  |  |  |
| 2009 | 0.531          | 0.535      | 0.491            | 0.429 |  |  |  |
| 2010 | 0.243          | 0.233      | 0.264            | 0.304 |  |  |  |
| 2011 | 0.279          | 0.304      | 0.201            | 0.336 |  |  |  |
| 2012 | 0.187          |            | 0.209            |       |  |  |  |
| Avg  | 0.265          | 0.274      | 0.270            | 0.270 |  |  |  |
| Min  | 0.127          | 0.065      | 0.153            | 0.126 |  |  |  |
| Max  | 0.716          | 0.636      | 0.609            | 0.686 |  |  |  |

Table A.57. Northeast Fisheries Science Center (NEFSC) spring survey abundance indices-at-age (numbers/tow) from 1970 to 2012 for Gulf of Maine Atlantic cod. Age data are not available prior to 1970.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 | Age17 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1970 | 0.000 | 0.159 | 0.124 | 0.053 | 0.098 | 0.290 | 0.475 | 0.589 | 0.073 | 0.045 | 0.076 | 0.133 | 0.059 | 0.000 | 0.018 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.000 | 0.069 | 0.109 | 0.099 | 0.280 | 0.086 | 0.096 | 0.280 | 0.207 | 0.142 | 0.050 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.053 | 0.300 | 0.153 | 0.499 | 0.208 | 0.205 | 0.052 | 0.083 | 0.119 | 0.300 | 0.027 | 0.017 | 0.026 | 0.000 | 0.017 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.000 | 0.053 | 4.273 | 0.917 | 0.614 | 0.384 | 0.144 | 0.106 | 0.186 | 0.276 | 0.186 | 0.072 | 0.113 | 0.112 | 0.088 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.164 | 0.311 | 0.081 | 1.534 | 0.177 | 0.231 | 0.082 | 0.000 | 0.064 | 0.038 | 0.089 | 0.043 | 0.037 | 0.000 | 0.016 | 0.000 | 0.035 | 0.000 |
| 1975 | 0.012 | 0.094 | 0.707 | 0.095 | 1.139 | 0.246 | 0.073 | 0.000 | 0.006 | 0.025 | 0.028 | 0.026 | 0.062 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.000 | 0.052 | 0.253 | 1.114 | 0.150 | 0.870 | 0.131 | 0.056 | 0.038 | 0.000 | 0.036 | 0.000 | 0.054 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.000 | 0.068 | 0.264 | 0.460 | 2.015 | 0.139 | 0.775 | 0.000 | 0.114 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.006 |
| 1978 | 0.000 | 0.070 | 0.083 | 0.297 | 0.383 | 0.764 | 0.084 | 0.226 | 0.013 | 0.108 | 0.000 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.044 | 0.426 | 1.407 | 0.186 | 0.470 | 0.301 | 0.549 | 0.094 | 0.104 | 0.013 | 0.031 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1980 | 0.070 | 0.037 | 0.500 | 0.436 | 0.123 | 0.294 | 0.226 | 0.337 | 0.000 | 0.105 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1981 | 0.000 | 1.091 | 0.619 | 0.850 | 1.335 | 0.318 | 0.304 | 0.080 | 0.144 | 0.091 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.014 | 0.357 | 1.040 | 0.498 | 0.737 | 0.848 | 0.083 | 0.135 | 0.000 | 0.040 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.013 | 0.610 | 0.968 | 1.042 | 0.453 | 0.336 | 0.250 | 0.060 | 0.000 | 0.071 | 0.033 | 0.017 | 0.045 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.151 | 1.309 | 0.987 | 0.853 | 0.229 | 0.047 | 0.090 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.000 | 0.029 | 0.238 | 0.676 | 0.612 | 0.707 | 0.094 | 0.109 | 0.026 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.000 | 0.537 | 0.259 | 0.767 | 0.218 | 0.075 | 0.046 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.000 | 0.030 | 0.471 | 0.191 | 0.222 | 0.075 | 0.000 | 0.068 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.029 | 0.719 | 0.926 | 0.791 | 0.283 | 0.205 | 0.099 | 0.036 | 0.020 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.000 | 0.025 | 0.609 | 0.712 | 0.630 | 0.069 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.000 | 0.009 | 0.233 | 1.325 | 0.669 | 0.076 | 0.032 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.000 | 0.028 | 0.077 | 0.233 | 1.750 | 0.247 | 0.041 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.000 | 0.050 | 0.247 | 0.223 | 0.248 | 1.368 | 0.213 | 0.073 | 0.000 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.000 | 0.201 | 0.507 | 0.804 | 0.364 | 0.084 | 0.446 | 0.055 | 0.023 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.000 | 0.015 | 0.316 | 0.407 | 0.201 | 0.083 | 0.053 | 0.142 | 0.009 | 0.027 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.000 | 0.037 | 0.187 | 1.165 | 0.321 | 0.147 | 0.034 | 0.000 | 0.011 | 0.000 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.000 | 0.057 | 0.022 | 0.586 | 1.355 | 0.385 | 0.060 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.000 | 0.159 | 0.139 | 0.390 | 0.271 | 0.874 | 0.244 | 0.115 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.000 | 0.018 | 0.228 | 0.359 | 0.513 | 0.143 | 0.408 | 0.021 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.000 | 0.166 | 0.342 | 0.726 | 0.351 | 0.305 | 0.134 | 0.266 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.026 | 1.173 | 0.737 | 0.438 | 0.485 | 0.099 | 0.092 | 0.011 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.000 | 0.029 | 0.355 | 0.683 | 0.510 | 0.342 | 0.065 | 0.097 | 0.055 | 0.000 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.000 | 0.340 | 0.045 | 0.548 | 1.584 | 0.606 | 0.342 | 0.185 | 0.057 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.000 | 0.075 | 0.825 | 0.059 | 0.718 | 1.072 | 0.387 | 0.340 | 0.081 | 0.082 | 0.030 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 0.000 | 0.136 | 0.045 | 0.230 | 0.116 | 0.208 | 0.213 | 0.011 | 0.011 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.000 | 0.029 | 0.739 | 0.081 | 0.623 | 0.011 | 0.138 | 0.128 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.028 | 0.184 | 0.237 | 0.434 | 0.049 | 0.197 | 0.023 | 0.126 | 0.069 | 0.000 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.000 | 0.100 | 3.422 | 3.077 | 4.446 | 0.437 | 0.796 | 0.075 | 0.041 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.000 | 0.079 | 1.165 | 3.930 | 1.582 | 1.099 | 0.053 | 0.082 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.000 | 0.063 | 0.279 | 1.050 | 1.135 | 0.600 | 0.438 | 0.008 | 0.022 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.059 | 0.279 | 0.335 | 0.197 | 0.229 | 0.113 | 0.043 | 0.016 | 0.010 | 0.005 | 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.000 | 0.005 | 0.024 | 0.140 | 0.383 | 0.189 | 0.086 | 0.033 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 0.000 | 0.069 | 0.105 | 0.224 | 0.243 | 0.159 | 0.051 | 0.036 | 0.004 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.58. Northeast Fisheries Science Center (NEFSC) spring survey biomass indices-at-age (weight/tow) from 1970 to 2012 for Gulf of Maine Atlantic cod. Age data are not available prior to 1970. \**Note, biomass indices are not used in the current assessment.* 

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 | Age17 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1970 | 0.000 | 0.007 | 0.037 | 0.034 | 0.154 | 0.715 | 2.274 | 3.140 | 0.626 | 0.390 | 0.605 | 1.840 | 0.950 | 0.000 | 0.318 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.000 | 0.014 | 0.055 | 0.133 | 0.623 | 0.384 | 0.343 | 1.786 | 1.767 | 1.073 | 0.656 | 0.170 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.000 | 0.014 | 0.054 | 0.827 | 0.522 | 0.738 | 0.284 | 0.516 | 0.914 | 3.161 | 0.256 | 0.208 | 0.268 | 0.000 | 0.270 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.000 | 0.002 | 0.769 | 0.892 | 1.780 | 1.434 | 0.652 | 0.765 | 1.156 | 2.874 | 2.127 | 0.914 | 1.627 | 1.837 | 1.979 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.002 | 0.011 | 0.015 | 1.056 | 0.478 | 1.310 | 0.655 | 0.000 | 0.470 | 0.176 | 1.213 | 0.402 | 0.527 | 0.000 | 0.289 | 0.000 | 0.815 | 0.000 |
| 1975 | 0.000 | 0.003 | 0.180 | 0.098 | 2.161 | 0.954 | 0.512 | 0.000 | 0.052 | 0.250 | 0.566 | 0.166 | 1.097 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.000 | 0.005 | 0.061 | 0.794 | 0.253 | 2.727 | 0.728 | 0.608 | 0.438 | 0.000 | 0.451 | 0.000 | 0.958 | 0.532 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.000 | 0.008 | 0.086 | 0.359 | 2.132 | 0.321 | 3.710 | 0.000 | 1.134 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.666 | 0.000 | 0.000 | 0.126 |
| 1978 | 0.000 | 0.009 | 0.039 | 0.338 | 0.695 | 2.398 | 0.480 | 1.738 | 0.134 | 1.613 | 0.000 | 0.253 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.000 | 0.033 | 0.568 | 0.254 | 0.926 | 0.918 | 2.248 | 0.721 | 0.741 | 0.184 | 0.464 | 0.498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1980 | 0.000 | 0.002 | 0.175 | 0.563 | 0.263 | 1.019 | 0.875 | 1.880 | 0.000 | 1.072 | 0.383 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1981 | 0.000 | 0.137 | 0.285 | 0.937 | 3.306 | 1.289 | 1.869 | 0.605 | 1.220 | 1.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.000 | 0.038 | 0.456 | 0.672 | 1.901 | 3.511 | 0.339 | 1.085 | 0.000 | 0.439 | 0.176 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.000 | 0.057 | 0.448 | 1.536 | 1.138 | 1.718 | 1.672 | 0.682 | 0.000 | 1.134 | 0.526 | 0.306 | 1.283 | 0.000 | 0.462 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.011 | 0.752 | 1.412 | 2.176 | 1.133 | 0.204 | 0.455 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.000 | 0.001 | 0.101 | 0.898 | 1.658 | 3.035 | 0.518 | 0.663 | 0.342 | 0.429 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.000 | 0.046 | 0.125 | 1.199 | 0.644 | 0.268 | 0.358 | 0.474 | 0.000 | 0.000 | 0.000 | 0.000 | 0.362 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.000 | 0.002 | 0.164 | 0.139 | 0.574 | 0.230 | 0.000 | 0.432 | 0.061 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.373 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.000 | 0.036 | 0.162 | 0.821 | 0.489 | 1.035 | 0.548 | 0.177 | 0.191 | 0.145 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.000 | 0.001 | 0.111 | 0.518 | 1.151 | 0.182 | 0.461 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.000 | 0.001 | 0.057 | 1.042 | 1.357 | 0.263 | 0.210 | 0.147 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.000 | 0.002 | 0.015 | 0.204 | 2.083 | 0.376 | 0.104 | 0.108 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.000 | 0.003 | 0.112 | 0.225 | 0.713 | 5.715 | 1.204 | 0.494 | 0.000 | 0.161 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.000 | 0.012 | 0.164 | 1.100 | 0.714 | 0.321 | 2.341 | 0.589 | 0.258 | 0.000 | 0.377 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.000 | 0.001 | 0.061 | 0.348 | 0.467 | 0.210 | 0.150 | 0.804 | 0.060 | 0.098 | 0.229 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.000 | 0.004 | 0.045 | 0.794 | 0.411 | 0.415 | 0.135 | 0.000 | 0.032 | 0.000 | 0.597 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.000 | 0.004 | 0.007 | 1.054 | 2.802 | 1.269 | 0.291 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.000 | 0.010 | 0.062 | 0.553 | 0.719 | 2.581 | 0.914 | 0.777 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.000 | 0.001 | 0.102 | 0.427 | 1.043 | 0.461 | 1.849 | 0.136 | 0.161 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.000 | 0.015 | 0.115 | 0.722 | 0.683 | 0.953 | 0.768 | 1.482 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.353 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.000 | 0.093 | 0.322 | 0.454 | 1.204 | 0.409 | 0.489 | 0.052 | 0.190 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.000 | 0.003 | 0.168 | 0.756 | 1.395 | 1.452 | 0.581 | 0.876 | 0.793 | 0.000 | 0.190 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.000 | 0.024 | 0.014 | 0.642 | 4.305 | 1.963 | 2.061 | 1.113 | 0.753 | 0.060 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.000 | 0.009 | 0.163 | 0.048 | 1.141 | 2.852 | 1.544 | 1.964 | 0.535 | 0.920 | 0.282 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 0.000 | 0.006 | 0.016 | 0.196 | 0.294 | 0.763 | 0.936 | 0.043 | 0.043 | 0.117 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.000 | 0.001 | 0.156 | 0.084 | 1.084 | 0.030 | 0.549 | 0.716 | 0.081 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.000 | 0.013 | 0.062 | 0.343 | 0.091 | 0.611 | 0.142 | 0.686 | 0.602 | 0.000 | 0.153 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.000 | 0.009 | 1.329 | 2.694 | 7.333 | 1.337 | 2.581 | 0.308 | 0.221 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.000 | 0.004 | 0.466 | 4.137 | 2.619 | 2.734 | 0.299 | 0.565 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.000 | 0.002 | 0.146 | 1.513 | 2.346 | 1.560 | 1.260 | 0.065 | 0.222 | 0.000 | 0.046 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.005 | 0.099 | 0.403 | 0.551 | 0.881 | 0.522 | 0.318 | 0.171 | 0.103 | 0.113 | 0.000 | 0.171 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.000 | 0.000 | 0.011 | 0.164 | 0.657 | 0.510 | 0.302 | 0.193 | 0.295 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 0.000 | 0.006 | 0.054 | 0.291 | 0.500 | 0.391 | 0.166 | 0.180 | 0.041 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.59. Northeast Fisheries Science Center (NEFSC) fall survey abundance indices-at-age (numbers/tow) from 1970 to 2011 for Gulf of Maine Atlantic cod. Age data are not available prior to 1970.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 | Age17 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1970 | 0.743 | 0.938 | 0.254 | 0.520 | 0.336 | 0.487 | 0.424 | 0.836 | 0.130 | 0.090 | 0.037 | 0.037 | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1971 | 1.334 | 0.207 | 0.224 | 0.190 | 0.607 | 0.444 | 0.509 | 0.222 | 0.280 | 0.193 | 0.031 | 0.040 | 0.081 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.031 | 5.663 | 1.118 | 1.595 | 0.181 | 0.072 | 0.122 | 0.031 | 0.121 | 0.351 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.638 | 0.327 | 2.146 | 0.179 | 0.540 | 0.191 | 0.055 | 0.018 | 0.039 | 0.182 | 0.122 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.265 | 1.131 | 0.267 | 1.922 | 0.125 | 0.276 | 0.000 | 0.052 | 0.036 | 0.066 | 0.000 | 0.120 | 0.000 | 0.000 | 0.069 | 0.000 | 0.000 | 0.000 |
| 1975 | 0.006 | 0.223 | 3.028 | 0.139 | 2.354 | 0.250 | 0.105 | 0.020 | 0.000 | 0.000 | 0.000 | 0.006 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.000 | 0.209 | 0.216 | 0.578 | 0.104 | 0.835 | 0.044 | 0.099 | 0.000 | 0.000 | 0.063 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.000 | 0.046 | 0.446 | 0.456 | 1.151 | 0.133 | 0.604 | 0.024 | 0.083 | 0.021 | 0.061 | 0.000 | 0.022 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1978 | 0.241 | 1.411 | 0.359 | 1.141 | 0.661 | 1.450 | 0.101 | 0.269 | 0.012 | 0.082 | 0.000 | 0.019 | 0.000 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.000 | 0.364 | 0.617 | 0.131 | 0.696 | 0.319 | 0.754 | 0.056 | 0.135 | 0.000 | 0.053 | 0.000 | 0.000 | 0.000 | 0.005 | 0.013 | 0.000 | 0.000 |
| 1980 | 0.027 | 1.319 | 2.558 | 1.664 | 0.518 | 0.236 | 0.402 | 0.192 | 0.022 | 0.012 | 0.000 | 0.049 | 0.000 | 0.014 | 0.000 | 0.000 | 0.022 | 0.000 |
| 1981 | 0.010 | 0.581 | 0.399 | 0.469 | 0.509 | 0.092 | 0.081 | 0.081 | 0.099 | 0.000 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.000 | 0.835 | 3.264 | 2.476 | 0.971 | 0.222 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.000 | 0.305 | 0.905 | 0.757 | 0.267 | 0.250 | 0.219 | 0.000 | 0.000 | 0.000 | 0.018 | 0.028 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.513 | 0.418 | 0.586 | 0.384 | 0.196 | 0.194 | 0.062 | 0.000 | 0.016 | 0.000 | 0.000 | 0.045 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.218 | 0.445 | 0.917 | 0.627 | 0.201 | 0.246 | 0.064 | 0.000 | 0.034 | 0.070 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.000 | 0.394 | 0.404 | 0.626 | 0.368 | 0.073 | 0.041 | 0.000 | 0.000 | 0.045 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.128 | 0.570 | 1.388 | 0.586 | 0.198 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.000 | 1.889 | 2.366 | 1.069 | 0.367 | 0.146 | 0.000 | 0.044 | 0.000 | 0.011 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.000 | 0.145 | 2.468 | 1.458 | 0.283 | 0.138 | 0.053 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.000 | 0.057 | 0.218 | 1.788 | 0.611 | 0.255 | 0.048 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.009 | 0.144 | 0.151 | 0.230 | 0.621 | 0.075 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.059 | 0.289 | 0.448 | 0.144 | 0.041 | 0.327 | 0.126 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.031 | 0.210 | 0.575 | 0.361 | 0.017 | 0.000 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.032 | 0.184 | 0.909 | 0.816 | 0.093 | 0.051 | 0.000 | 0.045 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.008 | 0.068 | 0.308 | 1.226 | 0.304 | 0.082 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.029 | 0.122 | 0.379 | 0.231 | 0.516 | 0.050 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.000 | 0.297 | 0.091 | 0.165 | 0.168 | 0.151 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.050 | 0.085 | 0.342 | 0.110 | 0.185 | 0.041 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.025 | 0.432 | 0.375 | 0.590 | 0.244 | 0.122 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.008 | 0.540 | 0.981 | 0.399 | 0.492 | 0.140 | 0.010 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.018 | 0.000 | 0.171 | 0.720 | 0.478 | 0.356 | 0.124 | 0.092 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.000 | 0.269 | 0.104 | 0.333 | 2.683 | 1.070 | 0.750 | 0.077 | 0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.542 | 0.461 | 0.186 | 0.216 | 0.518 | 0.451 | 0.071 | 0.062 | 0.000 | 0.011 | 0.000 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 1.369 | 0.661 | 0.172 | 0.577 | 0.254 | 0.250 | 0.149 | 0.057 | 0.023 | 0.010 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.034 | 0.153 | 0.378 | 0.078 | 0.456 | 0.023 | 0.090 | 0.082 | 0.023 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.064 | 1.241 | 0.599 | 1.007 | 0.252 | 0.293 | 0.037 | 0.053 | 0.036 | 0.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.011 | 0.136 | 0.863 | 0.395 | 0.496 | 0.023 | 0.067 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.165 | 0.650 | 1.227 | 1.060 | 0.189 | 0.139 | 0.000 | 0.000 | 0.000 | 0.010 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.020 | 0.660 | 2.096 | 0.314 | 0.277 | 0.045 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.008 | 0.094 | 0.132 | 0.290 | 0.288 | 0.092 | 0.023 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.036 | 0.060 | 0.091 | 0.210 | 0.304 | 0.175 | 0.078 | 0.005 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.60. Northeast Fisheries Science Center (NEFSC) fall survey biomass indices-at-age (weight/tow) from 1970 to 2011 for Gulf of Maine Atlantic cod. Age data are not available prior to 1970. \**Note, biomass indices are not used in the current assessment.* 

| Year | Age0  | Age1  | Age2  | Age3  | Age4   | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 | Age15 | Age16 | Age17 |
|------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1970 | 0.005 | 0.187 | 0.152 | 0.732 | 1.291  | 1.467 | 2.626 | 5.792 | 1.125 | 0.780 | 0.493 | 0.443 | 1.349 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1971 | 0.333 | 0.050 | 0.269 | 0.321 | 1.769  | 2.138 | 2.743 | 1.519 | 2.520 | 2.357 | 0.644 | 0.337 | 1.531 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1972 | 0.000 | 0.769 | 0.832 | 3.572 | 0.647  | 0.264 | 0.813 | 0.208 | 1.480 | 4.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.323 | 0.000 | 0.000 | 0.000 |
| 1973 | 0.006 | 0.036 | 0.984 | 0.374 | 2.282  | 0.919 | 0.322 | 0.178 | 0.235 | 2.076 | 1.128 | 0.000 | 0.000 | 0.224 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1974 | 0.000 | 0.086 | 0.133 | 2.515 | 0.344  | 1.778 | 0.000 | 0.419 | 0.456 | 0.814 | 0.000 | 1.602 | 0.000 | 0.000 | 0.812 | 0.000 | 0.000 | 0.000 |
| 1975 | 0.000 | 0.056 | 1.328 | 0.144 | 5.392  | 0.695 | 0.587 | 0.169 | 0.000 | 0.000 | 0.000 | 0.095 | 0.154 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1976 | 0.000 | 0.073 | 0.182 | 0.678 | 0.154  | 3.230 | 0.328 | 0.963 | 0.000 | 0.000 | 1.133 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1977 | 0.000 | 0.009 | 0.237 | 0.565 | 2.121  | 0.506 | 3.589 | 0.188 | 0.929 | 0.298 | 1.031 | 0.000 | 0.300 | 0.427 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1978 | 0.004 | 0.285 | 0.264 | 1.559 | 1.500  | 4.493 | 0.408 | 2.047 | 0.143 | 1.260 | 0.000 | 0.361 | 0.000 | 0.577 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1979 | 0.000 | 0.140 | 0.542 | 0.347 | 2.328  | 1.744 | 5.123 | 0.573 | 1.607 | 0.000 | 1.042 | 0.000 | 0.000 | 0.000 | 0.122 | 0.360 | 0.000 | 0.000 |
| 1980 | 0.001 | 0.427 | 1.836 | 3.159 | 1.589  | 1.580 | 2.409 | 1.228 | 0.338 | 0.216 | 0.000 | 0.702 | 0.000 | 0.291 | 0.000 | 0.000 | 0.427 | 0.000 |
| 1981 | 0.000 | 0.135 | 0.440 | 0.993 | 2.249  | 0.516 | 0.656 | 0.676 | 1.225 | 0.000 | 0.644 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1982 | 0.000 | 0.412 | 4.594 | 6.161 | 3.224  | 1.528 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.000 | 0.072 | 0.979 | 1.310 | 0.957  | 1.222 | 2.154 | 0.000 | 0.000 | 0.000 | 0.266 | 0.648 | 0.809 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.147 | 0.422 | 1.345 | 1.419  | 1.287 | 1.465 | 0.705 | 0.000 | 0.302 | 0.000 | 0.000 | 0.907 | 0.737 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.003 | 0.093 | 0.967 | 1.568 | 0.780  | 1.842 | 0.663 | 0.000 | 0.691 | 1.657 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.000 | 0.137 | 0.284 | 1.563 | 1.229  | 0.576 | 0.332 | 0.000 | 0.000 | 0.595 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.001 | 0.086 | 0.900 | 0.881 | 0.714  | 0.813 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.000 | 0.331 | 1.586 | 1.982 | 1.172  | 0.877 | 0.000 | 0.388 | 0.000 | 0.117 | 0.165 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.000 | 0.040 | 1.011 | 1.715 | 0.771  | 0.676 | 0.204 | 0.000 | 0.119 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.000 | 0.013 | 0.094 | 1.718 | 1.565  | 1.234 | 0.238 | 0.052 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.000 | 0.025 | 0.108 | 0.392 | 1.592  | 0.404 | 0.000 | 0.260 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.001 | 0.062 | 0.400 | 0.178 | 0.109  | 1.100 | 0.599 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.001 | 0.026 | 0.295 | 0.553 | 0.061  | 0.000 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.001 | 0.053 | 0.482 | 1.226 | 0.324  | 0.331 | 0.000 | 0.320 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.001 | 0.009 | 0.270 | 1.958 | 0.793  | 0.586 | 0.049 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.001 | 0.035 | 0.274 | 0.508 | 1.246  | 0.289 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.000 | 0.045 | 0.082 | 0.291 | 0.772  | 0.681 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.001 | 0.016 | 0.258 | 0.206 | 0.607  | 0.185 | 0.227 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.001 | 0.131 | 0.380 | 1.239 | 0.941  | 0.671 | 0.143 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.000 | 0.119 | 0.849 | 0.774 | 1.821  | 0.497 | 0.098 | 0.000 | 0.495 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.001 | 0.000 | 0.129 | 1.310 | 1.301  | 2.228 | 1.124 | 0.981 | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.000 | 0.038 | 0.101 | 0.730 | 10.977 | 5.659 | 5.789 | 0.642 | 0.723 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.014 | 0.172 | 0.122 | 0.497 | 1.402  | 2.361 | 0.443 | 0.538 | 0.000 | 0.174 | 0.000 | 0.266 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 0.002 | 0.083 | 0.108 | 0.978 | 0.878  | 1.125 | 0.666 | 0.485 | 0.192 | 0.191 | 0.198 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.001 | 0.017 | 0.171 | 0.124 | 0.985  | 0.134 | 0.312 | 0.542 | 0.231 | 0.380 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.001 | 0.257 | 0.288 | 1.031 | 0.432  | 1.021 | 0.221 | 0.269 | 0.510 | 0.000 | 0.000 | 0.199 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.001 | 0.023 | 0.455 | 0.402 | 1.310  | 0.098 | 0.426 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.014 | 0.206 | 1.246 | 2.105 | 0.469  | 0.754 | 0.000 | 0.000 | 0.000 | 0.134 | 0.379 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.001 | 0.366 | 2.461 | 1.057 | 1.246  | 0.480 | 0.234 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.032 | 0.155 | 0.515 | 1.125  | 0.440 | 0.106 | 0.046 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.154 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.001 | 0.017 | 0.086 | 0.372 | 0.706  | 0.802 | 0.385 | 0.054 | 0.224 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.61. Massachusetts Department of Marine Fisheries (MADMF) spring and fall survey indices from 1978 to 2012 for Gulf of Maine Atlantic cod. *\*Note: 2012 fall survey data not available at time of this report.* 

| Voor | Abundance (n | umbers/tow) | Biomass (kg/tow) |       |  |  |  |  |
|------|--------------|-------------|------------------|-------|--|--|--|--|
| rear | Spring       | Fall        | Spring           | Fall  |  |  |  |  |
| 1978 | 47.887       | 156.060     | 11.058           | 1.515 |  |  |  |  |
| 1979 | 96.559       | 8.924       | 14.276           | 1.052 |  |  |  |  |
| 1980 | 65.979       | 12.531      | 14.509           | 1.286 |  |  |  |  |
| 1981 | 69.406       | 9.291       | 18.689           | 3.638 |  |  |  |  |
| 1982 | 25.842       | 6.125       | 12.161           | 0.659 |  |  |  |  |
| 1983 | 54.850       | 1.676       | 18.746           | 0.092 |  |  |  |  |
| 1984 | 10.330       | 10.548      | 7.240            | 0.133 |  |  |  |  |
| 1985 | 8.455        | 2.871       | 4.765            | 0.070 |  |  |  |  |
| 1986 | 24.089       | 2.750       | 7.841            | 0.249 |  |  |  |  |
| 1987 | 17.206       | 313.148     | 7.865            | 0.348 |  |  |  |  |
| 1988 | 22.242       | 8.872       | 7.703            | 0.366 |  |  |  |  |
| 1989 | 52.244       | 4.150       | 17.346           | 0.218 |  |  |  |  |
| 1990 | 32.409       | 12.708      | 15.879           | 0.758 |  |  |  |  |
| 1991 | 13.699       | 7.483       | 8.730            | 0.480 |  |  |  |  |
| 1992 | 16.924       | 27.496      | 8.766            | 0.272 |  |  |  |  |
| 1993 | 92.659       | 51.500      | 5.861            | 1.353 |  |  |  |  |
| 1994 | 16.358       | 49.019      | 4.334            | 1.998 |  |  |  |  |
| 1995 | 23.364       | 4.678       | 3.993            | 0.807 |  |  |  |  |
| 1996 | 12.961       | 7.007       | 3.152            | 0.083 |  |  |  |  |
| 1997 | 17.887       | 1.456       | 2.500            | 0.014 |  |  |  |  |
| 1998 | 27.570       | 4.335       | 3.250            | 0.360 |  |  |  |  |
| 1999 | 161.058      | 8.005       | 8.997            | 0.308 |  |  |  |  |
| 2000 | 50.771       | 0.679       | 20.604           | 0.272 |  |  |  |  |
| 2001 | 41.844       | 49.555      | 26.445           | 0.757 |  |  |  |  |
| 2002 | 24.338       | 3.299       | 11.158           | 3.995 |  |  |  |  |
| 2003 | 1120.371     | 122.284     | 10.984           | 1.850 |  |  |  |  |
| 2004 | 131.589      | 57.620      | 8.147            | 5.580 |  |  |  |  |
| 2005 | 193.262      | 40.350      | 10.402           | 0.207 |  |  |  |  |
| 2006 | 1077.030     | 7.505       | 9.177            | 1.939 |  |  |  |  |
| 2007 | 61.576       | 7.918       | 8.430            | 0.077 |  |  |  |  |
| 2008 | 482.100      | 7.549       | 12.229           | 2.379 |  |  |  |  |
| 2009 | 480.516      | 5.042       | 4.489            | 0.807 |  |  |  |  |
| 2010 | 8.075        | 2.022       | 5.645            | 1.400 |  |  |  |  |
| 2011 | 59.064       | 2.610       | 4.519            | 1.355 |  |  |  |  |
| 2012 | 11.465       |             | 2.276            |       |  |  |  |  |
| Avg  | 132.914      | 29.914      | 9.776            | 1.079 |  |  |  |  |
| Min  | 8.075        | 0.679       | 2.276            | 0.014 |  |  |  |  |
| Max  | 1120.371     | 313.148     | 26.445           | 5.580 |  |  |  |  |

Table A.62. Coefficients of variation (CV) for the Massachusetts Department of Marine Fisheries (MADMF) spring and fall bottom trawl survey indices of Gulf of Maine Atlantic cod between 1978 and 2012. \**Note: 2012 fall survey data not available at time of this report.* 

| Voor | Abundance (n | umbers/tow) | Biomass (kg/tow) |       |  |  |  |
|------|--------------|-------------|------------------|-------|--|--|--|
| rear | Spring       | Fall        | Spring           | Fall  |  |  |  |
| 1978 | 0.147        | 0.322       | 0.138            | 0.555 |  |  |  |
| 1979 | 0.278        | 0.260       | 0.219            | 0.377 |  |  |  |
| 1980 | 0.124        | 0.266       | 0.128            | 0.345 |  |  |  |
| 1981 | 0.207        | 0.422       | 0.265            | 0.453 |  |  |  |
| 1982 | 0.221        | 0.321       | 0.175            | 0.690 |  |  |  |
| 1983 | 0.166        | 0.338       | 0.153            | 0.569 |  |  |  |
| 1984 | 0.289        | 0.189       | 0.259            | 0.444 |  |  |  |
| 1985 | 0.206        | 0.308       | 0.194            | 0.396 |  |  |  |
| 1986 | 0.552        | 0.304       | 0.354            | 0.864 |  |  |  |
| 1987 | 0.221        | 0.173       | 0.271            | 0.186 |  |  |  |
| 1988 | 0.206        | 0.240       | 0.237            | 0.436 |  |  |  |
| 1989 | 0.268        | 0.064       | 0.342            | 0.456 |  |  |  |
| 1990 | 0.288        | 0.262       | 0.341            | 0.413 |  |  |  |
| 1991 | 0.219        | 0.263       | 0.122            | 0.543 |  |  |  |
| 1992 | 0.287        | 0.076       | 0.321            | 0.340 |  |  |  |
| 1993 | 0.340        | 0.245       | 0.270            | 0.237 |  |  |  |
| 1994 | 0.227        | 0.513       | 0.241            | 0.787 |  |  |  |
| 1995 | 0.262        | 0.316       | 0.225            | 0.690 |  |  |  |
| 1996 | 0.218        | 0.365       | 0.305            | 0.426 |  |  |  |
| 1997 | 0.240        | 0.243       | 0.250            | 0.456 |  |  |  |
| 1998 | 0.261        | 0.260       | 0.468            | 0.486 |  |  |  |
| 1999 | 0.369        | 0.552       | 0.261            | 0.452 |  |  |  |
| 2000 | 0.391        | 0.379       | 0.459            | 0.387 |  |  |  |
| 2001 | 0.435        | 0.474       | 0.536            | 0.545 |  |  |  |
| 2002 | 0.096        | 0.596       | 0.390            | 0.812 |  |  |  |
| 2003 | 0.507        | 0.478       | 0.219            | 0.466 |  |  |  |
| 2004 | 0.459        | 0.299       | 0.278            | 0.399 |  |  |  |
| 2005 | 0.223        | 0.415       | 0.197            | 0.412 |  |  |  |
| 2006 | 0.337        | 0.398       | 0.181            | 0.460 |  |  |  |
| 2007 | 0.274        | 0.275       | 0.251            | 0.665 |  |  |  |
| 2008 | 0.204        | 0.417       | 0.215            | 0.443 |  |  |  |
| 2009 | 0.352        | 0.416       | 0.187            | 0.431 |  |  |  |
| 2010 | 0.234        | 0.449       | 0.456            | 0.471 |  |  |  |
| 2011 | 0.534        | 0.328       | 0.424            | 0.246 |  |  |  |
| 2012 | 0.274        |             | 0.401            |       |  |  |  |
| Avg  | 0.283        | 0.330       | 0.278            | 0.481 |  |  |  |
| Min  | 0.096        | 0.064       | 0.122            | 0.186 |  |  |  |
| Max  | 0.552        | 0.596       | 0.536            | 0.864 |  |  |  |

| Year | Age0     | Age1   | Age2   | Age3   | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 |
|------|----------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1982 | 1.668    | 13.218 | 6.649  | 2.921  | 1.024 | 0.216 | 0.049 | 0.046 | 0.050 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.718    | 30.253 | 17.570 | 4.710  | 0.347 | 1.121 | 0.075 | 0.023 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.257    | 1.898  | 5.090  | 2.101  | 0.751 | 0.147 | 0.086 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 1.569    | 1.670  | 2.695  | 2.024  | 0.498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 1.075    | 18.031 | 3.376  | 0.903  | 0.582 | 0.100 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.725    | 8.622  | 5.376  | 2.045  | 0.168 | 0.147 | 0.053 | 0.000 | 0.000 | 0.070 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 1.895    | 10.409 | 6.750  | 1.927  | 1.211 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.298    | 21.463 | 22.947 | 6.868  | 0.513 | 0.108 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 4.930    | 4.972  | 5.938  | 14.182 | 2.149 | 0.155 | 0.083 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.355    | 5.331  | 2.295  | 1.801  | 3.669 | 0.249 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 1.506    | 4.379  | 5.699  | 3.444  | 0.484 | 1.301 | 0.066 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 80.090   | 2.842  | 6.100  | 2.509  | 0.879 | 0.166 | 0.074 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 4.627    | 5.406  | 3.883  | 1.703  | 0.608 | 0.131 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 11.998   | 5.985  | 2.420  | 2.408  | 0.525 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 8.843    | 0.777  | 0.497  | 0.955  | 1.590 | 0.299 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 12.431   | 2.910  | 1.035  | 0.920  | 0.190 | 0.383 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 23.481   | 1.487  | 0.924  | 0.779  | 0.637 | 0.034 | 0.211 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 143.000  | 11.832 | 2.407  | 2.275  | 0.735 | 0.630 | 0.036 | 0.127 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 2.151    | 35.360 | 6.995  | 2.371  | 2.316 | 0.784 | 0.663 | 0.059 | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 25.987   | 0.084  | 4.998  | 4.710  | 3.448 | 1.961 | 0.323 | 0.227 | 0.106 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.924    | 19.340 | 0.220  | 1.379  | 1.145 | 0.561 | 0.318 | 0.111 | 0.253 | 0.025 | 0.049 | 0.000 | 0.012 | 0.000 | 0.000 |
| 2003 | 1094.105 | 17.109 | 5.496  | 0.439  | 1.938 | 0.937 | 0.221 | 0.074 | 0.014 | 0.025 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 |
| 2004 | 116.135  | 8.927  | 1.882  | 2.627  | 0.361 | 1.083 | 0.455 | 0.076 | 0.029 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 179.479  | 5.524  | 4.141  | 0.795  | 1.955 | 0.263 | 0.663 | 0.243 | 0.094 | 0.105 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 1053.701 | 9.992  | 7.139  | 3.930  | 0.525 | 1.532 | 0.109 | 0.057 | 0.000 | 0.017 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 49.323   | 3.776  | 3.078  | 2.303  | 2.163 | 0.343 | 0.519 | 0.025 | 0.046 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 456.954  | 7.275  | 10.336 | 3.242  | 2.287 | 1.695 | 0.155 | 0.155 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 466.098  | 8.907  | 2.350  | 1.654  | 1.045 | 0.348 | 0.112 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 1.165    | 2.415  | 1.393  | 1.423  | 0.819 | 0.678 | 0.129 | 0.000 | 0.000 | 0.000 | 0.052 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 55.378   | 0.326  | 1.001  | 0.621  | 0.933 | 0.558 | 0.139 | 0.086 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 6.239    | 3.368  | 0.671  | 0.446  | 0.304 | 0.415 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.63. Massachusetts Department of Marine Fisheries (MADMF) spring survey abundance indices-at-age (numbers/tow) from 1982 to 2012 for Gulf of Maine Atlantic cod. Age data are not available prior to 1982.

Table A.64. Massachusetts Department of Marine Fisheries (MADMF) spring survey biomass indices-at-age (weight/tow) from 1981 to 2012 for Gulf of Maine Atlantic cod. Age data are not available prior to 1982. \**Note: biomass indices are not used in the current assessment*.

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1982 | 0.001 | 1.539 | 3.012 | 3.230 | 2.081 | 1.212 | 0.248 | 0.315 | 0.523 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.001 | 2.497 | 6.811 | 4.805 | 0.567 | 2.669 | 0.787 | 0.105 | 0.506 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.000 | 0.197 | 2.112 | 2.722 | 1.414 | 0.546 | 0.249 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.016 | 0.213 | 1.393 | 2.022 | 1.120 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.001 | 3.062 | 1.528 | 1.437 | 1.320 | 0.364 | 0.129 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.001 | 0.491 | 3.030 | 1.618 | 0.539 | 0.583 | 0.535 | 0.000 | 0.000 | 1.069 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.002 | 0.311 | 2.263 | 2.343 | 2.472 | 0.101 | 0.210 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.001 | 1.543 | 7.795 | 6.497 | 0.851 | 0.402 | 0.257 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.005 | 0.262 | 2.430 | 9.278 | 2.831 | 0.513 | 0.560 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.000 | 0.607 | 0.759 | 2.013 | 4.702 | 0.648 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.001 | 0.215 | 2.545 | 2.594 | 0.683 | 2.232 | 0.363 | 0.133 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.090 | 0.104 | 2.162 | 1.918 | 0.908 | 0.470 | 0.208 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.001 | 0.425 | 1.083 | 1.434 | 1.024 | 0.366 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.010 | 0.288 | 0.955 | 1.948 | 0.722 | 0.071 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.003 | 0.063 | 0.212 | 0.770 | 1.607 | 0.498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.008 | 0.212 | 0.575 | 0.851 | 0.324 | 0.509 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.017 | 0.093 | 0.360 | 0.846 | 1.119 | 0.086 | 0.688 | 0.042 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.073 | 1.114 | 1.166 | 2.580 | 1.521 | 1.831 | 0.123 | 0.524 | 0.066 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.002 | 3.323 | 3.263 | 3.238 | 4.704 | 2.196 | 2.893 | 0.326 | 0.659 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.018 | 0.004 | 2.350 | 7.397 | 8.089 | 5.370 | 1.655 | 0.832 | 0.731 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.001 | 0.750 | 0.051 | 1.303 | 2.230 | 1.690 | 1.650 | 0.660 | 1.879 | 0.184 | 0.511 | 0.000 | 0.250 | 0.000 | 0.000 |
| 2003 | 0.342 | 1.137 | 1.190 | 0.213 | 3.650 | 2.904 | 0.718 | 0.402 | 0.094 | 0.187 | 0.000 | 0.148 | 0.000 | 0.000 | 0.000 |
| 2004 | 0.050 | 0.345 | 0.720 | 2.127 | 0.635 | 2.321 | 1.241 | 0.288 | 0.238 | 0.000 | 0.182 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.081 | 0.192 | 0.734 | 0.804 | 3.244 | 0.821 | 2.195 | 1.270 | 0.554 | 0.507 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.997 | 0.484 | 0.824 | 2.232 | 0.596 | 3.138 | 0.210 | 0.271 | 0.000 | 0.149 | 0.275 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.026 | 0.212 | 0.530 | 1.553 | 3.057 | 0.795 | 2.002 | 0.096 | 0.159 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.283 | 0.468 | 2.859 | 2.421 | 3.146 | 1.716 | 0.531 | 0.805 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.221 | 0.429 | 0.468 | 1.443 | 1.091 | 0.472 | 0.365 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.144 | 0.320 | 0.921 | 1.339 | 1.684 | 0.689 | 0.000 | 0.000 | 0.000 | 0.548 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.021 | 0.015 | 0.291 | 0.540 | 1.361 | 1.393 | 0.442 | 0.309 | 0.147 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 0.003 | 0.299 | 0.341 | 0.461 | 0.396 | 0.745 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.65. Massachusetts Department of Marine Fisheries (MADMF) fall survey abundance indices-at-age (numbers/tow) from 1981 to 2011 for Gulf of Maine Atlantic cod. Age data are not available prior to 1982. \**Note: this survey index is not used in the current assessment.* 

| Year | Age0    | Age1   | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 |
|------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1982 | 4.571   | 1.023  | 0.476 | 0.004 | 0.026 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 1.339   | 0.257  | 0.021 | 0.030 | 0.030 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 10.286  | 0.148  | 0.081 | 0.017 | 0.000 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 2.536   | 0.301  | 0.010 | 0.010 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 1.883   | 0.464  | 0.375 | 0.000 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 312.047 | 1.075  | 0.000 | 0.019 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 5.490   | 3.136  | 0.225 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 3.940   | 0.038  | 0.114 | 0.030 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 7.735   | 4.233  | 0.525 | 0.150 | 0.038 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 5.043   | 1.950  | 0.398 | 0.013 | 0.066 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 26.408  | 0.980  | 0.071 | 0.000 | 0.000 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 49.188  | 1.735  | 0.397 | 0.148 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 40.006  | 4.943  | 3.622 | 0.415 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 2.933   | 1.080  | 0.333 | 0.312 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 6.921   | 0.049  | 0.012 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 1.429   | 0.027  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 3.273   | 0.619  | 0.293 | 0.071 | 0.079 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 5.793   | 2.066  | 0.123 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.046   | 0.423  | 0.176 | 0.021 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 49.115  | 0.090  | 0.123 | 0.149 | 0.051 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.913   | 1.103  | 0.069 | 0.223 | 0.317 | 0.349 | 0.197 | 0.094 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 119.856 | 0.557  | 1.404 | 0.120 | 0.176 | 0.094 | 0.076 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 40.235  | 14.123 | 0.589 | 1.534 | 0.258 | 0.659 | 0.198 | 0.024 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 39.090  | 0.779  | 0.439 | 0.042 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.870   | 3.825  | 2.066 | 0.542 | 0.063 | 0.096 | 0.043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 7.593   | 0.167  | 0.107 | 0.052 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.810   | 2.974  | 2.539 | 0.865 | 0.099 | 0.262 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 2.808   | 0.938  | 0.586 | 0.590 | 0.069 | 0.017 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.209   | 0.401  | 0.354 | 0.801 | 0.181 | 0.075 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.953   | 0.546  | 0.396 | 0.306 | 0.327 | 0.081 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table A.66. Massachusetts Department of Marine Fisheries (MADMF) fall survey biomass indices-at-age (weight/tow) from 1981 to 2011 for Gulf of Maine Atlantic cod. Age data are not available prior to 1982. \**Note: this survey index is not used in the current assessment.* 

| Year | Age0  | Age1  | Age2  | Age3  | Age4  | Age5  | Age6  | Age7  | Age8  | Age9  | Age10 | Age11 | Age12 | Age13 | Age14 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1982 | 0.026 | 0.212 | 0.293 | 0.009 | 0.044 | 0.075 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1983 | 0.002 | 0.027 | 0.005 | 0.029 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1984 | 0.010 | 0.024 | 0.038 | 0.014 | 0.000 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1985 | 0.004 | 0.025 | 0.007 | 0.007 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1986 | 0.003 | 0.063 | 0.101 | 0.000 | 0.082 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1987 | 0.237 | 0.085 | 0.000 | 0.019 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1988 | 0.013 | 0.245 | 0.092 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1989 | 0.004 | 0.008 | 0.100 | 0.032 | 0.074 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.008 | 0.332 | 0.153 | 0.093 | 0.067 | 0.106 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1991 | 0.008 | 0.220 | 0.118 | 0.007 | 0.080 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1992 | 0.050 | 0.104 | 0.027 | 0.000 | 0.000 | 0.092 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1993 | 0.744 | 0.149 | 0.177 | 0.234 | 0.049 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1994 | 0.032 | 0.651 | 0.990 | 0.285 | 0.041 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1995 | 0.009 | 0.301 | 0.205 | 0.270 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1996 | 0.050 | 0.007 | 0.002 | 0.000 | 0.024 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1997 | 0.009 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1998 | 0.029 | 0.075 | 0.113 | 0.065 | 0.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1999 | 0.091 | 0.115 | 0.058 | 0.000 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2000 | 0.001 | 0.096 | 0.127 | 0.037 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2001 | 0.032 | 0.003 | 0.060 | 0.241 | 0.228 | 0.193 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2002 | 0.002 | 0.079 | 0.022 | 0.273 | 0.766 | 1.000 | 0.922 | 0.557 | 0.373 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2003 | 0.217 | 0.067 | 0.407 | 0.077 | 0.347 | 0.393 | 0.342 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2004 | 0.093 | 0.710 | 0.162 | 1.179 | 0.369 | 2.082 | 0.879 | 0.107 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2005 | 0.020 | 0.037 | 0.117 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2006 | 0.005 | 0.300 | 0.517 | 0.469 | 0.067 | 0.309 | 0.272 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2007 | 0.009 | 0.023 | 0.024 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.011 | 0.248 | 0.834 | 0.651 | 0.182 | 0.454 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.030 | 0.128 | 0.137 | 0.341 | 0.085 | 0.026 | 0.060 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.003 | 0.074 | 0.145 | 0.586 | 0.456 | 0.137 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.005 | 0.051 | 0.166 | 0.654 | 0.386 | 0.094 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

| Total maturity samples by region |        |    |    |    |    |       |  |  |  |  |
|----------------------------------|--------|----|----|----|----|-------|--|--|--|--|
|                                  | Region |    |    |    |    |       |  |  |  |  |
| Year                             | 1      | 2  | 3  | 4  | 5  | Total |  |  |  |  |
| 2001                             | 12     |    | 2  |    | 19 | 33    |  |  |  |  |
| 2002                             | 50     | 8  |    |    | 2  | 60    |  |  |  |  |
| 2003                             | 6      | 1  | 1  | 1  | 1  | 10    |  |  |  |  |
| 2004                             | 35     | 17 | 2  | 3  | 49 | 106   |  |  |  |  |
| 2005                             | 114    | 34 | 32 | 15 | 69 | 264   |  |  |  |  |
| 2006                             | 148    | 36 | 7  | 12 | 24 | 227   |  |  |  |  |
| 2007                             | 189    | 14 | 5  | 6  | 80 | 294   |  |  |  |  |
| 2008                             | 117    | 30 | 8  | 3  | 47 | 205   |  |  |  |  |
| 2009                             | 127    | 9  | 7  | 8  | 58 | 209   |  |  |  |  |
| 2010                             | 167    | 20 | 6  |    | 40 | 233   |  |  |  |  |
| 2011                             | 44     | 30 | 23 | 14 | 60 | 171   |  |  |  |  |

Table A.67. Summary of maturity samples (individual fish) taken by the Maine – New Hampshire inshore groundfish survey by region and year.

| Proportion mature by region |        |      |      |      |      |       |  |  |  |  |  |
|-----------------------------|--------|------|------|------|------|-------|--|--|--|--|--|
|                             | Region |      |      |      |      |       |  |  |  |  |  |
| Year                        | 1      | 2    | 3    | 4    | 5    | Total |  |  |  |  |  |
| 2001                        | 0.83   |      | 1.00 |      | 1.00 | 0.94  |  |  |  |  |  |
| 2002                        | 0.90   | 1.00 |      |      | 1.00 | 0.92  |  |  |  |  |  |
| 2003                        | 1.00   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |  |  |  |  |  |
| 2004                        | 0.86   | 0.88 | 1.00 | 0.67 | 0.90 | 0.88  |  |  |  |  |  |
| 2005                        | 0.91   | 0.85 | 0.94 | 1.00 | 1.00 | 0.94  |  |  |  |  |  |
| 2006                        | 0.95   | 0.94 | 0.86 | 0.92 | 0.83 | 0.93  |  |  |  |  |  |
| 2007                        | 0.87   | 0.86 | 1.00 | 1.00 | 1.00 | 0.91  |  |  |  |  |  |
| 2008                        | 0.89   | 0.93 | 1.00 | 1.00 | 1.00 | 0.93  |  |  |  |  |  |
| 2009                        | 0.70   | 0.89 | 1.00 | 0.88 | 1.00 | 0.81  |  |  |  |  |  |
| 2010                        | 0.82   | 0.95 | 1.00 |      | 1.00 | 0.87  |  |  |  |  |  |
| 2011                        | 0.73   | 0.97 | 1.00 | 1.00 | 1.00 | 0.92  |  |  |  |  |  |
| Average                     | 0.86   | 0.93 | 0.98 | 0.93 | 0.98 | 0.91  |  |  |  |  |  |

Table A.68. Proportion of mature fish observed by the Maine – New Hampshire inshore groundfish survey by region and year.

| Year | Estimate | CV   | Lower 95% CI | Upper 95% CI |
|------|----------|------|--------------|--------------|
| 1982 | 1.000    |      |              |              |
| 1983 | 0.990    | 0.04 | 0.911        | 1.075        |
| 1984 | 0.684    | 0.04 | 0.628        | 0.745        |
| 1985 | 0.594    | 0.04 | 0.546        | 0.645        |
| 1986 | 0.468    | 0.04 | 0.432        | 0.508        |
| 1987 | 0.316    | 0.04 | 0.291        | 0.344        |
| 1988 | 0.321    | 0.04 | 0.295        | 0.348        |
| 1989 | 0.494    | 0.05 | 0.451        | 0.541        |
| 1990 | 0.712    | 0.05 | 0.652        | 0.778        |
| 1991 | 0.721    | 0.04 | 0.661        | 0.787        |
| 1992 | 0.375    | 0.04 | 0.344        | 0.408        |
| 1993 | 0.324    | 0.04 | 0.297        | 0.353        |
| 1994 | 0.142    | 0.04 | 0.131        | 0.154        |
| 1995 | 0.163    | 0.04 | 0.151        | 0.175        |
| 1996 | 0.222    | 0.04 | 0.207        | 0.240        |
| 1997 | 0.257    | 0.04 | 0.238        | 0.278        |
| 1998 | 0.268    | 0.04 | 0.248        | 0.288        |
| 1999 | 0.127    | 0.04 | 0.118        | 0.138        |
| 2000 | 0.372    | 0.04 | 0.345        | 0.400        |
| 2001 | 0.601    | 0.04 | 0.558        | 0.647        |
| 2002 | 0.580    | 0.04 | 0.538        | 0.625        |
| 2003 | 0.558    | 0.04 | 0.518        | 0.602        |
| 2004 | 0.493    | 0.04 | 0.456        | 0.533        |
| 2005 | 0.504    | 0.04 | 0.466        | 0.545        |
| 2006 | 0.709    | 0.04 | 0.655        | 0.768        |
| 2007 | 0.879    | 0.04 | 0.811        | 0.953        |
| 2008 | 1.477    | 0.04 | 1.365        | 1.600        |
| 2009 | 1.621    | 0.04 | 1.495        | 1.758        |
| 2010 | 1.986    | 0.05 | 1.818        | 2.170        |
| 2011 | 1.475    | 0.04 | 1.362        | 1.598        |

Table A.69. Gulf of Maine Atlantic cod commercial otter trawl landings per unit effort index (LPUE) from 1982 to 2011 (from Palmer 2012b).

| Year | LPUE index | CV   | Lower 95% CI | er 95% CI |
|------|------------|------|--------------|-----------|
| 1994 | 1.00       |      |              |           |
| 1995 | 0.930      | 0.05 | 0.84         | 1.03      |
| 1996 | 0.821      | 0.05 | 0.74         | 0.91      |
| 1997 | 0.580      | 0.05 | 0.53         | 0.64      |
| 1998 | 0.541      | 0.05 | 0.49         | 0.60      |
| 1999 | 0.625      | 0.05 | 0.57         | 0.69      |
| 2000 | 0.747      | 0.05 | 0.68         | 0.82      |
| 2001 | 0.843      | 0.05 | 0.77         | 0.93      |
| 2002 | 0.568      | 0.05 | 0.52         | 0.62      |
| 2003 | 0.567      | 0.05 | 0.52         | 0.62      |
| 2004 | 0.497      | 0.05 | 0.45         | 0.55      |
| 2005 | 0.430      | 0.05 | 0.39         | 0.47      |
| 2006 | 0.256      | 0.05 | 0.23         | 0.28      |
| 2007 | 0.264      | 0.05 | 0.24         | 0.29      |
| 2008 | 0.309      | 0.05 | 0.28         | 0.34      |
| 2009 | 0.394      | 0.05 | 0.36         | 0.43      |
| 2010 | 0.520      | 0.05 | 0.47         | 0.57      |
| 2011 | 0.436      | 0.05 | 0.40         | 0.48      |

Table A.70. Gulf of Maine Atlantic cod recreational VTR landings per unit effort index (LPUE) from 1994 to 2011 (from Wood 2012).

Table A.71. Example of Lorenzen-based age varying estimates of natural mortality (*M*) based on the average weight-at-age of Gulf of Maine Atlantic cod. Age-specific *M* estimates were rescaled based on an assumption of age-invariant constant M = 0.2.

| Age | Average<br>weight (kg) | Standard<br>deviation<br>(kg) | Natural<br>mortality<br>(M) | Cumulative<br>survival | Rescaled<br>natural<br>mortality<br>(M <sub>adj</sub> ) | Rescaled<br>cumulative<br>survival |
|-----|------------------------|-------------------------------|-----------------------------|------------------------|---------------------------------------------------------|------------------------------------|
| 1   | 0.116                  | 0.062                         | 0.86                        |                        | 0.48                                                    |                                    |
| 2   | 0.387                  | 0.099                         | 0.60                        | 0.42                   | 0.33                                                    | 0.62                               |
| 3   | 1.068                  | 0.172                         | 0.44                        | 0.23                   | 0.25                                                    | 0.44                               |
| 4   | 2.000                  | 0.222                         | 0.36                        | 0.15                   | 0.20                                                    | 0.35                               |
| 5   | 3.186                  | 0.506                         | 0.32                        | 0.10                   | 0.18                                                    | 0.28                               |
| 6   | 4.723                  | 0.972                         | 0.28                        | 0.08                   | 0.16                                                    | 0.24                               |
| 7   | 6.705                  | 1.420                         | 0.25                        | 0.06                   | 0.14                                                    | 0.20                               |
| 8   | 9.029                  | 1.826                         | 0.23                        | 0.04                   | 0.13                                                    | 0.18                               |
| 9   | 11.441                 | 2.091                         | 0.21                        | 0.04                   | 0.12                                                    | 0.15                               |
| 10  | 13.770                 | 2.601                         | 0.20                        | 0.03                   | 0.11                                                    | 0.14                               |
| 11  | 18.404                 | 3.490                         | 0.18                        | 0.02                   | 0.10                                                    | 0.12                               |

Table A.72. Ratio of NEFSC spring survey proportions-at-age to fishery proportion-at-age. Cells shaded blue indicate where the survey proportion-at-age was greater than observed in the fishery. Cells shaded grey indicate where no information was available from either the survey of the fishery and no comparison could be made. Cells shaded white indicate where the fishery proportion-at-age was greater relative to the survey.

| Year              | Age5 | Age6      | Age7      | Age8      | Age9+      |
|-------------------|------|-----------|-----------|-----------|------------|
| 1982              | 1.1  | 1.2       | 1.4       | No survey | 0.5        |
| 1983              | 0.8  | 0.9       | 1.9       | No survey | 5.2        |
| 1984              | 1.2  | 0.5       | 1.9       | No survey | No survey  |
| 1985              | 1.1  | 0.7       | 1.2       | 0.6       | 0.9        |
| 1986              | 0.9  | 0.8       | 2.7       | No survey | 1.3        |
| 1987              | 0.7  | No survey | 2.8       | 2.6       | 1.3        |
| 1988              | 0.7  | 2.2       | 2.1       | 1.2       | 3.3        |
| 1989              | 0.7  | 4.0       | No survey | No survey | No survey  |
| 1990              | 0.9  | 1.1       | 4.0       | No survey | No survey  |
| 1991              | 1.0  | 1.1       | 1.4       | No survey | No survey  |
| 1992              | 0.9  | 1.4       | 1.4       | No survey | 3.1        |
| 1993              | 0.8  | 0.9       | 1.4       | 2.1       | No fishery |
| 1994              | 0.4  | 1.1       | 2.6       | 0.4       | 7.6        |
| 1995              | 0.8  | 1.4       | No survey | 0.8       | 12.8       |
| 1996              | 1.0  | 1.7       | No survey | No survey | No survey  |
| 1997              | 0.8  | 2.6       | 16.1      | No survey | No survey  |
| 1998              | 0.6  | 1.3       | 0.5       | 2.6       | No survey  |
| 1999              | 0.7  | 1.0       | 1.9       | No survey | 4.4        |
| 2000              | 0.7  | 1.4       | 1.1       | 2.7       | No fishery |
| 2001              | 0.9  | 0.6       | 1.7       | 6.6       | 1.0        |
| 2002              | 0.9  | 1.0       | 1.4       | 1.0       | 0.4        |
| 2003              | 0.8  | 1.1       | 2.3       | 1.4       | 2.3        |
| 2004              | 0.9  | 1.5       | 0.3       | 0.6       | 0.6        |
| 2005              | 0.2  | 1.0       | 2.0       | 0.9       | No survey  |
| 2006              | 0.6  | 1.1       | 2.3       | 2.6       | 0.8        |
| 2007              | 1.0  | 1.1       | 2.9       | 0.7       | No survey  |
| 2008              | 1.1  | 0.5       | 0.6       | No survey | No survey  |
| 2009              | 1.0  | 1.1       | 0.3       | 0.6       | 0.3        |
| 2010              | 0.7  | 1.5       | 1.3       | 3.1       | 7.2        |
| 2011              | 1.0  | 0.7       | 2.7       | 2.6       | No survey  |
| Cells $\geq 1$    | 5.0  | 20.0      | 23.0      | 11.0      | 10.0       |
| Total             | 31.0 | 30.0      | 28.0      | 19.0      | 18.0       |
| $Fraction \geq 1$ | 0.16 | 0.67      | 0.82      | 0.58      | 0.56       |

Table A.73. Ratio of NEFSC fall survey proportions-at-age to fishery proportion-at-age. Cells shaded blue indicate where the survey proportion-at-age was greater than observed in the fishery. Cells shaded grey indicate where no information was available from either the survey of the fishery and no comparison could be made. Cells shaded white indicate where the fishery proportion-at-age was greater relative to the survey.

| Year              | Age5      | Age6      | Age7      | Age8      | Age9+      |
|-------------------|-----------|-----------|-----------|-----------|------------|
| 1982              | 1.4       | No survey | No survey | No survey | No survey  |
| 1983              | 0.9       | 1.2       | No survey | No survey | 3.5        |
| 1984              | 0.7       | 1.3       | 0.9       | No survey | 2.7        |
| 1985              | 0.9       | 1.0       | No survey | 1.9       | 5.5        |
| 1986              | 1.0       | 0.8       | No survey | No survey | 3.7        |
| 1987              | 1.6       | No survey | No survey | No survey | No survey  |
| 1988              | 0.9       | No survey | 4.7       | No survey | 6.6        |
| 1989              | 0.9       | 2.1       | No survey | 3.4       | No survey  |
| 1990              | 1.3       | 0.7       | 0.9       | No survey | No survey  |
| 1991              | 1.0       | No survey | 5.3       | No survey | No survey  |
| 1992              | 0.8       | 3.1       | No survey | No survey | No survey  |
| 1993              | No survey | 1.3       | No survey | No survey | No fishery |
| 1994              | 0.9       | No survey | 2.8       | No survey | No survey  |
| 1995              | 1.1       | 1.1       | No survey | No survey | No survey  |
| 1996              | 1.1       | No survey | No survey | No survey | No survey  |
| 1997              | 1.1       | No survey | No survey | No survey | No survey  |
| 1998              | 1.5       | 0.8       | No survey | No survey | No survey  |
| 1999              | 1.5       | 0.7       | No survey | No survey | No survey  |
| 2000              | 1.2       | 0.2       | No survey | 5.0       | No fishery |
| 2001              | 0.9       | 1.1       | 1.5       | No survey | 1.9        |
| 2002              | 1.0       | 1.4       | 0.4       | 0.5       | No survey  |
| 2003              | 1.1       | 0.6       | 1.4       | No survey | 1.4        |
| 2004              | 1.0       | 0.9       | 1.3       | 1.1       | 1.2        |
| 2005              | 0.5       | 0.8       | 1.6       | 1.7       | 1.4        |
| 2006              | 0.9       | 1.8       | 1.0       | 1.4       | 0.7        |
| 2007              | 0.8       | 1.3       | No survey | No survey | No survey  |
| 2008              | 1.0       | No survey | No survey | No survey | 11.0       |
| 2009              | 1.0       | 1.2       | No survey | No survey | No survey  |
| 2010              | 0.9       | 1.0       | 1.3       | No survey | 5.7        |
| 2011              | 1.1       | 0.8       | 0.5       | 2.8       | No survey  |
| Cells $\geq 1$    | 14.0      | 12.0      | 8.0       | 7.0       | 11.0       |
| Total             | 30.0      | 23.0      | 14.0      | 9.0       | 13.0       |
| $Fraction \geq 1$ | 0.47      | 0.52      | 0.57      | 0.78      | 0.85       |
Table A.74. Summary of the Gulf of Maine Atlantic cod ASAP model formulation used to build a 'bridge' from the SAW 53 ASAP base model (SAW53\_BASE) to the 2011 update of the same model (SAW55\_BASE).

| 54-m | Madal              | Deceminting                                                                                          | Trans     | Software | Verm      | Catal                                                                                                                       | Selectivity              | Time of        | Stock   | Summer all addition                               | NEE      | SC   | MADMF  |
|------|--------------------|------------------------------------------------------------------------------------------------------|-----------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|---------|---------------------------------------------------|----------|------|--------|
| Step | woder              | Description                                                                                          | туре      | version  | rears     | Catch                                                                                                                       | blocks                   | spawning       | recruit | Survey selectivity                                | Spring   | Fall | Spring |
| 1    | SAW53_BASE         | Base model from SAW53                                                                                |           |          |           | Single fleet                                                                                                                |                          |                |         |                                                   |          |      |        |
| 2    | SAW55_B1           | Update recreational catch and catch WAA<br>(MRIP adjustments)                                        |           |          |           | Single fleet; update recreational catch and<br>catch WAA to account for MRIP<br>adjustments                                 |                          | April 1 (0.25) | Mean    | NEFSC, flat topped (6+),<br>MADMF double logistic | Ages 1-9 |      |        |
| 3    | SAW55_B2           | Update commercial and recreational<br>discards to account for discard mortality,<br>update catch WAA |           | v2.0.21  | 1982-2010 | Single fleet; update commercial and<br>recreational discards and catch WAA to<br>account for differential discard mortality | 1982-1990, 1991-<br>2010 |                |         |                                                   |          |      |        |
| 4    | SAW55_B3           | Update stock WAA                                                                                     | ASAP      |          |           |                                                                                                                             |                          |                |         |                                                   |          |      |        |
| 5    | SAW55_B4           | Update maturity ogive                                                                                |           |          |           |                                                                                                                             |                          |                |         |                                                   | Ū        |      |        |
| 6    | SAW55_B5           | Update MADMF spring survey index and timing (April>May)                                              |           |          |           | Single fleet                                                                                                                |                          | )1-            |         |                                                   |          |      |        |
| 7    | SAW55_B6           | Add 2011 data                                                                                        | 1982-2011 |          | 1002 2011 | Single neer                                                                                                                 | 1982-1990, 1991-         |                |         |                                                   |          |      |        |
| 8    | SAW55_BASE         | Update software                                                                                      |           |          | 1982-2011 |                                                                                                                             | 2011                     |                |         |                                                   |          |      |        |
| 9    | SAW55_BASE_100MORT | 100% discard mortality                                                                               |           | v3.0.8   |           |                                                                                                                             |                          |                |         |                                                   |          |      |        |

Table A.75. Summary Gulf of Maine Atlantic cod model results from the 'bridge building' exercise performed to update the SAW 53 ASAP base model (SAW53\_BASE) to the 2011 update of the same model (SAW55\_BASE). Differences in model formulations are summarized in Table A.74.

| Model                       |                      | SAW53_BASE | SAW55_B1                                                            | SAW55_B2                                                                                                   | SAW55_B3            | SAW55_B4                 | SAW55_B5                         | SAW55_B6      | SAW55_BASE      | SAW55_BASE_100MORT     |
|-----------------------------|----------------------|------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|----------------------------------|---------------|-----------------|------------------------|
| Model description           | Model description    |            | Update recreational<br>catch and catch<br>WAA (MRIP<br>adjustments) | Update commercial<br>and recreational<br>discards to account for<br>discard mortality,<br>update catch WAA | Update stock<br>WAA | Update maturity<br>ogive | Update<br>MADMF spring<br>survey | Add 2011 data | Update software | 100% discard mortality |
| Number of parameter         | Number of parameters |            | 99                                                                  | 99                                                                                                         | 99                  | 99                       | 99                               | 101           | 101             | 101                    |
| Objective function          |                      | 2467       | 2486                                                                | 2471                                                                                                       | 2471                | 2471                     | 2466                             | 2554          | 2554            | 2570                   |
|                             | Recruit devs         | 286        | 285                                                                 | 282                                                                                                        | 282                 | 282                      | 282                              | 293           | 293             | 296                    |
| Components of               | Suvey age<br>comps   | 831        | 830                                                                 | 831                                                                                                        | 831                 | 831                      | 825                              | 860           | 860             | 859                    |
| objective function          | Catch age<br>comps   | 378        | 399                                                                 | 383                                                                                                        | 383                 | 383                      | 384                              | 395           | 395             | 412                    |
|                             | Index fit            | 764        | 766                                                                 | 771                                                                                                        | 771                 | 771                      | 771                              | 794           | 794             | 790                    |
|                             | Catch fit            | 208        | 206                                                                 | 204                                                                                                        | 204                 | 204                      | 204                              | 211           | 211             | 213                    |
|                             | Fleet 1              | 0.24       | 0.25                                                                | 0.29                                                                                                       | 0.29                | 0.29                     | 0.29                             | 0.29          | 0.29            | 0.25                   |
|                             | Index 1              | 1.05       | 1.07                                                                | 1.12                                                                                                       | 1.12                | 1.12                     | 1.12                             | 1.14          | 1.14            | 1.09                   |
| RMSE                        | Index 2              | 0.91       | 0.94                                                                | 0.97                                                                                                       | 0.97                | 0.97                     | 0.97                             | 0.97          | 0.97            | 0.94                   |
|                             | Index 3              | 1.07       | 1.09                                                                | 1.15                                                                                                       | 1.15                | 1.15                     | 1.15                             | 1.13          | 1.13            | 1.07                   |
|                             | Recruit devs         | 1.28       | 1.04                                                                | 1.08                                                                                                       | 1.08                | 1.08                     | 1.08                             | 1.42          | 1.42            | 1.04                   |
| SSB1982 (mt)                |                      | 23,675     | 22,697                                                              | 23,153                                                                                                     | 23,153              | 23,240                   | 23,243                           | 23,320        | 23,320          | 22,847                 |
| SSB2010 (mt)                |                      | 11,868     | 11,172                                                              | 11,515                                                                                                     | 11,515              | 11,877                   | 11,814                           | 12,746        | 12,746          | 12,984                 |
| SSB2011 (mt)                |                      |            |                                                                     |                                                                                                            |                     |                          |                                  | 11,874        | 11,874          | 11,403                 |
| Fmult, 2010                 |                      | 1.14       | 0.85                                                                | 0.67                                                                                                       | 0.67                | 0.67                     | 0.67                             | 0.62          | 0.62            | 0.74                   |
| Fmult, 2011                 |                      | 1.14       |                                                                     |                                                                                                            |                     |                          |                                  | 0.59          | 0.59            | 0.75                   |
| Mohn's rho (5 year<br>reel) | SSB                  | 0.22       | 0.25                                                                | 0.47                                                                                                       | 0.47                | 0.47                     | 0.46                             | 0.33          | 0.33            | 0.14                   |
|                             | Fmult                | -0.22      | -0.24                                                               | -0.35                                                                                                      | -0.35               | -0.35                    | -0.35                            | -0.25         | -0.25           | -0.14                  |
| peery                       | Age 1 N              | 0.15       | 0.18                                                                | 0.30                                                                                                       | 0.30                | 0.30                     | 0.28                             | 0.37          | 0.37            | 0.23                   |

Table A.76. Summary Gulf of Maine Atlantic cod model estimated fishery and survey selectivity parameters results from the 'bridge building' exercise performed to update the SAW 53 ASAP base model (SAW53\_BASE) to the 2011 update of the same model (SAW55\_BASE). Differences in model formulations are summarized in Table A.74.

| Model         |               | SAW53_I         | BASE    | SAW55                                      | B1                              | SAW55                                                                   | B2                                            | SAW55        | B3      | SAW55        | B4        | SAW55          | B5           | SAW55       | B6      | SAW55_B      | ASE     | SAW55_BASE   | 100MORT   |
|---------------|---------------|-----------------|---------|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--------------|---------|--------------|-----------|----------------|--------------|-------------|---------|--------------|---------|--------------|-----------|
| Description   |               | Base model from | m SAW53 | Update recreation<br>catch WAA<br>adjustme | nal catch and<br>(MRIP<br>ents) | Update commen<br>recreational dia<br>account for discar<br>update catch | rcial and<br>scards to<br>d mortality,<br>WAA | Update stock | WAA     | Update matur | ity ogive | Update MADMF s | pring survey | Add 2011    | data    | Update softv | vare    | 100% discard | mortality |
|               |               | Selectivity     | CV      | Selectivity                                | CV                              | Selectivity                                                             | CV                                            | Selectivity  | CV      | Selectivity  | CV        | Selectivity    | CV           | Selectivity | CV      | Selectivity  | CV      | Selectivity  | CV        |
|               | 1             | 0.05            | 0.17    | 0.05                                       | 0.16                            | 0.04                                                                    | 0.18                                          | 0.04         | 0.18    | 0.04         | 0.18      | 0.04           | 0.18         | 0.04        | 0.18    | 0.04         | 0.18    | 0.05         | 0.16      |
|               | 2             | 0.28            | 0.10    | 0.29                                       | 0.10                            | 0.25                                                                    | 0.10                                          | 0.25         | 0.10    | 0.25         | 0.10      | 0.25           | 0.10         | 0.25        | 0.10    | 0.25         | 0.10    | 0.29         | 0.10      |
|               | 3             | 0.58            | 0.10    | 0.58                                       | 0.10                            | 0.57                                                                    | 0.09                                          | 0.57         | 0.09    | 0.57         | 0.09      | 0.57           | 0.09         | 0.57        | 0.09    | 0.57         | 0.09    | 0.58         | 0.10      |
|               | 4             | 1.00            | 0.00    | 1.00                                       | 0.00                            | 1.00                                                                    | 0.00                                          | 1.00         | 0.00    | 1.00         | 0.00      | 1.00           | 0.00         | 1.00        | 0.00    | 1.00         | 0.00    | 1.00         | 0.00      |
| Fleet block 1 | 5             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 6             | 0.77            | 0.26    | 0.76                                       | 0.26                            | 0.77                                                                    | 0.25                                          | 0.77         | 0.25    | 0.77         | 0.25      | 0.78           | 0.25         | 0.78        | 0.25    | 0.78         | 0.25    | 0.77         | 0.26      |
|               | 7             | 0.99            | 0.39    | 0.99                                       | 0.39                            | 1.00                                                                    | 0.38                                          | 1.00         | 0.38    | 1.00         | 0.38      | 1.00           | 0.14         | 1.00        | 0.15    | 1.00         | 0.15    | 1.00         | 0.39      |
|               | 8             | 1.00            | 0.00    | 1.00                                       | 0.00                            | 1.00                                                                    | 0.00                                          | 1.00         | 0.00    | 1.00         | 0.00      | 1.00           | 0.00         | 1.00        | 0.00    | 1.00         | 0.00    | 1.00         | 0.00      |
|               | 9             | 0.31            | 0.47    | 0.31                                       | 0.47                            | 0.33                                                                    | 0.46                                          | 0.33         | 0.46    | 0.33         | 0.46      | 0.33           | 0.45         | 0.33        | 0.45    | 0.33         | 0.45    | 0.31         | 0.47      |
|               | 1             | 0.02            | 0.17    | 0.02                                       | 0.16                            | 0.02                                                                    | 0.18                                          | 0.02         | 0.18    | 0.02         | 0.18      | 0.02           | 0.18         | 0.02        | 0.18    | 0.02         | 0.18    | 0.02         | 0.16      |
|               | 2             | 0.11            | 0.10    | 0.10                                       | 0.10                            | 0.07                                                                    | 0.11                                          | 0.07         | 0.11    | 0.07         | 0.11      | 0.07           | 0.11         | 0.07        | 0.11    | 0.07         | 0.11    | 0.10         | 0.10      |
|               | 3             | 0.40            | 0.08    | 0.38                                       | 0.08                            | 0.33                                                                    | 0.08                                          | 0.33         | 0.08    | 0.33         | 0.08      | 0.33           | 0.08         | 0.32        | 0.08    | 0.32         | 0.08    | 0.38         | 0.08      |
|               | 4             | 0.84            | 0.08    | 0.84                                       | 0.08                            | 0.82                                                                    | 0.07                                          | 0.82         | 0.07    | 0.82         | 0.07      | 0.82           | 0.07         | 0.79        | 0.07    | 0.79         | 0.07    | 0.82         | 0.07      |
| Fleet block 2 | 5             | 1.00            | 0.00    | 1.00                                       | 0.00                            | 1.00                                                                    | 0.00                                          | 1.00         | 0.00    | 1.00         | 0.00      | 1.00           | 0.00         | 1.00        | 0.00    | 1.00         | 0.00    | 1.00         | 0.00      |
|               | 6             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 7             | 0.90            | 0.20    | 0.91                                       | 0.19                            | 0.95                                                                    | 0.17                                          | 0.95         | 0.17    | 0.95         | 0.17      | 0.95           | 0.17         | 0.92        | 0.17    | 0.92         | 0.17    | 0.87         | 0.19      |
|               | 8             | 0.88            | 0.33    | 0.89                                       | 0.32                            | 0.90                                                                    | 0.29                                          | 0.90         | 0.29    | 0.90         | 0.29      | 0.89           | 0.29         | 0.88        | 0.27    | 0.88         | 0.27    | 0.86         | 0.31      |
|               | 9             | 0.67            | 0.54    | 0.68                                       | 0.54                            | 0.70                                                                    | 0.51                                          | 0.70         | 0.51    | 0.70         | 0.51      | 0.70           | 0.51         | 0.77        | 0.50    | 0.77         | 0.50    | 0.77         | 0.53      |
|               | 1             | 0.04            | 0.19    | 0.04                                       | 0.19                            | 0.04                                                                    | 0.19                                          | 0.04         | 0.19    | 0.04         | 0.19      | 0.04           | 0.19         | 0.04        | 0.19    | 0.04         | 0.19    | 0.04         | 0.19      |
|               | 2             | 0.12            | 0.16    | 0.12                                       | 0.16                            | 0.14                                                                    | 0.16                                          | 0.14         | 0.16    | 0.14         | 0.16      | 0.14           | 0.16         | 0.14        | 0.16    | 0.14         | 0.16    | 0.12         | 0.16      |
|               | 3             | 0.26            | 0.16    | 0.26                                       | 0.16                            | 0.30                                                                    | 0.15                                          | 0.30         | 0.15    | 0.30         | 0.15      | 0.30           | 0.15         | 0.30        | 0.15    | 0.30         | 0.15    | 0.26         | 0.15      |
|               | 4             | 0.46            | 0.15    | 0.47                                       | 0.15                            | 0.51                                                                    | 0.15                                          | 0.51         | 0.15    | 0.51         | 0.15      | 0.51           | 0.15         | 0.51        | 0.15    | 0.51         | 0.15    | 0.48         | 0.15      |
| Index 1       | 5             | 0.71            | 0.15    | 0.72                                       | 0.15                            | 0.75                                                                    | 0.15                                          | 0.75         | 0.15    | 0.75         | 0.15      | 0.75           | 0.15         | 0.75        | 0.15    | 0.75         | 0.15    | 0.72         | 0.15      |
|               | 6             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 7             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 8             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 9             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 1             | 0.14            | 0.22    | 0.14                                       | 0.21                            | 0.17                                                                    | 0.15                                          | 0.17         | 0.15    | 0.17         | 0.15      | 0.17           | 0.15         | 0.17        | 0.15    | 0.17         | 0.15    | 0.14         | 0.21      |
|               | 2             | 0.33            | 0.21    | 0.34                                       | 0.21                            | 0.40                                                                    | 0.14                                          | 0.40         | 0.14    | 0.40         | 0.14      | 0.40           | 0.14         | 0.40        | 0.14    | 0.40         | 0.14    | 0.34         | 0.20      |
|               | 3             | 0.51            | 0.21    | 0.52                                       | 0.21                            | 0.59                                                                    | 0.14                                          | 0.59         | 0.14    | 0.59         | 0.14      | 0.59           | 0.14         | 0.59        | 0.14    | 0.59         | 0.14    | 0.52         | 0.20      |
|               | 4             | 0.82            | 0.21    | 0.83                                       | 0.21                            | 0.89                                                                    | 0.14                                          | 0.89         | 0.14    | 0.89         | 0.14      | 0.89           | 0.14         | 0.89        | 0.14    | 0.89         | 0.14    | 0.83         | 0.20      |
| Index 2       | 5             | 0.97            | 0.21    | 0.97                                       | 0.21                            | 1.00                                                                    | 0.00                                          | 1.00         | 0.00    | 1.00         | 0.00      | 1.00           | 0.00         | 1.00        | 0.00    | 1.00         | 0.00    | 0.98         | 0.20      |
|               | 6             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 7             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 8             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | 9             | 1.00            |         | 1.00                                       |                                 | 1.00                                                                    |                                               | 1.00         |         | 1.00         |           | 1.00           |              | 1.00        |         | 1.00         |         | 1.00         |           |
|               | A50 ascend    | 0.00            | 3000.09 | 0.00                                       | 3000.09                         | 0.00                                                                    | 3000.00                                       | 0.00         | 3000.00 | 0.00         | 3000.18   | 0.00           | 3000.10      | 0.00        | 3000.30 | 0.00         | 3000.30 | 0.00         | 3000.10   |
| Index 2       | Slope ascend  | 10.00           |         | 10.00                                      |                                 | 10.00                                                                   |                                               | 10.00        |         | 10.00        |           | 10.00          |              | 10.00       |         | 10.00        |         | 10.00        |           |
| muex 5        | A50 descend   | 0.00            | 3000.42 | 0.00                                       | 2999.92                         | 0.00                                                                    | 2999.98                                       | 0.00         | 2999.98 | 0.00         | 2999.54   | 0.00           | 2999.96      | 0.00        | 2994.57 | 0.00         | 2994.57 | 0.00         | 3000.00   |
|               | Slope descend | 4.22            | 0.22    | 4.10                                       | 0.21                            | 3.54                                                                    | 0.17                                          | 3.54         | 0.17    | 3.54         | 0.17      | 3.51           | 0.18         | 3.50        | 0.18    | 3.50         | 0.18    | 4.29         | 0.22      |

|         | Model             | SAW55_BAS | E_1987 | SAW55_BAS | SE_1989 | SAW55_BA | SE SAW55_BASE_1993 |       | SE_1993 |
|---------|-------------------|-----------|--------|-----------|---------|----------|--------------------|-------|---------|
| В       | lock 2 start year | 1987      |        | 1989      |         | 1991     |                    | 1993  |         |
|         | Parameters        | 101       |        | 101       |         | 101      |                    | 101   |         |
| 0       | bjective function | 2544      |        | 2544      |         | 2554     |                    | 2551  |         |
|         | Catch RMSE        | 0.28      |        | 0.29      |         | 0.29     |                    | 0.28  |         |
|         | SSB1982 (mt)      | 23551     |        | 23390     | )       | 23320    |                    | 23269 |         |
|         | SSB2011 (mt)      | 11921     |        | 11967     | 7       | 11874    |                    | 1188  | 8       |
|         | Fage5. 2011       | 0.58      |        | 0.58      |         | 0.59     |                    | 0.60  | 1       |
|         | Age1              | 0.06      | 0.21   | 0.04      | 0.19    | 0.04     | 0.18               | 0.04  | 0.18    |
|         | Age2              | 0.37      | 0.13   | 0.31      | 0.11    | 0.25     | 0.10               | 0.22  | 0.12    |
|         | Age3              | 0.74      | 0.13   | 0.67      | 0.11    | 0.57     | 0.09               | 0.52  | 0.12    |
|         | Age4              | 1.00      | 0.00   | 1.00      | 0.00    | 1.00     | 0.00               | 0.90  | 0.13    |
| Block 1 | Age5              | 1.00      |        | 1.00      |         | 1.00     |                    | 1.00  |         |
|         | Age6              | 0.86      | 0.30   | 0.83      | 0.27    | 0.78     | 0.25               | 0.80  | 0.23    |
|         | Age7              | 1.00      | 0.00   | 1.00      | 0.03    | 1.00     | 0.07               | 0.99  | 0.33    |
|         | Age8              | 1.00      | 0.01   | 1.00      | 0.00    | 1.00     | 0.00               | 1.00  | 0.00    |
|         | Age9+             | 0.32      | 0.56   | 0.33      | 0.49    | 0.33     | 0.45               | 0.30  | 0.45    |
|         | Agel              | 0.02      | 0.16   | 0.02      | 0.18    | 0.02     | 0.18               | 0.01  | 0.20    |
|         | Age2              | 0.08      | 0.09   | 0.07      | 0.10    | 0.07     | 0.11               | 0.06  | 0.12    |
|         | Age3              | 0.33      | 0.07   | 0.33      | 0.07    | 0.32     | 0.08               | 0.31  | 0.08    |
|         | Age4              | 0.81      | 0.07   | 0.81      | 0.07    | 0.79     | 0.07               | 0.78  | 0.07    |
| Block 2 | Age5              | 1.00      | 0.00   | 1.00      | 0.00    | 1.00     | 0.00               | 1.00  | 0.00    |
|         | Age6              | 1.00      |        | 1.00      |         | 1.00     |                    | 1.00  |         |
|         | Age7              | 0.89      | 0.17   | 0.91      | 0.17    | 0.92     | 0.17               | 0.90  | 0.18    |
|         | Age8              | 0.84      | 0.27   | 0.86      | 0.27    | 0.88     | 0.27               | 0.87  | 0.28    |
|         | Age9+             | 0.79      | 0.48   | 0.79      | 0.51    | 0.77     | 0.50               | 0.79  | 0.48    |

Table A.77. Summary of Gulf of Maine Atlantic cod ASAP model configurations that explored alternate formulations of a twoselectivity block structure by altering the starting point of the second selectivity block. Table A.78. Summary of Gulf of Maine Atlantic cod ASAP model configurations that fit the Massachusetts Department of Marine Fisheries (MADMF) spring survey using both parametric (double logistic; e.g., SAW55\_BASE) and non-parametric (at-age; e.g. all other models) approaches.

|                      | Model             | SAW55_BASE | SAW55_BASE_FIXED_MADMF_AGE1_9 | SAW55_BASE_FIXED_MADMF_AGE1_6 |
|----------------------|-------------------|------------|-------------------------------|-------------------------------|
|                      | Parameters        | 101        | 103                           | 100                           |
| 0                    | bjective function | 2554       | 2552                          | 2543                          |
| Μ                    | laximum gradient  | 1.6E-03    | 3.9E-05                       | 1.8E-03                       |
| ~                    | Suvey age comps   | 860        | 858                           | 846                           |
| Componen             | Catch age comps   | 395        | 395                           | 378                           |
| ls OI<br>objective   | Index fit         | 794        | 795                           | 797                           |
| function             | Catch fit         | 211        | 211                           | 211                           |
|                      | Recruit devs      | 293        | 294                           | 293                           |
|                      | Catch             | 0.29       | 0.29                          | 0.28                          |
|                      | Index1            | 1.14       | 1.14                          | 1.15                          |
| DMSF                 | Index2            | 0.97       | 0.97                          | 1.01                          |
| NNDL                 | Index3            | 1.13       | 1.14                          | 1.15                          |
|                      | Index total       | 1.08       | 1.09                          | 1.11                          |
|                      | Recruit devs      | 1.42       | 1.43                          | 1.41                          |
|                      | Fleet1            | 1.34       | 1.34                          | 0.98                          |
| Mean age             | Index1            | 1.50       | 1.50                          | 1.44                          |
| RMSE                 | Index2            | 1.74       | 1.73                          | 1.62                          |
|                      | Index3            | 1.37       | 1.36                          | 1.40                          |
| <b>SSB</b> 1982 (mt) |                   | 23320      | 23152                         | 23232                         |
|                      | SSB2011 (mt)      | 11874      | 11669                         | 11653                         |
| Fage5, 2011          |                   | 0.59       | 0.60                          | 0.60                          |

| Mo            | del                | SAW55_BASE | SAW55_3BLOCK | SAW55_3BLOCK_DL | SAW55_3BLOCK_SL | SAW55_3BLOCK_SL_1989 | SAW55_3BLOCK_SL_MADMF_1_6 | SAW55_3BLOCK_BASE |
|---------------|--------------------|------------|--------------|-----------------|-----------------|----------------------|---------------------------|-------------------|
| Selectivi     | ty blocks          | 2          | 3            | 3               | 3               | 3                    | 3                         | 3                 |
| Year          | splits             | 1991       | 1991, 2005   | 1991, 2005      | 1991, 2004      | 1989, 2005           | 1989, 2005                | 1989, 2005        |
| Paran         | neters             | 101        | 109          | 97              | 91              | 91                   | 93                        | 93                |
| Objective     | function           | 2554       | 2538         | 2544            | 2548            | 2536                 | 2524                      | 2055              |
|               | Suvey age          | 860        |              |                 |                 |                      |                           |                   |
|               | comps              | 800        | 856          | 858             | 861             | 858                  | 846                       | 602               |
| Components of | Catch age          | 395        |              |                 |                 |                      |                           |                   |
| objective     | comps              | 575        | 383          | 386             | 388             | 378                  | 378                       | 390               |
| function      | Index fit          | 794        | 796          | 796             | 796             | 796                  | 797                       | 794               |
|               | Catch fit          | 211        | 211          | 211             | 211             | 211                  | 211                       | 210               |
|               | Recruit devs       | 293        | 293          | 293             | 293             | 293                  | 293                       | 59                |
|               | Catch              | 0.29       | 0.27         | 0.27            | 0.27            | 0.28                 | 0.28                      | 0.21              |
|               | Index1             | 1.14       | 1.15         | 0.15            | 1.15            | 1.15                 | 1.15                      | 1.13              |
| RMSE          | Index2             | 0.97       | 1.00         | 1.00            | 1.00            | 1.01                 | 1.01                      | 0.97              |
|               | Index3             | 1.13       | 1.15         | 1.14            | 1.15            | 1.14                 | 1.15                      | 1.14              |
|               | Recruit devs       | 1.42       | 1.40         | 1.40            | 1.10            | 1.10                 | 1.11                      | 1.51              |
|               | Fleet1             | 1.34       | 1.10         | 1.11            | 1.16            | 0.98                 | 0.98                      | 0.96              |
| Mean age      | Index1             | 1.50       | 1.44         | 1.45            | 1.44            | 1.44                 | 1.44                      | 1.02              |
| RMSE          | Index2             | 1.74       | 1.61         | 1.62            | 1.61            | 1.62                 | 1.62                      | 1.18              |
|               | Index3             | 1.37       | 1.38         | 1.38            | 1.38            | 1.37                 | 1.40                      | 1.06              |
| SSB198        | <sub>32</sub> (mt) | 23,320     | 22,992       | 23,103          | 22,410          | 22,546               | 22,446                    | 22,036            |
| SSB201        | 1 (mt)             | 11,874     | 12,069       | 12,184          | 11,971          | 12,020               | 11,841                    | 9,903             |
| Fage5         | 5, 2011            | 0.59       | 0.63         | 0.63            | 0.63            | 0.62                 | 0.64                      | 0.78              |

Table A.79. Summary of Gulf of Maine Atlantic cod ASAP model configurations which explored various configurations of a three-selectivity block model. The SAW55\_BASE model is the two-block reference model.

Table A.80. Summary of Gulf of Maine Atlantic cod ASAP model selectivity parameter estimates and the corresponding coefficients of variation (CV) from model configurations which explored various configurations of a three-selectivity block model. The SAW55\_BASE model is the two-block reference model.

| Model    |            | SAW55_B. | ASE  | SAW55_3B | LOCK | SAW55_3BL | .OCK_DL | SAW55_3BL0 | OCK_SL | SAW55_3BLOCK | _SL_1989 | SAW55_3BLOCK_SL_M | ADMF_1_6 | SAW55_3BLO | CK_BASE |
|----------|------------|----------|------|----------|------|-----------|---------|------------|--------|--------------|----------|-------------------|----------|------------|---------|
| Selectiv | ity blocks | 2        |      | 3        |      | 3         |         | 3          |        | 3            |          | 3                 |          | 3          |         |
| Yea      | r splits   | 1991     |      | 1991, 20 | 005  | 1991, 2   | 2005    | 1991, 20   | 004    | 1989, 200    | 5        | 1989, 2005        |          | 1989, 2    | 005     |
|          | A50% up    |          |      |          |      | 2.69      | 0.05    | 2.60       | 0.04   | 2.34         | 0.04     | 2.35              | 0.04     | 2.33       | 0.05    |
| Pleak 1  | Slope up   |          |      |          |      | 0.56      | 0.08    | 0.53       | 0.08   | 0.46         | 0.09     | 0.46              | 0.09     | 0.46       | 0.10    |
| BIOCK I  | A50% down  |          |      |          |      | 8.96      | 2.36    |            |        |              |          |                   |          |            |         |
|          | Slope down |          |      |          |      | 0.06      | 517.24  |            |        |              |          |                   |          |            |         |
|          | A50% up    |          |      |          |      | 3.50      | 0.04    | 3.30       | 0.03   | 3.30         | 0.02     | 3.30              | 0.02     | 3.32       | 0.02    |
| Block 2  | Slope up   |          |      |          |      | 0.56      | 0.05    | 0.56       | 0.05   | 0.56         | 0.05     | 0.56              | 0.05     | 0.56       | 0.05    |
| Diotal   | A50% down  |          |      |          |      | 0.00      | 3001.61 |            |        |              |          |                   |          |            |         |
|          | Slope down |          |      |          |      | 7.31      | 0.48    |            |        |              |          |                   |          |            |         |
|          | A50% up    |          |      |          |      | 3.76      | 0.03    | 3.75       | 0.03   | 3.75         | 0.03     | 3.76              | 0.03     | 3.77       | 0.04    |
| Block 3  | Slope up   |          |      |          |      | 0.52      | 0.07    | 0.52       | 0.07   | 0.52         | 0.07     | 0.52              | 0.07     | 0.53       | 0.07    |
| Diotae   | A50% down  |          |      |          |      | 9.00      | 0.00    |            |        |              |          |                   |          |            |         |
|          | Slope down |          |      |          |      | 0.01      | 3000.08 |            |        |              |          |                   |          |            |         |
|          | Agel       | 0.04     | 0.18 | 0.04     | 0.18 | 0.05      |         | 0.05       |        | 0.05         |          | 0.05              |          | 0.05       |         |
|          | Age2       | 0.25     | 0.10 | 0.24     | 0.10 | 0.22      |         | 0.24       |        | 0.32         |          | 0.32              |          | 0.33       |         |
|          | Age3       | 0.57     | 0.09 | 0.56     | 0.09 | 0.64      |         | 0.68       |        | 0.81         |          | 0.80              |          | 0.81       |         |
|          | Age4       | 1.00     | 0.00 | 1.00     | 0.00 | 0.91      |         | 0.93       |        | 0.97         |          | 0.97              |          | 0.97       |         |
| Block 1  | Age5       | 1.00     |      | 1.00     |      | 0.98      |         | 0.99       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age6       | 0.78     | 0.25 | 0.78     | 0.25 | 1.00      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age7       | 1.00     | 0.07 | 1.00     | 0.05 | 1.00      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age8       | 1.00     | 0.00 | 1.00     | 0.00 | 1.00      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age9+      | 0.33     | 0.45 | 0.33     | 0.45 | 0.32      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Agel       | 0.02     | 0.18 | 0.02     | 0.19 | 0.02      |         | 0.02       |        | 0.02         |          | 0.02              |          | 0.02       |         |
|          | Age2       | 0.07     | 0.11 | 0.09     | 0.12 | 0.09      |         | 0.09       |        | 0.09         |          | 0.09              |          | 0.09       |         |
|          | Age3       | 0.32     | 0.08 | 0.39     | 0.09 | 0.37      |         | 0.37       |        | 0.37         |          | 0.37              |          | 0.36       |         |
|          | Age4       | 0.79     | 0.07 | 0.87     | 0.09 | 0.83      |         | 0.78       |        | 0.78         |          | 0.78              |          | 0.77       |         |
| Block 2  | Age5       | 1.00     | 0.00 | 1.00     | 0.00 | 1.00      |         | 0.96       |        | 0.95         |          | 0.95              |          | 0.95       |         |
|          | Age6       | 1.00     |      | 1.00     |      | 0.96      |         | 0.99       |        | 0.99         |          | 0.99              |          | 0.99       |         |
|          | Age7       | 0.92     | 0.17 | 0.97     | 0.22 | 0.88      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age8       | 0.88     | 0.27 | 0.94     | 0.38 | 0.80      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age9+      | 0.77     | 0.50 | 0.66     | 0.66 | 0.72      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Agel       |          | -    | 0.00     | 0.54 | 0.01      |         | 0.01       |        | 0.01         |          | 0.01              |          | 0.01       |         |
|          | Age2       |          |      | 0.03     | 0.25 | 0.03      |         | 0.03       |        | 0.03         |          | 0.03              |          | 0.03       |         |
|          | Age3       |          |      | 0.18     | 0.19 | 0.19      |         | 0.19       |        | 0.19         |          | 0.19              |          | 0.19       |         |
|          | Age4       |          |      | 0.58     | 0.17 | 0.61      |         | 0.62       |        | 0.62         |          | 0.61              |          | 0.61       |         |
| Block 3  | Age5       |          |      | 0.89     | 0.18 | 0.91      |         | 0.92       |        | 0.92         |          | 0.91              |          | 0.91       |         |
|          | Age6       |          |      | 1.00     |      | 0.99      |         | 0.99       |        | 0.99         |          | 0.99              |          | 0.98       |         |
| Α        | Age7       |          |      | 0.81     | 0.29 | 1.00      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age8       |          |      | 0.83     | 0.44 | 1.00      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |
|          | Age9+      |          |      | 0.77     | 0.73 | 0.50      |         | 1.00       |        | 1.00         |          | 1.00              |          | 1.00       |         |

Table A.81. Summary of the sensitivity runs conducted on the final Gulf of Maine Atlantic cod ASAP model, <u>SAW55\_3BLOCK\_BASE</u>.

| Run description                    | Flat top fleet selectivity        | Domed fleet selectivity                |
|------------------------------------|-----------------------------------|----------------------------------------|
| Base run                           | SAW55_3BLOCK_BASE                 | SAW55_3BLOCK_BASE_DOME                 |
| 100% discard mortality             | SAW55_3BLOCK_BASE_100MORT         | SAW55_3BLOCK_BASE_DOME_100MORT         |
| M split                            | SAW55_3BLOCK_BASE_M_SPLIT         | SAW55_3BLOCK_BASE_DOME_M_SPLIT         |
| M split and 100% discard mortality | SAW55_3BLOCK_BASE_M_SPLIT_100MORT | SAW55_3BLOCK_BASE_DOME_M_SPLIT_100MORT |

| Me                 | odel               | SAW55_3BLOCK_BASE                                                                                   | SAW55_3BLOCK_BASE_100MORT            | SAW55_3BLOCK_BASE_M_SPLIT                                                             | SAW55_3BLOCK_BASE_M_SPLIT_M6                                                           | SAW55_3BLOCK_BASE_M_SPLIT_100MORT                                                                                                 |
|--------------------|--------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Selectiv           | ity blocks         | 3                                                                                                   | 3                                    | 3                                                                                     | 3                                                                                      | 3                                                                                                                                 |
| Year               | splits             | 1989, 2005                                                                                          | 1989, 2005                           | 1989, 2005                                                                            | 1989, 2005                                                                             | 1989, 2005                                                                                                                        |
| Para               | neters             | 93                                                                                                  | 93                                   | 93                                                                                    | 93                                                                                     | 93                                                                                                                                |
| Objectiv           | e function         | 2055                                                                                                | 2041                                 | 2047                                                                                  | 2069                                                                                   | 2039                                                                                                                              |
| Maximur            | n gradient         | 9.2E-05                                                                                             | 9.0E-04                              | 3.6E-05                                                                               | 3.7E-04                                                                                | 9.5E-05                                                                                                                           |
|                    | Suvey age<br>comps | 602                                                                                                 | 602                                  | 601                                                                                   | 604                                                                                    | 602                                                                                                                               |
| Componen<br>ts of  | Catch age<br>comps | 390                                                                                                 | 378                                  | 390                                                                                   | 394                                                                                    | 378                                                                                                                               |
| objective          | Index fit          | 794                                                                                                 | 789                                  | 786                                                                                   | 798                                                                                    | 786                                                                                                                               |
| function           | Catch fit          | 210                                                                                                 | 212                                  | 210                                                                                   | 210                                                                                    | 212                                                                                                                               |
|                    | Recruit<br>devs    | 59                                                                                                  | 60                                   | 60                                                                                    | 63                                                                                     | 61                                                                                                                                |
|                    | Catch              | 0.21                                                                                                | 0.18                                 | 0.15                                                                                  | 0.25                                                                                   | 0.15                                                                                                                              |
|                    | Index1             | 1.13                                                                                                | 1.08                                 | 0.99                                                                                  | 0.98                                                                                   | 0.98                                                                                                                              |
|                    | Index2             | 0.97                                                                                                | 0.93                                 | 0.98                                                                                  | 1.25                                                                                   | 1.01                                                                                                                              |
| RMSE               | Index3             | 1.14                                                                                                | 1.07                                 | 1.03                                                                                  | 1.11                                                                                   | 1.00                                                                                                                              |
|                    | Index total        | 1.08                                                                                                | 1.03                                 | 1.00                                                                                  | 1.12                                                                                   | 1.00                                                                                                                              |
|                    | Recruit            |                                                                                                     |                                      |                                                                                       |                                                                                        |                                                                                                                                   |
|                    | devs               | 1.51                                                                                                | 1.46                                 | 1.26                                                                                  | 1.31                                                                                   | 1.24                                                                                                                              |
|                    | Fleet1             | 0.96                                                                                                | 0.94                                 | 0.96                                                                                  | 0.99                                                                                   | 0.93                                                                                                                              |
| Mean age           | Index1             | 1.02                                                                                                | 1.00                                 | 1.02                                                                                  | 1.04                                                                                   | 1.00                                                                                                                              |
| RMSE               | Index2             | 1.18                                                                                                | 1.21                                 | 1.17                                                                                  | 1.19                                                                                   | 1.21                                                                                                                              |
|                    | Index3             | 1.06                                                                                                | 1.05                                 | 1.07                                                                                  | 1.10                                                                                   | 1.06                                                                                                                              |
| SSB                | 982 (mt)           | 22036                                                                                               | 22052                                | 21531                                                                                 | 20884                                                                                  | 21560                                                                                                                             |
| SSB <sub>20</sub>  | 111 (mt)           | 9903                                                                                                | 9521                                 | 10221                                                                                 | 10256                                                                                  | 10034                                                                                                                             |
| Fage               | 5,2011             | 0.78                                                                                                | 0.97                                 | 0.82                                                                                  | 1.00                                                                                   | 0.99                                                                                                                              |
| Mohn's             | SSB                | 0.40                                                                                                | 0.26                                 | -0.01                                                                                 |                                                                                        | -0.08                                                                                                                             |
| rho (5             | Fmult              | -0.27                                                                                               | -0.19                                | 0.06                                                                                  |                                                                                        | 0.14                                                                                                                              |
| year peel) Age 1 N |                    | 0.76                                                                                                | 0.57                                 | 0.24                                                                                  |                                                                                        | 0.12                                                                                                                              |
| Comments           |                    | Based on<br>SAW55_3BLOCK_FINAL,<br>but rec. dev. lamda=0.2 and<br>took out MADMF spring<br>age 7-9. | Assumption of 100% discard mortality | 2 block natural mortality: 1982-88 = 0.2,<br>1989-2002 = linear ramp, 2003-2011 = 0.4 | 2 block natural mortality: 1982-88 = 0.2, 1989-<br>2002 = linear ramp, 2003-2011 = 0.6 | Assumption of 100% discard mortality and 2 block<br>natural mortality: 1982-88 = 0.2, 1989-2002 = linear<br>ramp, 2003-2011 = 0.4 |

Table A.82. Summary of Gulf of Maine Atlantic cod ASAP model configurations which explored various configurations of the final base model SAW55\_3BLOCK\_BASE under fleet flat topped-selectivity assumptions.

| М                    | odel                | SAW55_3BLOCK_BASE                                                                                   | SAW55_3BLOCK_BASE_DOME                        | SAW55_3BLOCK_BASE_DOME_100MORT                                                     | SAW55_3BLOCK_BASE_DOME_M_SPLIT                                                                                                              | SAW55_3BLOCK_BASE_DOME_M_SPLIT_100MORT                                                                                                                                         |
|----------------------|---------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selectiv             | ity blocks          | 3                                                                                                   | 3                                             | 3                                                                                  | 3                                                                                                                                           | 3                                                                                                                                                                              |
| Year                 | splits              | 1989, 2005                                                                                          | 1989, 2005                                    | 1989, 2005                                                                         | 1989, 2005                                                                                                                                  | 1989, 2005                                                                                                                                                                     |
| Para                 | neters              | 93                                                                                                  | 107                                           | 107                                                                                | 107                                                                                                                                         | 107                                                                                                                                                                            |
| Objectiv             | e function          | 2055                                                                                                | 2048                                          | 2034                                                                               | 2040                                                                                                                                        | 2031                                                                                                                                                                           |
| Maximu               | n gradient          | 9.2E-05                                                                                             | 4.5E-05                                       | 1.5E-04                                                                            | 4.4E-05                                                                                                                                     | 9.3E-04                                                                                                                                                                        |
|                      | Suvey age           |                                                                                                     |                                               |                                                                                    |                                                                                                                                             |                                                                                                                                                                                |
|                      | comps<br>Catab area | 602                                                                                                 | 600                                           | 600                                                                                | 598                                                                                                                                         | 599                                                                                                                                                                            |
| Componen             | comps               | 390                                                                                                 | 385                                           | 373                                                                                | 386                                                                                                                                         | 374                                                                                                                                                                            |
| objective            | Index fit           | 794                                                                                                 | 794                                           | 789                                                                                | 786                                                                                                                                         | 786                                                                                                                                                                            |
| function             | Catch fit           | 210                                                                                                 | 210                                           | 212                                                                                | 210                                                                                                                                         | 212                                                                                                                                                                            |
|                      | Recruit             |                                                                                                     |                                               |                                                                                    |                                                                                                                                             |                                                                                                                                                                                |
|                      | devs                | 59                                                                                                  | 59                                            | 60                                                                                 | 60                                                                                                                                          | 61                                                                                                                                                                             |
|                      | Catch               | 0.21                                                                                                | 0.21                                          | 0.18                                                                               | 0.15                                                                                                                                        | 0.16                                                                                                                                                                           |
|                      | Index1              | 1.13                                                                                                | 1.12                                          | 1.07                                                                               | 0.98                                                                                                                                        | 0.97                                                                                                                                                                           |
|                      | Index2              | 0.97                                                                                                | 0.97                                          | 0.93                                                                               | 0.98                                                                                                                                        | 1.01                                                                                                                                                                           |
| RMSE                 | Index3              | 1.14                                                                                                | 1.14                                          | 1.08                                                                               | 1.04                                                                                                                                        | 1.01                                                                                                                                                                           |
|                      | Index total         | 1.08                                                                                                | 1.08                                          | 1.03                                                                               | 1.00                                                                                                                                        | 1.00                                                                                                                                                                           |
|                      | Recruit             | 1.61                                                                                                | 1.61                                          | 1.45                                                                               | 1.20                                                                                                                                        | 1.24                                                                                                                                                                           |
|                      | devs                | 1.51                                                                                                | 1.51                                          | 1.45                                                                               | 1.26                                                                                                                                        | 1.24                                                                                                                                                                           |
|                      | FleetI              | 0.96                                                                                                | 0.94                                          | 0.92                                                                               | 0.94                                                                                                                                        | 0.91                                                                                                                                                                           |
| Mean age<br>RMSF     | Index1              | 1.02                                                                                                | 1.03                                          | 1.00                                                                               | 1.02                                                                                                                                        | 1.00                                                                                                                                                                           |
| Rubl                 | Index2              | 1.18                                                                                                | 1.17                                          | 1.20                                                                               | 1.10                                                                                                                                        | 1.20                                                                                                                                                                           |
| SSR1                 | maex5               | 22036                                                                                               | 23156                                         | 22941                                                                              | 21531                                                                                                                                       | 1.00                                                                                                                                                                           |
| SSB                  | (mt)                | 9903                                                                                                | 25130                                         | 9597                                                                               | 10221                                                                                                                                       | 10141                                                                                                                                                                          |
| Eago                 | 5 2011              | 0.78                                                                                                | 0.77                                          | 0.99                                                                               | 0.82                                                                                                                                        | 100                                                                                                                                                                            |
|                      | SSB                 | 0.40                                                                                                | 0.47                                          | 0.28                                                                               | 0.00                                                                                                                                        | -0.07                                                                                                                                                                          |
| Mohn's               | Fmult               | -0.27                                                                                               | -0.29                                         | -0.19                                                                              | 0.05                                                                                                                                        | 0.14                                                                                                                                                                           |
| rno (5<br>vear neel) | Age 1 N             | 0.26                                                                                                | 0.25                                          | 0.65                                                                               | 0.15                                                                                                                                        | 0.19                                                                                                                                                                           |
| Com                  | ments               | Based on<br>SAW55_3BLOCK_FINAL,<br>but rec. dev. lamda=0.2 and<br>took out MADMF spring<br>age 7-9. | Allow for domed shaped commercial selectivity | Allow for domed shaped commercial selectivity<br>and assume 100% discard mortality | Allow for domed shaped commercial selectivity with 2<br>block natural mortality: 1982-88 = 0.2, 1989-2002 = linear<br>ramp, 2003-2011 = 0.4 | Allow for domed shaped commercial selectivity with 2 block<br>natural mortality: 1982-88 = 0.2, 1989-2002 = linear ramp, 2003-<br>2011 = 0.4 and assume 100% discard mortality |

Table A.83. Summary of Gulf of Maine Atlantic cod ASAP model configurations which explored various configurations of the final base model SAW55\_3BLOCK\_BASE under fleet domed-selectivity assumptions.

| Block/Index   | Paramotor    | SAW55_3BLOCK_BA    | SE   | SAW55_3BLOCK       | BASE_M_SPLIT |
|---------------|--------------|--------------------|------|--------------------|--------------|
| DIOCK/ IIIUEX | i ai ainetei | Parameter estimate | CV   | Parameter estimate | CV           |
| 1092 1099     | A50% up      | 2.33               | 0.05 | 2.33               | 0.05         |
| 1982-1988     | Slope up     | 0.46               | 0.10 | 0.45               | 0.09         |
| 1090 2004     | A50% up      | 3.32               | 0.02 | 3.35               | 0.02         |
| 1989-2004     | Slope up     | 0.56               | 0.05 | 0.53               | 0.05         |
| 2005 2011     | A50% up      | 3.77               | 0.04 | 3.82               | 0.03         |
| 2003-2011     | Slope up     | 0.53               | 0.07 | 0.51               | 0.07         |
|               | Agel         | 0.04               | 0.24 | 0.03               | 0.24         |
|               | Age2         | 0.13               | 0.20 | 0.11               | 0.20         |
|               | Age3         | 0.27               | 0.19 | 0.24               | 0.19         |
|               | Age4         | 0.48               | 0.19 | 0.46               | 0.19         |
| NEFSC spring  | Age5         | 0.68               | 0.20 | 0.67               | 0.20         |
|               | Age6         | 1.00               |      | 1.00               |              |
|               | Age7         | 1.00               |      | 1.00               |              |
|               | Age8         | 1.00               |      | 1.00               |              |
|               | Age9+        | 1.00               |      | 1.00               |              |
|               | Agel         | 0.15               | 0.26 | 0.12               | 0.26         |
|               | Age2         | 0.33               | 0.25 | 0.29               | 0.25         |
|               | Age3         | 0.50               | 0.25 | 0.47               | 0.25         |
|               | Age4         | 0.73               | 0.25 | 0.72               | 0.25         |
| NEFSC fall    | Age5         | 0.86               | 0.27 | 0.87               | 0.27         |
|               | Age6         | 1.00               |      | 1.00               |              |
|               | Age7         | 1.00               |      | 1.00               |              |
|               | Age8         | 1.00               |      | 1.00               |              |
|               | Age9+        | 1.00               |      | 1.00               |              |
|               | Agel         | 1.00               |      | 1.00               |              |
|               | Age2         | 0.73               | 0.15 | 0.81               | 0.15         |
|               | Age3         | 0.64               | 0.18 | 0.77               | 0.18         |
| MADNE Spring  | Age4         | 0.64               | 0.23 | 0.81               | 0.23         |
|               | Age5         | 0.63               | 0.34 | 0.83               | 0.33         |
|               | Age6         | 0.57               | 0.58 | 0.76               | 0.58         |

Table A.84. Comparison of the fleet and index selectivity parameters and the corresponding coefficients of variation (CV) from the Gulf of Maine Atlantic cod ASAP SAW55\_3BLOCK\_BASE (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT (M-ramp) models.

Table A.85. Gulf of Maine Atlantic cod January 1 biomass (mt) and spawning stock biomass (SSB, mt) from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT (M-ramp) models.

| Veen | SAW55_                 | _3BLOCK_BASE                | SAW55_3BLOCK_BASE_M_SPLIT |                             |  |  |  |
|------|------------------------|-----------------------------|---------------------------|-----------------------------|--|--|--|
| rear | January 1 biomass (mt) | Spawning stock biomass (mt) | January 1 biomass (mt)    | Spawning stock biomass (mt) |  |  |  |
| 1982 | 38,309                 | 22,036                      | 37,911                    | 21,531                      |  |  |  |
| 1983 | 28,575                 | 16,343                      | 28,332                    | 15,989                      |  |  |  |
| 1984 | 23,081                 | 13,454                      | 22,944                    | 13,186                      |  |  |  |
| 1985 | 21,526                 | 12,380                      | 21,459                    | 12,177                      |  |  |  |
| 1986 | 20,540                 | 11,537                      | 20,536                    | 11,390                      |  |  |  |
| 1987 | 19,892                 | 11,211                      | 19,955                    | 11,130                      |  |  |  |
| 1988 | 20,231                 | 11,621                      | 20,529                    | 11,694                      |  |  |  |
| 1989 | 27,593                 | 15,516                      | 28,621                    | 15,894                      |  |  |  |
| 1990 | 34,120                 | 19,988                      | 35,959                    | 20,821                      |  |  |  |
| 1991 | 28,227                 | 17,253                      | 29,861                    | 18,062                      |  |  |  |
| 1992 | 18,989                 | 10,842                      | 20,446                    | 11,473                      |  |  |  |
| 1993 | 14,097                 | 7,575                       | 15,633                    | 8,229                       |  |  |  |
| 1994 | 13,050                 | 6,988                       | 15,026                    | 7,930                       |  |  |  |
| 1995 | 13,276                 | 7,975                       | 15,939                    | 9,442                       |  |  |  |
| 1996 | 13,512                 | 8,371                       | 16,756                    | 10,245                      |  |  |  |
| 1997 | 11,364                 | 7,091                       | 14,959                    | 9,176                       |  |  |  |
| 1998 | 9,959                  | 6,268                       | 13,971                    | 8,621                       |  |  |  |
| 1999 | 10,577                 | 6,812                       | 15,878                    | 9,778                       |  |  |  |
| 2000 | 15,003                 | 9,070                       | 22,822                    | 12,976                      |  |  |  |
| 2001 | 18,755                 | 11,885                      | 28,082                    | 17,222                      |  |  |  |
| 2002 | 17,077                 | 11,951                      | 25,502                    | 17,208                      |  |  |  |
| 2003 | 14,334                 | 10,005                      | 20,786                    | 13,966                      |  |  |  |
| 2004 | 12,646                 | 8,594                       | 18,344                    | 11,878                      |  |  |  |
| 2005 | 11,038                 | 7,213                       | 15,800                    | 9,831                       |  |  |  |
| 2006 | 10,852                 | 6,752                       | 16,075                    | 9,311                       |  |  |  |
| 2007 | 14,311                 | 8,725                       | 20,846                    | 11,693                      |  |  |  |
| 2008 | 16,670                 | 10,282                      | 22,921                    | 13,297                      |  |  |  |
| 2009 | 18,506                 | 11,457                      | 24,493                    | 14,332                      |  |  |  |
| 2010 | 17,178                 | 11,141                      | 21,184                    | 12,979                      |  |  |  |
| 2011 | 14,728                 | 9,903                       | 16,312                    | 10,221                      |  |  |  |

Table A.86. Gulf of Maine Atlantic cod fully recruited fishing mortality ( $F_{full}$ ) from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT (M-ramp) models.

| Veer | SAW55_3BLOCK_BASE         | SAW55_3BLOCK_BASE_M_SPLIT |
|------|---------------------------|---------------------------|
| Year | Fully recruited F (Ffull) | Fully recruited F (Ffull) |
| 1982 | 0.73                      | 0.75                      |
| 1983 | 0.87                      | 0.89                      |
| 1984 | 0.78                      | 0.80                      |
| 1985 | 0.91                      | 0.93                      |
| 1986 | 0.83                      | 0.85                      |
| 1987 | 0.82                      | 0.83                      |
| 1988 | 0.62                      | 0.62                      |
| 1989 | 0.92                      | 0.93                      |
| 1990 | 1.13                      | 1.13                      |
| 1991 | 1.26                      | 1.23                      |
| 1992 | 1.35                      | 1.31                      |
| 1993 | 1.53                      | 1.46                      |
| 1994 | 1.45                      | 1.32                      |
| 1995 | 0.99                      | 0.86                      |
| 1996 | 1.03                      | 0.85                      |
| 1997 | 0.92                      | 0.72                      |
| 1998 | 0.82                      | 0.61                      |
| 1999 | 0.48                      | 0.35                      |
| 2000 | 0.62                      | 0.45                      |
| 2001 | 0.72                      | 0.51                      |
| 2002 | 0.57                      | 0.40                      |
| 2003 | 0.67                      | 0.48                      |
| 2004 | 0.68                      | 0.50                      |
| 2005 | 0.92                      | 0.70                      |
| 2006 | 0.78                      | 0.60                      |
| 2007 | 0.75                      | 0.60                      |
| 2008 | 0.94                      | 0.77                      |
| 2009 | 0.98                      | 0.83                      |
| 2010 | 0.87                      | 0.79                      |
| 2011 | 0.86                      | 0.90                      |

| Year | Age1 | Age2 | Age3 | Age4 | Age5 | Age6 | Age7 | Age8 | Age9+ |
|------|------|------|------|------|------|------|------|------|-------|
| 1982 | 0.04 | 0.24 | 0.60 | 0.71 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73  |
| 1983 | 0.05 | 0.29 | 0.71 | 0.85 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87  |
| 1984 | 0.04 | 0.26 | 0.63 | 0.76 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78  |
| 1985 | 0.05 | 0.30 | 0.74 | 0.89 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91  |
| 1986 | 0.04 | 0.27 | 0.68 | 0.81 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83  |
| 1987 | 0.04 | 0.27 | 0.67 | 0.80 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82  |
| 1988 | 0.03 | 0.20 | 0.51 | 0.61 | 0.62 | 0.62 | 0.62 | 0.62 | 0.62  |
| 1989 | 0.01 | 0.08 | 0.33 | 0.71 | 0.87 | 0.91 | 0.92 | 0.92 | 0.92  |
| 1990 | 0.02 | 0.10 | 0.41 | 0.87 | 1.08 | 1.12 | 1.13 | 1.13 | 1.13  |
| 1991 | 0.02 | 0.11 | 0.46 | 0.97 | 1.20 | 1.25 | 1.26 | 1.26 | 1.26  |
| 1992 | 0.02 | 0.12 | 0.49 | 1.04 | 1.29 | 1.34 | 1.35 | 1.35 | 1.35  |
| 1993 | 0.02 | 0.13 | 0.55 | 1.18 | 1.46 | 1.52 | 1.53 | 1.53 | 1.53  |
| 1994 | 0.02 | 0.13 | 0.52 | 1.12 | 1.38 | 1.44 | 1.45 | 1.45 | 1.45  |
| 1995 | 0.02 | 0.09 | 0.36 | 0.77 | 0.95 | 0.98 | 0.99 | 0.99 | 0.99  |
| 1996 | 0.02 | 0.09 | 0.37 | 0.79 | 0.98 | 1.02 | 1.03 | 1.03 | 1.03  |
| 1997 | 0.01 | 0.08 | 0.33 | 0.71 | 0.88 | 0.91 | 0.92 | 0.92 | 0.92  |
| 1998 | 0.01 | 0.07 | 0.30 | 0.63 | 0.78 | 0.82 | 0.82 | 0.82 | 0.82  |
| 1999 | 0.01 | 0.04 | 0.17 | 0.37 | 0.46 | 0.48 | 0.48 | 0.48 | 0.48  |
| 2000 | 0.01 | 0.05 | 0.22 | 0.48 | 0.59 | 0.62 | 0.62 | 0.62 | 0.62  |
| 2001 | 0.01 | 0.06 | 0.26 | 0.55 | 0.68 | 0.71 | 0.72 | 0.72 | 0.72  |
| 2002 | 0.01 | 0.05 | 0.21 | 0.44 | 0.54 | 0.56 | 0.57 | 0.57 | 0.57  |
| 2003 | 0.01 | 0.06 | 0.24 | 0.52 | 0.64 | 0.67 | 0.67 | 0.67 | 0.67  |
| 2004 | 0.01 | 0.06 | 0.25 | 0.52 | 0.65 | 0.67 | 0.68 | 0.68 | 0.68  |
| 2005 | 0.01 | 0.03 | 0.17 | 0.56 | 0.83 | 0.90 | 0.92 | 0.92 | 0.92  |
| 2006 | 0.00 | 0.03 | 0.15 | 0.47 | 0.71 | 0.77 | 0.78 | 0.78 | 0.78  |
| 2007 | 0.00 | 0.03 | 0.14 | 0.45 | 0.68 | 0.74 | 0.75 | 0.75 | 0.75  |
| 2008 | 0.01 | 0.03 | 0.18 | 0.57 | 0.85 | 0.92 | 0.93 | 0.94 | 0.94  |
| 2009 | 0.01 | 0.03 | 0.19 | 0.59 | 0.89 | 0.96 | 0.97 | 0.98 | 0.98  |
| 2010 | 0.00 | 0.03 | 0.17 | 0.53 | 0.79 | 0.86 | 0.87 | 0.87 | 0.87  |
| 2011 | 0.00 | 0.03 | 0.16 | 0.52 | 0.78 | 0.84 | 0.86 | 0.86 | 0.86  |

Table A.87. Gulf of Maine Atlantic cod fishing mortality-at-age from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE (M = 0.2) model.

Table A.88. Gulf of Maine Atlantic cod January 1 numbers-at-age (000s) from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE (M = 0.2) model. Summary statistics reported (i.e., median, mean and geometric mean) include only the years 1982-2009, which was the recruitment series used in the reference points determination and stock projections.

| Year                         | Age1   | Age2   | Age3   | Age4  | Age5  | Age6 | Age7 | Age8 | Age9+ |
|------------------------------|--------|--------|--------|-------|-------|------|------|------|-------|
| 1982                         | 10,579 | 12,112 | 5,124  | 2,988 | 1,708 | 157  | 222  | 148  | 232   |
| 1983                         | 11,545 | 8,337  | 7,799  | 2,313 | 1,198 | 673  | 62   | 87   | 149   |
| 1984                         | 11,450 | 9,033  | 5,128  | 3,143 | 809   | 411  | 231  | 21   | 81    |
| 1985                         | 8,912  | 9,002  | 5,727  | 2,228 | 1,203 | 305  | 154  | 87   | 38    |
| 1986                         | 14,069 | 6,958  | 5,466  | 2,236 | 750   | 397  | 100  | 51   | 41    |
| 1987                         | 15,005 | 11,031 | 4,337  | 2,277 | 814   | 268  | 142  | 36   | 33    |
| 1988                         | 27,950 | 11,771 | 6,901  | 1,823 | 838   | 294  | 97   | 51   | 25    |
| 1989                         | 4,279  | 22,155 | 7,860  | 3,409 | 814   | 369  | 129  | 42   | 33    |
| 1990                         | 4,224  | 3,453  | 16,754 | 4,623 | 1,377 | 278  | 122  | 42   | 25    |
| 1991                         | 7,479  | 3,398  | 2,564  | 9,128 | 1,585 | 384  | 74   | 32   | 18    |
| 1992                         | 7,445  | 6,004  | 2,494  | 1,332 | 2,826 | 390  | 90   | 17   | 12    |
| 1993                         | 9,665  | 5,968  | 4,374  | 1,255 | 386   | 640  | 84   | 19   | 6     |
| 1994                         | 3,254  | 7,726  | 4,280  | 2,063 | 316   | 74   | 115  | 15   | 4     |
| 1995                         | 3,451  | 2,604  | 5,579  | 2,077 | 552   | 65   | 14   | 22   | 4     |
| 1996                         | 2,741  | 2,782  | 1,957  | 3,193 | 791   | 176  | 20   | 4    | 8     |
| 1997                         | 4,503  | 2,208  | 2,084  | 1,105 | 1,183 | 243  | 52   | 6    | 4     |
| 1998                         | 3,939  | 3,634  | 1,669  | 1,223 | 445   | 402  | 80   | 17   | 3     |
| 1999                         | 7,865  | 3,184  | 2,770  | 1,015 | 531   | 166  | 145  | 29   | 7     |
| 2000                         | 4,693  | 6,391  | 2,500  | 1,905 | 572   | 274  | 84   | 73   | 18    |
| 2001                         | 1,170  | 3,805  | 4,959  | 1,636 | 967   | 260  | 121  | 37   | 40    |
| 2002                         | 5,171  | 947    | 2,927  | 3,134 | 770   | 399  | 104  | 48   | 31    |
| 2003                         | 1,904  | 4,196  | 738    | 1,952 | 1,654 | 367  | 186  | 48   | 37    |
| 2004                         | 6,304  | 1,542  | 3,241  | 474   | 951   | 713  | 154  | 78   | 36    |
| 2005                         | 3,922  | 5,106  | 1,190  | 2,077 | 230   | 408  | 298  | 64   | 47    |
| 2006                         | 6,590  | 3,195  | 4,050  | 819   | 976   | 82   | 135  | 98   | 36    |
| 2007                         | 5,296  | 5,373  | 2,546  | 2,859 | 418   | 393  | 31   | 51   | 50    |
| 2008                         | 4,513  | 4,319  | 4,286  | 1,808 | 1,487 | 173  | 154  | 12   | 39    |
| 2009                         | 3,532  | 3,676  | 3,423  | 2,938 | 840   | 520  | 56   | 49   | 16    |
| 2010                         | 2,177  | 2,876  | 2,910  | 2,329 | 1,333 | 283  | 163  | 17   | 20    |
| 2011                         | 1,175  | 1,774  | 2,285  | 2,020 | 1,127 | 495  | 99   | 56   | 13    |
| 1982-2009 median recruitment | 5,234  |        |        |       |       |      |      |      |       |
| 1982-2009 mean recruitment   | 7,195  |        |        |       |       |      |      |      |       |
| 1982-2009 geometric mean     | 5,792  |        |        |       |       |      |      |      |       |

| Year | Age1 | Age2 | Age3 | Age4 | Age5 | Age6 | Age7 | Age8 | Age9+ |
|------|------|------|------|------|------|------|------|------|-------|
| 1982 | 0.04 | 0.24 | 0.61 | 0.73 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75  |
| 1983 | 0.05 | 0.29 | 0.73 | 0.87 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89  |
| 1984 | 0.04 | 0.26 | 0.65 | 0.78 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80  |
| 1985 | 0.05 | 0.30 | 0.76 | 0.91 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93  |
| 1986 | 0.04 | 0.28 | 0.69 | 0.83 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85  |
| 1987 | 0.04 | 0.27 | 0.68 | 0.81 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83  |
| 1988 | 0.03 | 0.20 | 0.50 | 0.60 | 0.62 | 0.62 | 0.62 | 0.62 | 0.62  |
| 1989 | 0.01 | 0.07 | 0.32 | 0.72 | 0.89 | 0.92 | 0.93 | 0.93 | 0.93  |
| 1990 | 0.01 | 0.08 | 0.39 | 0.87 | 1.08 | 1.12 | 1.13 | 1.13 | 1.13  |
| 1991 | 0.01 | 0.09 | 0.42 | 0.95 | 1.18 | 1.22 | 1.23 | 1.23 | 1.23  |
| 1992 | 0.02 | 0.10 | 0.45 | 1.01 | 1.25 | 1.30 | 1.31 | 1.31 | 1.31  |
| 1993 | 0.02 | 0.11 | 0.50 | 1.13 | 1.40 | 1.45 | 1.46 | 1.46 | 1.46  |
| 1994 | 0.02 | 0.10 | 0.45 | 1.02 | 1.26 | 1.31 | 1.32 | 1.32 | 1.32  |
| 1995 | 0.01 | 0.06 | 0.29 | 0.67 | 0.82 | 0.86 | 0.86 | 0.86 | 0.86  |
| 1996 | 0.01 | 0.06 | 0.29 | 0.66 | 0.82 | 0.85 | 0.85 | 0.85 | 0.85  |
| 1997 | 0.01 | 0.05 | 0.25 | 0.56 | 0.69 | 0.72 | 0.72 | 0.72 | 0.72  |
| 1998 | 0.01 | 0.04 | 0.21 | 0.47 | 0.58 | 0.60 | 0.60 | 0.61 | 0.61  |
| 1999 | 0.00 | 0.03 | 0.12 | 0.27 | 0.33 | 0.35 | 0.35 | 0.35 | 0.35  |
| 2000 | 0.01 | 0.03 | 0.15 | 0.35 | 0.43 | 0.44 | 0.45 | 0.45 | 0.45  |
| 2001 | 0.01 | 0.04 | 0.17 | 0.39 | 0.49 | 0.50 | 0.51 | 0.51 | 0.51  |
| 2002 | 0.00 | 0.03 | 0.14 | 0.31 | 0.38 | 0.40 | 0.40 | 0.40 | 0.40  |
| 2003 | 0.01 | 0.04 | 0.17 | 0.37 | 0.46 | 0.48 | 0.48 | 0.48 | 0.48  |
| 2004 | 0.01 | 0.04 | 0.17 | 0.39 | 0.48 | 0.50 | 0.50 | 0.50 | 0.50  |
| 2005 | 0.00 | 0.02 | 0.12 | 0.41 | 0.64 | 0.69 | 0.70 | 0.70 | 0.70  |
| 2006 | 0.00 | 0.02 | 0.10 | 0.35 | 0.55 | 0.60 | 0.60 | 0.60 | 0.60  |
| 2007 | 0.00 | 0.02 | 0.10 | 0.35 | 0.55 | 0.59 | 0.60 | 0.60 | 0.60  |
| 2008 | 0.00 | 0.02 | 0.13 | 0.45 | 0.70 | 0.76 | 0.77 | 0.77 | 0.77  |
| 2009 | 0.00 | 0.02 | 0.14 | 0.49 | 0.76 | 0.82 | 0.83 | 0.83 | 0.83  |
| 2010 | 0.00 | 0.02 | 0.13 | 0.47 | 0.72 | 0.78 | 0.79 | 0.79 | 0.79  |
| 2011 | 0.00 | 0.02 | 0.15 | 0.53 | 0.82 | 0.88 | 0.89 | 0.90 | 0.90  |

Table A.89. Gulf of Maine Atlantic cod fishing mortality-at-age from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT (*M*-ramp) model.

Table A.90. Gulf of Maine Atlantic cod January 1 numbers-at-age (000s) from 1982 to 2011 as estimated from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT (*M*-ramp) model. Summary statistics reported (i.e., median, mean and geometric mean) include only the years 1982-2009, which was the recruitment series used in the reference points determination and stock projections.

| Year                         | Age1   | Age2   | Age3   | Age4  | Age5  | Age6 | Age7 | Age8 | Age9+ |
|------------------------------|--------|--------|--------|-------|-------|------|------|------|-------|
| 1982                         | 10,904 | 12,271 | 5,154  | 2,969 | 1,670 | 153  | 213  | 141  | 218   |
| 1983                         | 11,913 | 8,594  | 7,873  | 2,293 | 1,170 | 647  | 59   | 82   | 139   |
| 1984                         | 11,755 | 9,322  | 5,263  | 3,119 | 786   | 393  | 217  | 20   | 74    |
| 1985                         | 9,226  | 9,242  | 5,886  | 2,251 | 1,172 | 290  | 145  | 80   | 35    |
| 1986                         | 14,398 | 7,205  | 5,585  | 2,256 | 741   | 378  | 93   | 47   | 37    |
| 1987                         | 15,699 | 11,292 | 4,478  | 2,296 | 808   | 261  | 133  | 33   | 29    |
| 1988                         | 30,113 | 12,322 | 7,054  | 1,864 | 835   | 289  | 93   | 47   | 22    |
| 1989                         | 4,771  | 23,893 | 8,250  | 3,492 | 835   | 369  | 127  | 41   | 31    |
| 1990                         | 4,931  | 3,824  | 18,087 | 4,867 | 1,381 | 278  | 119  | 41   | 23    |
| 1991                         | 9,056  | 3,865  | 2,797  | 9,773 | 1,618 | 373  | 72   | 31   | 16    |
| 1992                         | 9,558  | 7,019  | 2,777  | 1,445 | 2,973 | 393  | 87   | 17   | 11    |
| 1993                         | 13,358 | 7,328  | 4,964  | 1,382 | 409   | 662  | 83   | 18   | 6     |
| 1994                         | 4,846  | 10,020 | 5,023  | 2,299 | 341   | 77   | 118  | 15   | 4     |
| 1995                         | 5,602  | 3,605  | 6,872  | 2,418 | 627   | 73   | 16   | 24   | 4     |
| 1996                         | 4,862  | 4,149  | 2,532  | 3,830 | 930   | 206  | 23   | 5    | 9     |
| 1997                         | 8,555  | 3,530  | 2,858  | 1,387 | 1,454 | 302  | 65   | 7    | 4     |
| 1998                         | 7,851  | 6,159  | 2,431  | 1,621 | 577   | 529  | 107  | 23   | 4     |
| 1999                         | 16,584 | 5,603  | 4,235  | 1,421 | 730   | 232  | 209  | 42   | 11    |
| 2000                         | 10,157 | 11,638 | 3,849  | 2,649 | 765   | 369  | 116  | 104  | 26    |
| 2001                         | 2,553  | 7,048  | 7,856  | 2,304 | 1,308 | 348  | 165  | 52   | 58    |
| 2002                         | 11,472 | 1,753  | 4,690  | 4,562 | 1,075 | 556  | 145  | 69   | 46    |
| 2003                         | 4,316  | 7,730  | 1,152  | 2,770 | 2,269 | 497  | 253  | 66   | 52    |
| 2004                         | 14,342 | 2,877  | 5,001  | 655   | 1,279 | 959  | 206  | 105  | 49    |
| 2005                         | 8,744  | 9,556  | 1,859  | 2,825 | 298   | 531  | 391  | 84   | 62    |
| 2006                         | 14,456 | 5,845  | 6,287  | 1,110 | 1,257 | 106  | 179  | 131  | 49    |
| 2007                         | 11,031 | 9,668  | 3,856  | 3,814 | 522   | 486  | 39   | 66   | 66    |
| 2008                         | 8,695  | 7,378  | 6,377  | 2,340 | 1,797 | 203  | 180  | 14   | 48    |
| 2009                         | 6,254  | 5,812  | 4,844  | 3,762 | 996   | 595  | 63   | 56   | 19    |
| 2010                         | 3,511  | 4,179  | 3,810  | 2,830 | 1,547 | 313  | 176  | 19   | 22    |
| 2011                         | 1,749  | 2,347  | 2,742  | 2,240 | 1,190 | 503  | 96   | 53   | 12    |
| 1982-2009 median recruitment | 9,392  |        |        |       |       |      |      |      |       |
| 1982-2009 mean recruitment   | 10,214 |        |        |       |       |      |      |      |       |
| 1982-2009 geometric mean     | 9,007  |        |        |       |       |      |      |      |       |

Table A.91. Summary of the Gulf of Maine Atlantic cod 2011 point estimates and their corresponding 90% probability intervals for the ASAP SAW55 3BLOCK BASE (M = 0.2) and SAW55 3BLOCK BASE M SPLIT (M-ramp) models.

| Model                    | SSB <sub>2011</sub> (mt) | B <sub>2011</sub> (mt)   | F <sub>full</sub>  |
|--------------------------|--------------------------|--------------------------|--------------------|
| SAW55_3BLOCK_BASE        | 9,903 (7,644 - 13,503)   | 14,728 (11,890 - 19,149) | 0.86 (0.53 - 1.05) |
| SAW55_3BLOCK_BASE_MSPLIT | 10,221 (7,943 - 13,676)  | 16,312 (13,173 - 20,771) | 0.90 (0.57 - 1.09) |

Table A.92. Summary of Gulf of Maine Atlantic cod ASAP model configurations which explored assessment starting years of 1932 with Beverton-Holt stock recruit functions fit internally within the model. The two model configurations that were explored were the SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NOPRIOR\_BH (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NOPRIOR\_BH (M-ramp).

| Model<br>Starting year |                 | SAW55_3BLOCK_BASE_1932_F2N1_NOPRIOR_BH                      | SAW55_3BLOCK_BASE_M_SPLIT_1932_F2N1_NOPRIOR_BH               |  |  |  |
|------------------------|-----------------|-------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| St                     | arting year     | 1932                                                        | 1932                                                         |  |  |  |
| Р                      | arameters       | 186                                                         | 186                                                          |  |  |  |
| Obje                   | ctive function  | 3626                                                        | 3643                                                         |  |  |  |
| Maxi                   | mum gradient    | 2.0E-04                                                     | 3.3E-04                                                      |  |  |  |
|                        | Suvey age comps | 814                                                         | 815                                                          |  |  |  |
| Componen               | Catch age comps | 390                                                         | 391                                                          |  |  |  |
| objective              | Index fit       | 1146                                                        | 1145                                                         |  |  |  |
| function               | Catch fit       | 651                                                         | 651                                                          |  |  |  |
|                        | Recruit devs    | 625                                                         | 642                                                          |  |  |  |
|                        | Catch           | 0.409                                                       | 0.396                                                        |  |  |  |
|                        | Index1          | 1.13                                                        | 0.993                                                        |  |  |  |
| DMSF                   | Index2          | 1.11                                                        | 1.19                                                         |  |  |  |
| RIVISE                 | Index3          | 1.27                                                        | 1.28                                                         |  |  |  |
|                        | Index total     | 1.16                                                        | 1.15                                                         |  |  |  |
|                        | Recruit devs    | 1.06                                                        | 1.01                                                         |  |  |  |
|                        | Fleet1          | 0.99                                                        | 0.97                                                         |  |  |  |
| Mean age               | Index1          | 0.97                                                        | 0.99                                                         |  |  |  |
| RMSE                   | Index2          | 1.15                                                        | 1.17                                                         |  |  |  |
|                        | Index3          | 1.08                                                        | 1.09                                                         |  |  |  |
| SS                     | BStart (mt)     | 13,382                                                      | 13,151                                                       |  |  |  |
| SS                     | SB1982 (mt)     | 23,715                                                      | 22,759                                                       |  |  |  |
| SS                     | SB2011 (mt)     | 9,316                                                       | 8,442                                                        |  |  |  |
| F                      | MULT, 2011      | 0.92                                                        | 1.12                                                         |  |  |  |
| Mohn's                 | SSB             | 0.11                                                        | -0.27                                                        |  |  |  |
| rho (5                 | Fmult           | -0.09                                                       | 0.47                                                         |  |  |  |
| year peel)             | Age 1 N         | 0.17                                                        | -0.18                                                        |  |  |  |
|                        | Alpha           | 8218.1                                                      | 9221.3                                                       |  |  |  |
|                        | Beta            | 4949.0                                                      | 2052.5                                                       |  |  |  |
| S                      | SB0 (mt)        | 165,840                                                     | 36,000                                                       |  |  |  |
| 1                      | R0 (000s)       | 7,980                                                       | 8,723.90                                                     |  |  |  |
| 5                      | Steepness       | 0.90 (0.05)                                                 | 0.82 (0.12)                                                  |  |  |  |
|                        | Fmsy            | 0.26 (0.04)                                                 | 0.89 (0.03)                                                  |  |  |  |
| SS                     | SBmsy (mt)      | 42,769 (0.13)                                               | 7,713 (0.10)                                                 |  |  |  |
| 1                      | MSY (mt)        | 11,081 (0.13)                                               | 4,838 (0.08)                                                 |  |  |  |
| (                      | Comments        | 1932-1981 selectivity block fixed at A50=2 and slope up=0.6 | 1932-1981 selectivity block fixed at A 50=2 and slope up=0.6 |  |  |  |

| Age | Catch<br>weights (kg) | Stock<br>weights (kg) | Fishery<br>selectivity<br>(M = 0.2) | Fishery<br>selectivity<br>( <i>M</i> -ramp) | Fraction<br>mature | Natural<br>mortality |
|-----|-----------------------|-----------------------|-------------------------------------|---------------------------------------------|--------------------|----------------------|
| 1   | 0.31                  | 0.12                  | 0.01                                | 0.00                                        | 0.08               | 0.20                 |
| 2   | 1.01                  | 0.52                  | 0.03                                | 0.03                                        | 0.26               | 0.20                 |
| 3   | 2.07                  | 1.26                  | 0.19                                | 0.17                                        | 0.59               | 0.20                 |
| 4   | 3.07                  | 2.19                  | 0.61                                | 0.59                                        | 0.84               | 0.20                 |
| 5   | 3.79                  | 3.12                  | 0.91                                | 0.91                                        | 0.95               | 0.20                 |
| 6   | 4.55                  | 3.82                  | 0.98                                | 0.99                                        | 0.99               | 0.20                 |
| 7   | 5.79                  | 4.77                  | 1.00                                | 1.00                                        | 1.00               | 0.20                 |
| 8   | 7.56                  | 6.55                  | 1.00                                | 1.00                                        | 1.00               | 0.20                 |
| 9   | 12.49                 | 12.50                 | 1.00                                | 1.00                                        | 1.00               | 0.20                 |

Table A.93. Inputs to the Gulf of Maine Atlantic cod yield per recruit (YPR) analysis for the ASAP M = 0.2 (ASAP SAW55\_3BLOCK\_BASE) and *M*-ramp (ASAP\_3BLOCK\_BASE\_M\_SPLIT) models.

| Table A.94 | Yield pe | r recruit proxy | reference por | ints for Gul | f of Maine | Atlantic | cod under | both the $M = 0$ | .2 (ASAP |
|------------|----------|-----------------|---------------|--------------|------------|----------|-----------|------------------|----------|
| SAW55 3E   | BLOCK E  | BASE) and M-r   | amp (ASAP     | 3BLOCK       | BASE M     | SPLIT)   | models.   |                  |          |

| Model                                      | F <sub>MSY</sub><br>(proxy) | F <sub>MSY</sub> | SSB <sub>MSY</sub> proxy (mt) | MSY proxy (mt)           | Median age1<br>recruitment | SSB hinge (mt) | Hinge<br>year |
|--------------------------------------------|-----------------------------|------------------|-------------------------------|--------------------------|----------------------------|----------------|---------------|
| $M = 0.2$ (SAW55_3BLOCK_BASE)              | F40%                        | 0.18             | 54,743 (40,207 - 73,354)      | 9,399 (6,806 - 13,153)   | 5,254                      | 6,300          | 1998          |
| <i>M</i> -ramp (SAW55_3BLOCK_BASE_M_SPLIT) | F40%                        | 0.18             | 80,200 (64,081 - 99,972)      | 13,786 (10,900 - 17,329) | 9,446                      | 7,900          | 1994          |

Table A.95. Short-term projections (3 years) for Gulf of Maine Atlantic cod under an assumed harvest of 75%  $F_{MSY}$  based on the ASAP M = 0.2 and M-ramp models. The M-ramp projections were conducted under two assumptions of natural mortality: 0.2 and 0.4. \**Note, the projections have not been adjusted for retrospective bias.* 

|      |               | A          | SAP, 1982 BAS              | E                            | ASAP, 1982 M-RAMP |                            |                              |            |                 |                              |  |  |  |
|------|---------------|------------|----------------------------|------------------------------|-------------------|----------------------------|------------------------------|------------|-----------------|------------------------------|--|--|--|
|      |               |            | M=0.2                      |                              |                   | M=0.2                      |                              | M=0.4      |                 |                              |  |  |  |
|      |               | Fms y = (  | 0.18, Bmsy = 54            | l,743 mt                     | Fms y = (         | ).18, Bmsy = 8(            | ),200 mt                     | Fmsy = (   | 0.18, Bmsy = 80 | ),200 mt                     |  |  |  |
| Year | Input         | Rebuild y  | ear at 75% F <sub>MS</sub> | $S_{Y} = 2022$               | Rebuild y         | ear at 75% F <sub>MS</sub> | $S_{Y} = 2022$               | NO RI      | EBUILD at 75%   | 6 F <sub>MSY</sub>           |  |  |  |
|      | Spawning      |            | Spawning                   |                              |                   | Spawning                   |                              |            | Spawning        |                              |  |  |  |
|      |               | Catch (mt) | stock                      | $\mathbf{F}_{\mathbf{full}}$ | Catch (mt)        | stock                      | $\mathbf{F}_{\mathbf{full}}$ | Catch (mt) | stock           | $\mathbf{F}_{\mathbf{full}}$ |  |  |  |
|      |               |            | biomass (mt)               |                              |                   | biomass (mt)               |                              |            | biomass (mt)    |                              |  |  |  |
| 2011 | Model result  | 6,830      | 9,903                      | 0.86                         | 6,830             | 10,221                     | 0.90                         | 6,830      | 10,221          | 0.90                         |  |  |  |
| 2012 | Assumed catch | 3,767      | 8,995                      | 0.46                         | 3,767             | 8,196                      | 0.52                         | 3,767      | 7,711           | 0.58                         |  |  |  |
| 2013 | Projection    | 1,249      | 9,406                      | 0.14                         | 1,142             | 9,163                      | 0.14                         | 822        | 6,927           | 0.14                         |  |  |  |
| 2014 | Projection    | 1,503      | 12,143                     | 0.14                         | 1,563             | 13,916                     | 0.14                         | 935        | 8,875           | 0.14                         |  |  |  |
| 2015 | Projection    | 2,030      | 16,802                     | 0.14                         | 2,582             | 22,124                     | 0.14                         | 1,313      | 12,234          | 0.14                         |  |  |  |

Table A.96. Results of consequence analysis of Gulf of Maine cod; column and row headers indicate 'true' state of nature and basis of management action (75%  $F_{MSY}$  for 2013 – 2015) under assumed states of nature; cells provide projections of SSB and fully recruited fishing mortality for 'true' states of nature for catch set according to assumed state of nature; diagonals (shaded) indicate that management actions were correctly specified for the state of nature.

| Manager                 |      |               | ASA            | AP, 1982 start, M=0 | ).2              | ASAP, 1982   | start, M-ramp (pro | oject M=0.2)     | ASAP, 1982 start, M-ramp (project M=0.4)       |          |       |  |
|-------------------------|------|---------------|----------------|---------------------|------------------|--------------|--------------------|------------------|------------------------------------------------|----------|-------|--|
| Management actions -    | Year | Input         | SSBmsy = 54,74 | 3 mt; MS Y=9,399 i  | nt; Fms y = 0.18 | SSBmsy=80,20 | 0 mt; MSY=13,786   | mt; Fms y = 0.18 | SSBmsy = 80,200 mt; MSY=13,786 mt; Fmsy = 0.18 |          |       |  |
| Catches III 2015-2015   |      |               | Catch (mt)     | SSB (mt)            | Ffull            | Catch (mt)   | SSB (mt)           | Ffull            | Catch (mt)                                     | SSB (mt) | Ffull |  |
|                         | 2011 | Result        | 6,830          | 9,903               | 0.86             | 6,830        | 10,221             | 0.90             | 6,830                                          | 10,221   | 0.90  |  |
|                         | 2012 | Assumed catch | 3,767          | 8,995               | 0.46             | 3,767        | 8,195              | 0.52             | 3,767                                          | 7,711    | 0.58  |  |
| ASAP, 1982 start, M=0.2 | 2013 | Projection    | 1,249          | 9,406               | 0.14             | 1,249        | 9,137              | 0.15             | 1,249                                          | 6,834    | 0.21  |  |
|                         | 2014 | Projection    | 1,503          | 12,143              | 0.14             | 1,503        | 13,825             | 0.13             | 1,503                                          | 8,432    | 0.24  |  |
|                         | 2015 | Projection    | 2,030          | 16,802              | 0.14             | 2,030        | 22,210             | 0.11             | 2,030                                          | 11,428   | 0.23  |  |
|                         | 2011 | Result        | 6,830          | 9,903               | 0.86             | 6,830        | 10,221             | 0.90             | 6,830                                          | 10,221   | 0.90  |  |
| ASAD 1092 start M ramp  | 2012 | Assumed catch | 3,767          | 8,995               | 0.46             | 3,767        | 8,196              | 0.52             | 3,767                                          | 7,711    | 0.58  |  |
| (project M=0.2)         | 2013 | Projection    | 1,142          | 9,425               | 0.12             | 1,142        | 9,163              | 0.14             | 1,142                                          | 6,858    | 0.19  |  |
| (project in o.2)        | 2014 | Projection    | 1,563          | 12,221              | 0.14             | 1,563        | 13,916             | 0.14             | 1,563                                          | 8,498    | 0.24  |  |
|                         | 2015 | Projection    | 2,582          | 16,800              | 0.17             | 2,582        | 22,124             | 0.14             | 2,582                                          | 11,344   | 0.30  |  |
|                         | 2011 | Result        | 6,830          | 9,903               | 0.86             | 6,830        | 10,221             | 0.90             | 6,830                                          | 10,221   | 0.90  |  |
| ASAD 1092 start M ramp  | 2012 | Assumed catch | 3,767          | 8,995               | 0.46             | 3,767        | 8,195              | 0.52             | 3,767                                          | 7,711    | 0.58  |  |
| (project M=0.4)         | 2013 | Projection    | 822            | 9,493               | 0.09             | 822          | 9,226              | 0.10             | 822                                            | 6,927    | 0.14  |  |
|                         | 2014 | Projection    | 935            | 12,645              | 0.08             | 935          | 14,319             | 0.08             | 935                                            | 8,875    | 0.14  |  |
|                         | 2015 | Projection    | 1,313          | 17,969              | 0.08             | 1,313        | 23,276             | 0.06             | 1,313                                          | 12,234   | 0.14  |  |

Table A.97. Status of 2013 spawning stock biomass and fishing mortality of Gulf of Maine cod; column and row headings indicate 'true' state of nature and basis of management action respectively; cells indicate 2013 stock status resulting from application of management actions under assumed state of nature (rows) to 'true' state of nature.

|                                              | States of Nature                         |                                          |                                          |
|----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Management actions -<br>catches in 2013-2015 | ASAP, 1982 start, M=0.2                  | ASAP, 1982 start, M-ramp (project M=0.2) | ASAP, 1982 start, M-ramp (project M=0.4) |
| ASAP, 1982 start, M=0.2                      | Overfished, overfishing is not occurring | Overfished, overfishing is not occurring | Overfished, overfishing is occuring      |
| ASAP, 1982 start, M-ramp<br>(project M=0.2)  | Overfished, overfishing is not occurring | Overfished, overfishing is not occurring | Overfished, overfishing is occuring      |
| ASAP, 1982 start, M-ramp<br>(project M=0.4)  | Overfished, overfishing is not occurring | Overfished, overfishing is not occurring | Overfished, overfishing is not occurring |





Figure A.1. Map of the Gulf of Maine Atlantic cod (*Gadus morhua*) management and assessment area (shaded grey). The United States exclusive economic zone (EEZ) is defined by the dashed line. Within the Gulf of Maine region, this line is informally referred to as the "Hague Line".

## LW relationship: Cod, GOM 1992 · 2010 Annual: alpha=0.000005132, beta=3.1625 Spring: alpha=0.000004714, beta=3.1741 Fall: alpha=0.000006178, beta=3.1322



\*Dashed lines indicate 95% confidence intervals

Figure A.2. Gulf of Maine Atlantic cod seasonal and annual length-weight relationships as estimated from NEFSC bottom trawl survey data.



Figure A.3. Annual trends in the seasonal condition factor of Gulf of Maine Atlantic cod based on length and weight data collected from the NEFSC bottom trawl survey.



Figure A.4. Distribution of the ratios of estimate commercial biological sample weights to the recorded sample weight by market category and year using the established gutted-to-live conversion factor of 1.17. Estimated sample weights were obtained by applying the season (spring, fall) length weight equation to the recorded length distribution of the sample. The solid red line indicates the 1.0 equality line.



Figure A.5. Distribution of the ratios of estimate commercial biological sample weights to the recorded sample weight by market category and year using a preliminary gutted-to-live conversion factor of 1.20. Estimated sample weights were obtained by applying the season (spring, fall) length weight equation to the recorded length distribution of the sample. The solid red line indicates the 1.0 equality line.



Figure A.6. Comparison of von Bertalanffy growth curves for the Gulf of Maine and Georges Banks Atlantic cod stocks as estimated from data collected from the Northeast Fisheries Science Center bottom trawl survey between 1970 and 2011.



Figure A.7. Gulf of Maine Atlantic cod von Bertalanffy growth curve estimated from data collected from the Northeast Fisheries Science Center bottom trawl survey between 1970 and 2011. Growth paremeters estimated for the Gulf of Maine stock were:  $L_{inf}$ =150.93 cm, K=0.11,  $t_0$ =0.13.



Figure A.8. Trends in the growth parameter , K, by year class for Gulf of Maine Atlantic cod. Errors bars indicate 95% confidence intervals about the parameter estimate. The dashed red line corresponds to the average cohort K estimate for the entire time series (0.12).



Figure A.9. Scatter plot of the growth parameter, *K*, relative to year class strength (age 1 numbers) for Gulf of Maine Atlantic cod. Age 1 recruitment estimates are based on the 2011 assessment of the Gulf of Maine cod stock (NEFSC 2012).



Month

Figure A.10. Mean length-at-age of Altantic cod by month. Estimated from commercial port samples taken between 1981 and 2010.



Figue A.11 Average spring survey weights-at-age of Gulf of Maine Atlantic cod ages 1-8 from 1982 to 2012. Survey weights are based on the average weight-at-age of cod sampled from the Northeast Fisheries Science Center spring bottom trawl survey . Average weights are presented as z-scores ( $[x-\mu]/\sigma$ ).



Figue A.12. Average fall survey weights-at-age of Gulf of Maine Atlantic cod ages 1-8 from 1982 to 2011. Survey weights are based on the average weight-at-age of cod sampled from the Northeast Fisheries Science Center fall bottom trawl survey. Average weights are presented as z-scores ( $[x-\mu]/\sigma$ ).


Figure A.13. Annual average age-at-50% maturity ( $A_{50\%}$ ) and corresponding 95% confidence intervals for female (left panels) and male (right panels) Gulf of Maine Atlantic cod from 1970 to 2012. Average maturity has been estimated from data collected from the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey. Years in which the A50% could not be estimated are omitted from the plots.



Figure A.14. Age-based maturity ogives for female (left) and male (right) Gulf of Maine Atlantic cod based on time series averages of maturity and age information collected from the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey from 1970 to 2012. The dashed red line indicates the age at 50% maturity ( $A_{50\%}$ ).



Figure A.15. Annual average length-at-50% maturity ( $L_{50\%}$ ) and corresponding 95% confidence intervals for female (left panels) and male (right panels) Gulf of Maine Atlantic cod from 1970 to 2012. Average maturity has been estimated from data collected from the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey. Years in which the  $L_{50\%}$  could not be estimated are omitted from the plots.



Figure A.16. Gulf of Maine Atlantic cod proportion at length observed in the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey between 1968 and 2012.



Figure A.17. Length-based maturity ogives for female (left) and male (right) Gulf of Maine Atlantic cod based on time series averages of maturity and length information collected from the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey from 1970 to 2012. The dashed red line indicates the length at 50% maturity ( $L_{50\%}$ ).



Figure A.18. Total (top) and fractional (as a fraction of the total, bottom) catch of Gulf of Maine Atlantic cod from 1982 to 2011 by fleet (commercial and recreational) and disposition (landed, discarded).



Figure A.19. United States commercial landings of Gulf of Maine Atlantic cod from 1861 to 2011. The grey-shaded polygon represents estimates of landings in 1861 and 1870 using two different conversion factors for converting cured salted cod to live fish (Alexander et al. 2009). Biological reference points ( $B_{MSY} = 61,218$  mt, MSY = 10,392 mt) from the most recent assessment (NEFSC 2012) are shown by the dashed lines.



Figure A.20. Total United States commercial landings of Gulf of Maine and Georges Bank Atlantic cod from 1964 to 2011.



Figure A.21. Percentage of total commercial landings of Gulf of Maine Atlantic cod from statistical areas 464, 465 and 467 between 1964 and 2010. The Hague Line, which formally defined the Exclusive Econonimic Zones of the United States and Canada was adopted on October 12, 1984 (dashed red line).



Figure A.22. Fraction of the Gulf of Maine Atlantic cod commercial landings from either interviewed trips (1964-1994) or those trips that could be directly matched to a vessel trip report (1994-2011). The red line indicates the time series average fraction of landings from interviewed/matched trips.



Figure A.23. Fraction of the Gulf of Maine Atlantic cod commercial landings by allocation level between 1982 and 2011. Prior to 1994 landings were allocated based on a port interview process. From 1994 onward landings were allocated to statistical area and gear type based on a standardized allocation scheme described in Wigley et al. (2008).



Figure A.24. Fraction of the Gulf of Maine Atlantic cod commercial landings by allocation level between 2006 and 2011 by month.



Figure A.25. Total (top) and fractional (as a fraction of the total, bottom) commercial landings of Gulf of Maine Atlantic cod by gear from 1982 to 2011.



Figure A.26. Monthly commercial landings patterns (as a fraction of the total landings) of Gulf of Maine Atlantic cod by gear from 2006 to 2011.



Figure A.27. Total (top) and fractional (as a fraction of the total, bottom) commercial landings of Gulf of Maine Atlantic cod by port from 1982 to 2011.



Figure A.28. Monthly commercial landings patterns (as a fraction of the total landings) of Gulf of Maine Atlantic cod by port from 2006 to 2011.



Figure A.29. Total (top) and fractional (as a fraction of the total, bottom) commercial landings of Gulf of Maine Atlantic cod by statistical area from 1982 to 2011.



Figure A.30. Monthly commercial landings patterns (as a fraction of the total landings) of Gulf of Maine Atlantic cod by statistical area from 2006 to 2011.



Figure A.31. Gini indices for the commercial otter trawl (050) and sink gillnet (100) fleets from 1994-2011. Indices were based on the spatial distribution of the retained catch reported on vessel trip reports.



Figure A.32. Landings-weighted mean location (centroid) of Gulf of Maine cod catch by the commercial gillnet (GNS) and otter trawl (OTF) fleets from 1994 to 2011. Centroids were based on the spatial distribution of the retained catch reported on vessel trip reports.



Figure A.33. Number of ten minute squares contributing to the annual landings of Gulf of Maine Atlantic cod between 1982 and 2011.



Figure A.34. Comparison of the fraction of annual landings per ten minute square in 1996 (left) to the distribution in 2010 (right).



Figure A.35. Location of the top 5 ten minute squares with respect to the fraction of annual commercial landings of Gulf of Maine Atlantic cod between 1994 and 2011.



Figure A.36. Contribution of the top 5 ten minute squares to the annual commercial landings of Gulf of Maine Atlantic cod between 1994 and 2011.



Figure A.37. Fraction of the total annual Gulf of Maine cod commercial gillnet and otter trawl landings from ten minute square 427044. Fractional landings have been calculated using three data sources: vessel trip reports (VTR), vessel monitoring data (VMS), and data collected by atsea observers (Observers). Not all data sources are available for all years.



Figure A.38. Number of vessels and trips landing Gulf of Maine cod both inside (top) and outside (bottom) ten minute square 427044 between 1994 and 2011.







Figure A.40. Monthly commercial landing patterns (as a fraction of the total landings) of Gulf of Maine Atlantic cod by ton class from 2006 to 2011.



Figure A.41. Total (top) and fractional (as a fraction of the total, bottom) commercial landings of Gulf of Maine Atlantic cod by market category from 1982 to 2011.



Figure A.42. Monthly commercial landing patterns (as a fraction of the total landings) of Gulf of Maine Atlantic cod by market category from 2006 to 2011.



Figure A.43. Cumulative monthly commercial landings of Gulf of Maine Atlantic cod by year from 2006 to 2011.



Figure A.44. Commercial landings-at-age of Gulf of Maine Atlantic cod from 1982 to 2011.



Figure A.45. Discard reasons for Gulf of Maine Atlantic cod as recorded by fisheries observers between 1989 and 2011.



Figure A.46. Differences between the 2010 Gulf of Maine Atlantic cod discard rates estimated from data collected by groundfish at-sea monitors (ASMs) and certified observers showing 95% confidence intervals (top panel) and the number of trips included in each analysis (bottom panel) broken down by gear-mesh combination and quarter (adapted from Wigley et al. 2012).



Figure A.47. Differences between the 2011 Gulf of Maine Atlantic cod discard rates estimated from data collected by groundfish at-sea monitors (ASMs) and certified observers showing 95% confidence intervals (top panel) and the number of trips included in each analysis (bottom panel) broken down by gear-mesh combination and quarter (adapted from Wigley et al. 2012).



Figure A.48. Length frequency distributions of Gulf of Maine Atlantic cod commercials discards estimated from data collected by groundfish at-sea monitors (ASMs) and certified observers in 2010.


Figure A.49. Length frequency distributions of Gulf of Maine Atlantic cod commercials discards estimated from data collected by groundfish at-sea monitors (ASMs) and certified observers in 2011.



Figure A.50. Comparison of Gulf of Maine Atlantic cod landings estimates generated using the Standardized Bycatch Reporting Methodology (SBRM, Wigley et al. 2007) combined ratio approach to the stock landings from the Commercial Fisheries Database AA tables. Landings are shown only for longline, gillnet and otter trawl gears; all gear types not included in the discard estimation procedure were considered 'other' gear types and excluded. The comparison provides a cross validation of both the discard estimation and landings allocation procedure.



Figure A.51. Box plot distribution of the discard survival estimates by gear type developed by the Discard Mortality Working Group (expressed as percent mortality; NEFSC 2012b). Median estimates (horizontal blue line within the interquartile boxes) were used to adjust discard estimates in the current assessment.



Figure A.52. Impacts of the revised discard mortality estimates on the estimates of commercial discards in terms of biomass (mt).



Figure A.53. Aggregate length frequency distributions, by gear type, of Gulf of Maine Atlantic cod discarded in the commercial fishery between 1989 and 2011.



Figure A.54. Box plots showing the length distribution of Gulf of Maine Atlantic cod discarded by the commercial fishery by gear type between 1989 and 2011. Missing years indicate that there were either no observed trips for that gear in the Gulf of Maine or no cod were observed to have been discarded.



Figure A.55. Example of the length frequency distributions of Gulf of Maine Atlantic cod observed caught in the commercial fishery by large mesh otter trawl (050), shrimp trawl (058) and large mesh sink gillnet (100) gear in 1989. The 1989 – 1996 commercial minimum retention size of 19 inches (48.3 cm) is indicated by a dashed red line.



Figure A.56. Example of applying the survey-filter method to estimate the selectivity-at-length of fishing gears for Gulf of Maine Atlantic cod. In this example the proportion caught at length by large mesh otter trawl are compared to the proportion caught at-length from the Northeast Fishery Science Center spring and fall surveys (combined) to estimate the selectivity-at-length of large mesh otter trawl.



Figure A.57. Estimated selectivity ogives for large mesh otter trawl, large mesh sink gillnet and shrimp trawl and the corresponding 95% confidence intervals (CI) for Gulf of Maine Atlantic cod. Selectivity ogives were estimated from logistic fits to the aggregated annual estimates of selectivity-at-length.



Survey length distributions: after application of 050 discard selectivity ogives

Figure A.58. Comparison of the survey filter-based estimates (top) of discards-at-length for large mesh otter trawl gear to the direct observer observations (bottom) from 1989 to 1993 for Gulf of Maine Atlantic cod. The dashed red line represents the commercial minimum retention size of 19 inches (48.3 cm) from 1989 to 1996.



Survey length distributions: after application of 058 discard selectivity ogives

Figure A.59. Comparison of the survey filter-based estimates (top) of discards-at-length for shrimp trawl gear to the direct observer observations (bottom) from 1989 to 1991 for Gulf of Maine Atlantic cod. The dashed red line represents the commercial minimum retention size of 19 inches (48.3 cm) from 1989 to 1996.



Survey length distributions: after application of 100 discard selectivity ogives

Figure A.60. Comparison of the survey filter-based estimates (top) of discards-at-length for large mesh sink gillnet gear to the direct observer observations (bottom) from 1989 to 1993 for Gulf of Maine Atlantic cod. The dashed red line represents the commercial minimum retention size of 19 inches (48.3 cm) from 1989 to 1996.



Figure A.61. Comparison of the survey filter-based estimates (right) of numbers-at-age for large mesh otter trawl gear to the direct observer observations (left) from 1989 to 1993 for Gulf of Maine Atlantic cod.



Figure A.62. Comparison of the survey filter-based estimates (right) of numbers-at-age for large mesh sink gillnet gear to the direct observer observations (left) from 1989 to 1993 for Gulf of Maine Atlantic cod.



Figure A.63. Comparison of the survey filter-based estimates (right) of numbers-at-age for shrimp trawl gear to the direct observer observations (left) from 1989 to 1991 for Gulf of Maine Atlantic cod.

Estimation of survey proportionality constant, q (050 LM)

Estimation of survey proportionality constant, q (100 LM)

Estimation of survey proportionality constant, q (058)



Figure A.64. Plots of the relationship by gear type between fraction of fish observed discarded-at-length  $(D_i/f)$  and the estimated number at length from the survey-filter method  $(N_i \cdot m_i)$  for Gulf of Maine Atlantic cod. Large mesh otter trawl (050 LM), large mesh sink gillnet (100 LM) and shrimp trawl gear (058) are shown. The slope of the relationship (q) is the proportionality constant required to expand the survey-filter estimates of numbers at length to estimates of total discards at length. The dots colored red represent observations from 1990.



Figure A.65. Comparison of three different methods for achieving hindcasted estimates of Gulf of Maine Atlantic cod commercial discards from 1982 to 1988. (1) The survey-filter method uses the proportionality constant (q) multiplied by an index of fishing effort (total retained catch,  $K_{all}$ ) to estimate total discards (blue line). (2) Use of the average ratio of discarded cod to total retained catch ( $d_{cod}/k_{all}$ ) from 1989 to 1993 multiplied by total retained catch ( $K_{all}$ , red line). (3) Use of the average ratio of discarded cod to total retained catch ( $d_{cod}/k_{all}$ ) from 1989 to 1993 multiplied by total retained catch ( $K_{all}$ , red line). (3) Use of the average ratio of discarded cod to total retained catch ( $K_{all}$ , green line). The 'observer' line shows the direct estimates of discards from 1989 to 2010 achieved using the Standardized Bycatch Reporting Methodology (Wigley et al. 2007) and the corresponding 95% confidence intervals.



Figure A.66. Impacts of the revised discard mortality estimates on the estimates of Gulf of Maine Atlantic cod commercial discards in terms of numbers of fish (thousands).



Figure A.67. Commercial discards-at-age of Gulf of Maine Atlantic cod from 1982 to 2011.



Figure A.68. Fraction of the total annual VTR-reported recreational Gulf of Maine Atlantic cod catch, by trip type, from 1994-2011.



Figure A.69. Comparison of Gulf of Maine Atlantic cod recreational landings estimates derived through the Marine Recreational Information Program (MRIP) to recreational landings reported on Vessel Trip Reports (VTRs) between 1981 and 2011. \**Note: VTR data collection began in 1994*.



Figure A.70. Gini indices for the recreational charter and party boat fleets fleets from 1994-2011. Indices were based on the spatial distribution of the retained catch reported on vessel trip reports.



Figure A.71. Landings-weighted mean location (centroid) of Gulf of Maine cod catch by the recreational charter and party boat fleets from 1994 to 2011. Centroids were based on the spatial distribution of the retained catch reported on vessel trip reports.



Figure A.72. Spatial distribution of recreational effort on trips reported catching Gulf of Maine Atlantic cod between 1994 and 2011 as determined from vessel trip reports (VTRs). VTR-based recreation effort has been binned to ten minute squares and overlaid on the Northeast Fisheries Science Center bottom trawl survey sampling strata



Figure A.73. Recreational utilization of the top ten minute squares between 1994 and 2011 expressed as an annual fraction of the total retained catch of Gulf of Maine Atlantic cod reported on vessel trip reports.



Figure A.74. Utilization of ten minute square 427044 by the recreational charter and party boat fishery between 1994 and 2011 expressed as annual fraction of the total retained catch of Gulf of Maine Atlantic cod reported on vessel trip reports.



Figure A.75. Box plots showing the length distribution of Gulf of Maine Atlantic cod recreational harvest (AB1 catch) between 1981 and 2011.



Figure A.76. Length frequency distribution of Gulf of Maine Atlantic cod recreational harvest (AB1 catch) between 1981 and 2011.



Figure A.77. Recreational landings-at-age of Gulf of Maine Atlantic cod from 1981 to 2011.



Figure A.78. Annual length frequency distributions of Gulf of Maine Atlantic cod discarded in the recreational fishery between 2005 and 2011. *No sampling of recreational discards occurred prior to 2005.* 



Figure A.79. Estimated selectivity ogive for the recreational fishery and the corresponding 95% confidence interval (CI) for Gulf of Maine Atlantic cod. The selectivity ogive was estimated from the logistic fits to the aggregated annual estimates of selectivity-at-length.



Figures A.80. Comparison of recreational discard length frequency distributions estimated using the survey filter approach (top) to those generated from the B2 sampling of the I9 catch (bottom) between 2005 and 2010 for Gulf of Maine Atlantic cod. The dashed red line represents the recreational minimum retention size of 24 inches (61.0 cm) from May 1, 2006-2010. The minimum retention size from January 1, 2005 to May 1, 2006 was 23 inches (58.4cm).



Figure A.81. Box plots showing the length distribution of Gulf of Maine Atlantic cod recreational releases (B2 catch) between 1981 and 2011.



Figure A.82. Recreational discards-at-age of Gulf of Maine Atlantic cod from 1981 to 2011.



Figure A.83. Average catch weights-at-age of age1-8 Gulf of Maine Atlantic cod from 1982 to 2011. Weights-at-age were estimated using a number weighted average of commercial landing, commercial discard, recreational landings, and recreational discards weights-at-age. Average weights are presented as z-scores ( $[x-\mu]/\sigma$ ).



Figure A.84. Mean day of the year of sampling in the Gulf of Maine by each of the three ongoing regional bottom trawl surveys: Northeast Fisheries Scienc Center (NEFSC), Massachusetts Department of Marine Fisheries (MADMF) and the Maine – New Hampshire inshore bottom trawl survey (ME/NH). Days are expressed as Julian days (e.g., January 1 is day 1 and December 31 is day 365/66).



Figure A.85. Map of the Notheast Fisheries Science Center (NEFSC) bottom trawl offshore survey strata included in the Gulf of Maine Atlantic cod stock assessment (shaded blue).


Figure A.86. Map of the Notheast Fisheries Science Center (NEFSC) bottom trawl inshore survey strata in the Gulf of Maine region (shaded blue).



Figure A.87. Map identifying the inshore survey strata of the Notheast Fisheries Science Center (NEFSC) bottom trawl survey. \**Note the survey strata are identified using their 2-digit labels. Strata identifiers are five-digit identifiers beginning with a two-digit prefix and one-digit suffix (e.g., the full identifier for inshore strata 66 is 03660).* 



Figure A.88. Sampling summary of offshore (01 prefix) and inshore (03 prefix) strata in the Notheast Fisheries Science Center (NEFSC) spring bottom trawl survey from 1968-2012. Positive and negative tows are indicated with respect to catches of Gulf of Maine Atlantic cod.



Figure A.89. Sampling summary of offshore (01 prefix) and inshore (03 prefix) strata in the Notheast Fisheries Science Center (NEFSC) fall bottom trawl survey from 1963-2011. Positive and negative tows are indicated with respect to catches of Gulf of Maine Atlantic cod.



Figure A.90. Comparison of Notheast Fisheries Science Center (NEFSC) bottom trawl survey indices for Gulf of Maine Atlantic cod calculated using offshore strata (black) and both inshore and offshore survey strata (red).



Figure A.91. Comparison of Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey numbers at age indices for Gulf of Maine Atlantic cod calculated using offshore strata (grey) and both inshore and offshore survey strata (green).



Figure A.92. Comparison of Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey numbers at age indices for Gulf of Maine Atlantic cod calculated using offshore strata (grey) and both inshore and offshore survey strata (green).



Figure A.93. Spatial overlap of survey catches (kg/tow) of Gulf of Maine Atlantic cod from the Northeast Fisheries Science Center (NEFSC) bottom trawl survey (spring and fall combined) and commercial and recreational fishing effort. On the left, NEFSC survey catches from 1989 - 2010 are overlayed on total observed cod catch (landings and discards) binned to ten minute squares from the same time period. On the right, NEFSC survey catches from 1994 - 2010 are overlayed on the number of VTR-reported recreational trips that caught cod binned to ten minute squares. \**Note the different time periods used in each plot*.



Figure A.94. Beta-binomial-based estimates of calibration factors and corresponding 95% confidence intervals by length class (3 cm bins) for Atlantic cod. The black points and vertical bars represent results where different calibration factors are estimated for each length class. The blue lines represent results from a segmented regression model where the two points connecting the segments are known (20 and 40 cm) and the red lines represent results from a segmented regression model where the first point (20 cm) is known but the second is estimated. Segmented regression fits are based on data from fish  $\geq$ 20 cm (from Brooks et al. 2010).



Figure A.95. Northeast Fisheries Science Center spring (right panels) and fall (left panels) survey indices of abundance (top panels) and biomass (bottom panels) showing both raw (unconverted) and vessel, door and survey converted indices over time for Gulf of Maine Atlantic cod.

## NEFSC spring survey: day/night comparisons of abundance

NEFSC spring survey: day/night comparisons of biomass



NEFSC fall survey: day/night comparisons of abundance





Figure A.96. Northeast Fisheries Science Center spring (top panels) and fall (bottom panels) survey indices of abundance (left panels) and biomass (right panels) broken down by day- and night-only tows compared to the aggregate index (day and night tows combined) and its associated 80% confidence interval (CI) for Gulf of Maine Atlantic cod.



Figure A.97. Northeast Fisheries Science Center (NEFSC) spring and fall bottom trawl survey abundance (left) and biomass (right) indices for Gulf of Maine Atlantic cod from 1963 to 2012. \**Note, the spring survey did not begin until 1968, 2012 fall survey data not available at time of this report.* 



Figure A.98. Northeast Fisheries Science Center (NEFSC) spring and fall bottom trawl survey abundance (left) and biomass (right) indices for Gulf of Maine Atlantic cod from 1963 to 2012 expressed as z-scores ( $[x-\mu]/\sigma$ ). \**Note, the spring survey did not begin until 1968, 2012 fall survey data not available at time of this report.* 



Figure A.99. Scatter plots showing the level of agreement between Northeast Fisheries Science Center (NEFSC) bottom trawl survey indices (log transformed) of Gulf of Maine Atlantic cod. 80% confidence ellipses are shown.



Figure A.100. Numbers-at-age from NEFSC spring bottom trawl survey from 1970 to 2012 for Gulf of Maine Atlantic cod. \**Note that age 11 is a plus group*.



Figure A.101. Numbers-at-age from NEFSC fall bottom trawl survey from 1970 to 2011 for Gulf of Maine Atlantic cod. \**Note that age 11 is a plus group.* 



Figure A.102. Scatter plots showing the level of agreement between Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey Gulf of Maine Atlantic cod indices at age (log transformed) on a cohort basis. 80% confidence ellipses are shown.

| Scatterplot matrix for NEFSC fall BTS numbers/tow indices by cohort (In transformed) |         |                                       |           |           |                |                 |         |          |             |             |                    |
|--------------------------------------------------------------------------------------|---------|---------------------------------------|-----------|-----------|----------------|-----------------|---------|----------|-------------|-------------|--------------------|
|                                                                                      |         | -3 -1 1                               |           | -2 -1 0 1 | 1 1 1          | -4 -2 0         |         | -5 -3 -1 |             | -4 -3 -2 -1 | 1                  |
| 07<br>52<br>62                                                                       | age0    |                                       |           |           |                |                 |         |          |             | )           | -0<br>2<br>4       |
| 1 -<br>-1 -<br>-3 -                                                                  |         | age1                                  |           |           |                |                 |         |          |             | ····)       |                    |
| -                                                                                    |         |                                       | age2      |           |                |                 |         |          |             |             | -1<br>-0<br>1<br>2 |
| 1 -<br>0 -<br>-1 -<br>-2 -                                                           |         | O.                                    |           | age3      |                |                 |         |          |             | ···)        |                    |
| -                                                                                    |         |                                       |           |           | age4           | ·               | ·       |          |             |             | -0<br>2<br>4       |
| 0 -<br>-2 -<br>-4 -                                                                  |         |                                       |           |           |                | age5            |         |          |             |             |                    |
|                                                                                      |         |                                       |           |           | . 0            | $\bigcirc$      | age6    |          |             |             | -0<br>2<br>4       |
| -1 -<br>-3 -<br>-5 -                                                                 |         | · · · · · · · · · · · · · · · · · · · |           |           |                |                 |         | age7     |             | · · · · · · |                    |
|                                                                                      |         | <i>.</i>                              |           |           | (:::)          | (::·)           |         |          | age8        |             | 1<br>2<br>3<br>4   |
| -1 -<br>-2 -<br>-3 -<br>-4 -                                                         |         |                                       | ····).    |           | (:).           | (·).            |         |          |             | age9        |                    |
|                                                                                      | -4 -2 0 | 5 6 3 -                               | -2 -1 0 1 | ET ST F   | -4 -2 0        | 1 1 1           | -4 -2 0 | 6 1 1    | -4 -3 -2 -1 |             |                    |
|                                                                                      |         |                                       |           | 809       | 6 confidence e | ellipses are sl | hown    |          |             |             |                    |

Figure A.103. Scatter plots showing the level of agreement between Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey Gulf of Maine Atlantic cod indices at age (log transformed) on a cohort basis. 80% confidence ellipses are shown.



Figure A.104. Spatial distribution of Gulf of Maine Atlantic cod catches (numbers/tow) from the Northeast Fisheries Science Center spring bottom trawl survey from 1968 – 2011. Periods are as follows: 1968 – 1979 (top left), 1980 – 1989 (top right), 1990 – 1999 (bottom left), 2000-2011 (bottom right).



Figure A.105. Gini indices for Gulf of Maine Atlantic cod from the Northeast Fisheries Science Center (NEFSC) fall (top) and spring (bottom) bottom trawl surveys in terms of abundance (numbers/tow, left) and biomass (kg/tow, right). A loess smooth has been fit to the data with smoothing parameter of 0.5. The loess smooth is shown by the solid blue line along with the corresponding 90% confidence interval.



Figure A.106. Fraction of Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey tows with positive catches of Gulf of Maine Atlantic cod by strata from 1968-2012.



Figure A.107. Fraction of Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey tows with positive catches of Gulf of Maine Atlantic cod by strata from 1963-2012.



Figure A.108. Map of the Massachusetts Department of Marine Fisheries (MADMF) bottom trawl survey strata included in the Gulf of Maine Atlantic cod stock assessment (shaded orange).



Figure A.109. Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl survey abundance (top) and biomass (bottom) indices of Gulf of Maine Atlantic cod from 1978 to 2012. \**Note, 2012 fall survey data not available at time of this report.* 



Figure A.110. Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl survey abundance (top) and biomass (bottom) indices of Gulf of Maine Atlantic cod from 1978 to 2012 expressed as z-scores ( $[x-\mu]/\sigma$ ). \**Note, 2012 fall survey data not available at time of this report.* 



Figure A.111. Scatter plots showing the level of agreement between the Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl survey Gulf of Maine Atlantic cod indices (log transformed). 80% confidence ellipses are shown.



Figure A.112. Fraction of Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl survey survey tows with positive catches of Gulf of Maine Atlantic cod by strata from 1978-2012.



Figure A.113. Fraction of Massachusetts Department of Marine Fisheries (MADMF) fall bottom trawl survey survey tows with positive catches of Gulf of Maine Atlantic cod by strata from 1978-2011.



Figure A.114. Gulf of Maine cod numbers-at-age from the Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl survey, 1982-2012. There was insufficient age information available from the MADMF spring survey prior to 1982. \**Note that age11 is a plus group.* 



Figure A.115. Gulf of Maine cod numbers-at-age from the Massachusetts Department of Marine Fisheries (MADMF) fall bottom trawl survey, 1982-2011. There was insufficient age information available from the MADMF fall survey prior to 1982. *\*Note that age11 is a plus group.* 



Figure A.116. Scatter plots showing the level of agreement between Massachusetts Department of Marine Fisheries (MADMF) spring bottom trawl Gulf of Maine Atlantic cod survey indices at age (log transformed) on a cohort basis. 80% confidence ellipses are shown.



Figure A.117. Scatter plots showing the level of agreement between Massachusetts Department of Marine Fisheries (MADMF) fall bottom trawl Gulf of Maine Atlantic cod survey indices at age (log transformed) on a cohort basis. 80% confidence ellipses are shown.



Figure A. 118. Map of the Maine - New Hamphire inshore groundfish trawl survey strata set (map from Sherman et al. 2005).



Figure A.119. Maine – New Hamphire inshore groundfish trawl survey spring and fall survey abundance from 1978 to 2011 for Gulf of Maine Atlantic cod. Bars indicate  $\pm 1$  standard error (SE). Data provided by S. Sherman (pers. comm.).



Figure A.120. Scatter plots showing the level of agreement between the Maine – New Hamphire (ME/NH) inshore groundfish trawl survey Gulf of Maine Atlantic cod indices (log transformed). 80% confidence ellipses are shown.



Figure A.121. Fraction of Maine – New Hamphire inshore groundfish trawl survey Tows with positive catches of Gulf of Maine Atlantic cod from 2000-2011.


Figure A.122. Spatial distribution of Gulf of Maine Atlantic cod catches (numbers/tow) from the spring (top) and fall (bottom) Maine – New Hamphire inshore groundfish trawl survey from 2001-2006 (top) and 2007-2011 (left). Map provided by S. Sherman (pers. comm.).



Figure A.123. Length distributions of Gulf of Maine Atlantic cod sampled in the Maine – New Hampshire inshore groundfish trawl spring (top) and fall (bottom) surveys from 2006 to 2009.



Figure A.124. Annual average length-at-50% maturity (L50) and corresponding 95% confidence intervals for female (left panels) and male (right panels) Gulf of Maine Atlantic cod from 2001 to 2011. Average maturity has been estimated from data collected from the Maine – New Hampshire spring inshore groundfish trawl survey. Years in which maturity ogives could not be estimated are omitted from the plots.



Figure A.125. Annual Length-based maturity ogives for female (left) and male (right) Gulf of Maine Atlantic cod based on time series averages of maturity and length information collected from the Maine – New Hampshire spring inshore groundfish trawl survey between 2001 and 2011. The dashed red line indicates the length at 50% maturity.



Figure A.126. Distribution of fish  $\geq$  25 cm from the Maine – New Hampshire spring inshore groundfish trawl survey from 2001-2006 (left) and 2007-2011 (right).



Figure A.127. Scatter plots showing the level of agreement between the Northeast Fisheries Science Center (NEFSC), Massachusetts Department of Marine Fisheries (MADMF) and the Maine – New Hamphire (ME/NH) inshore groundfish trawl survey Gulf of Maine Atlantic cod abundance (numbers/tow) indices (log transformed). 80% confidence ellipses are shown.



Figure A.128. Scatter plots showing the level of agreement between the Northeast Fisheries Science Center (NEFSC), Massachusetts Department of Marine Fisheries (MADMF) and the Maine – New Hamphire (ME/NH) inshore groundfish trawl survey Gulf of Maine Atlantic cod biomass (weight/tow) indices (log transformed). 80% confidence ellipses are shown.



Figure A.129. Commercial otter trawl and recreational landings per unit effort (LPUE) indices for Gulf of Maine Atlantic cod. The development of the commercial otter trawl LPUE index is described in Palmer (2012b). The development of the recreational LPUE index is described in Wood (2012).



Figure A.130. Example of Lorenzen (1996) based estimates of natural mortality (M) at age based on time series average of stock weights at age. The blue line indicates the unadjusted Lorenzen estimate of natural mortality. The red line has been rescaled based on a constant M assumption of 0.2.



Figure A.131. Gulf of Maine Atlantic cod year class curves computed on ages 4-8 (red circles) log-transformed catch (commercial and recreational landigns and discards). The corresponding slope of each regression line is shown next to the year class label above each plot.



Figure A.132. Gulf of Maine Atlantic cod year class curves computed on ages 4-8 (red circles) log-transformed Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey abundance (numbers/tow) indices. The corresponding slope of each regression line is shown next to the year class label above each plot.



Figure A.133. Gulf of Maine Atlantic cod year class curves computed on ages 4-8 (red circles) log-transformed Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey abundance (numbers/tow) indices. The corresponding slope of each regression line is shown next to the year class label above each plot.



Figure A.134. Plots of the annual estimates of Gulf of Maine Atlantic cod total mortality (Z) as estimated from the year class curve analyses for total catch and Northeeast Fisheries Science Center (NEFSC) spring and fall bottom trawl surveys.



Figure A.135. Box plot distribution of the residuals fits to the Gulf of Maine Atlantic cod year class linear regression relationship by age from the total catch year class curve analysis.



Figure A.136. Box plot distribution of the residuals fits to the Gulf of Maine Atlantic cod year class linear regression relationship by age from the Northeast Fisheries Science Center (NEFSC) spring bottom trawl survey year class curve analysis.



Figure A.137. Box plot distribution of the residuals fits to the Gulf of Maine Atlantic cod year class linear regression relationship by age from the Northeast Fisheries Science Center (NEFSC) fall bottom trawl survey year class curve analysis.



Figure A.138. Summary of the impacts on the time series of spawning stock biomass resulting from the update of the SAW 53 Gulf of Maine cod ASAP model with new data. In each plot, the SAWQ 53 model results are shown by a dashed line with the model results based on the updated data input shown by a solid black line. The solid grey line indicates the model results from the previous step such that the impacts can be understood not only compared to the SAW 53 model, but also to the previous step.



Figure A.139. Summary of the impacts on the time series of fishing mortality (age 5) resulting from the update of the SAW 53 Gulf of Maine Atlantic cod ASAP model with new data. In each plot, the SAWQ 53 model results are shown by a dashed line with the model results based on the updated data input shown by a solid black line. The solid grey line indicates the model results from the previous step such that the impacts can be understood not only compared to the SAW 53 model, but also to the previous step.



Figure A.140. Summary of the impacts on the time series of age 1 recruitment resulting from the update of the SAW 53 Gulf of Maine Atlantic cod ASAP model with new data. In each plot, the SAWQ 53 model results are shown by a dashed line with the model results based on the updated data input shown by a solid black line. The solid grey line indicates the model results from the previous step such that the impacts can be understood not only compared to the SAW 53 model, but also to the previous step.



Figure A.141. Summary of the Mohn's rho values (dots) and minimum and maximum observed relative difference resulting from a five year retrospective peel for the eight model runs considered in the update of the SAW 53 Gulf of Maine Atlantic cod assessment model.



Figure A.142. ASAP BASE model retrospective patterns for the Gulf of Maine Atlantic cod SAW53 model (SAW53\_BASE), SAW 53 model after application of revised discard mortality rates (SAW53\_B2), updated SAW 55 base model (SAW55\_BASE) and the SAW 55 base model under an assumption of 100% discard mortality (SAW55\_BASE\_100MORT). The black circles indicate the Mohn's rho value based on a five year retrospective peel.



Figure A.143. Estimates of Gulf of Maine Atlantic cod spawning stock biomass (top), average age 5 fishing mortality (middle) and age 1 recruitment (bottom) from the 100-plus ASAP sensitivity runs. The results of the SAW55\_BASE model are shown by a solid black line. A full description of the major sensitivity runs that were conducted can be found in Appendix A.6.



Figure A.144. ASAP model residuals for the fits to the fishery catch-at-age of Gulf of Maine Atlantic cod for four different 2-selectivity block models. The models vary by the transition year between blocks 1 and 2 (i.e., year in which block 2 begins). In all sensitivity runs the transition year is indicated by the model suffix; for the SAW55\_BASE model block 2 begins in 1991.



Figure A.145. Model estimated Gulf of Maine Atlantic cod selectivity at age for the Massachusetts Department of Marine Fisheries (MADMF) spring survey based on ASAP model explorations of fitting the survey using both parametric (double logistic, SAW55\_BASE) and non-parametric (at-age, all other models) approaches.



Figure A.146. Residual plots from the fitting of Massachusetts Department of Marine Fisheries (MADMF) spring survey Gulf of Maine Atlantic cod indices at age from ASAP model explorations using both parametric (double logistic, SAW55\_BASE) and non-parametric (at-age, all other models) approaches.



Figure A.147. ASAP model residuals for the fits to the fishery catch-at-age of Gulf of Maine Atlantic cod for six different 3-selectivity block models.



Figure A.148. ASAP estimated fishery selectivities for Gulf of Maine Atlantic cod from six different 3-selectivity block models.



Figure A.149. Response of the model objective function to profiling over a range of Gulf of Maine cod natural mortality values. Four different models configurations are explored: (1) 1982-2011, (2) 1982-2002, (3) 2003-2011, and (4) 1982-2011 under assumption of 100% discard mortality.



Figure A.150. Time series of natural mortality used in the Gulf of Maine cod natural mortality ramp assessment models.



Figure A.151. Gulf of Maine Atlantic cod fishery selectivity blocks for block 1 (1982-1988), block 2 (1989-2004) and block 3 (2005-2011) estimated by sensitivity runs of the ASAP SAW55\_3BLOCK\_BASE model.



Figure A.152. Gulf of Maine Atlantic cod fishery selectivity blocks for block 1 (1982-1988), block 2 (1989-2004) and block 3 (2005-2011) estimated by sensitivity runs of the ASAP SAW55\_3BLOCK\_BASE\_DOME model.



Figure A.153. Gulf of Maine Atlantic cod spawning stock biomass, age 5 fishing mortality and age 1 recruitment estimated by sensitivity runs of the ASAP SAW55\_3BLOCK\_BASE model.



Figure A.154. Gulf of Maine Atlantic cod spawning stock biomass, age 5 fishing mortality and age 1 recruitment estimated by sensitivity runs of the ASAP SAW55\_3BLOCK\_BASE\_DOME model.



Figure A.155. Model retrospective patterns for sensitivity runs of the Gulf of Maine Atlantic ASAP SAW55\_3BLOCK\_BASE model. The black circles indicates the Mohn's rho value based on a five year retrospective peel.



Figure A.156. Model retrospective patterns for sensitivity runs of the Gulf of Maine Atlantic ASAP SAW55\_3BLOCK\_BASE\_DOME model. The black circles indicate the Mohn's rho value based on a five year retrospective peel.



Figure A.157. Comparison of the Gulf of Maine Atlantic cod spawning stock biomass, age 5 fishing mortality and age 1 recruitment from the ASAP SAW55\_3BLOCK\_BASE and SAW55\_3BLOCK\_BASE DOME models.


Figure A.158. Comparison of fishery (catch) and natural mortality removals under the  $M_{0.2}$  (SAW55\_3BLOCK\_BASE) and  $M_{Ramp}$  (SAW55\_3BLOCK\_BASE\_M\_SPLIT) models. Fishery removals are shown using both the revised discard mortality assumptions and the 100% discard mortality assumption.

Fleet 1 Catch (Catch)



Figure A.159. ASAP SAW55\_3BLOCK\_BASE model fit to the total Gulf of Maine Atlantic cod fishery catch (Fleet 1).



Figure A.160. ASAP SAW55\_3BLOCK\_BASE model comparison of input effective sample size versus the model estimated effective sample size for the Gulf of Maine Atlantic cod fishery catch.



Figure A.161.a. Comparison of the ASAP SAW55\_3BLOCK\_BASE estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.



Figure A.161.b. Comparison of the ASAP SAW55\_3BLOCK\_BASE estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.



Figure A.161.c. Comparison of the ASAP SAW55\_3BLOCK\_BASE estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.

Catch



Age Comp Residuals for Catch by Fleet 1 (Catch)

Figure A.162. ASAP SAW55\_3BLOCK\_BASE model fit residuals for the fishery (Fleet 1) catch-at-age of Gulf of Maine Atlantic cod.







Year

Figure A.163. ASAP SAW55\_3BLOCK\_BASE predicted mean age of Gulf of Maine Atlantic cod in the fishery catch (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.164. Gulf of Maine Atlantic cod fishery selectivity blocks for block 1 (1982-1989), block 2 (1990-2004) and block 3 (2005-2011) estimated by the ASAP SAW55\_3BLOCK\_BASE model.



## Index 1 (NEFSCspring)

Figure A.165. ASAP SAW55\_3BLOCK\_BASE model fit to the NEFSC Gulf of Maine Atlantic cod spring (Index 1) survey.



Figure A.166. ASAP SAW55\_3BLOCK\_BASE model comparison of input effective sample size versus the model estimated effective sample size for the NEFSC spring (Index 1) Gulf of Maine Atlantic cod index.



Age Comp Residuals for Index 1 (NEFSCspring)

Figure A.167. ASAP SAW55\_3BLOCK\_BASE model fit residuals for the NEFSC spring survey (Index 1) Gulf of Maine Atlantic cod age composition.







Figure A.168. ASAP SAW55\_3BLOCK\_BASE predicted mean age of Gulf of Maine Atlantic cod in the NEFSC spring (Index 1) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.169. ASAP SAW55\_3BLOCK\_BASE model fit to the NEFSC fall (Index 2) survey Gulf of Maine Atlantic cod index.

372



Figure A.170. ASAP SAW55\_3BLOCK\_BASE model comparison of input effective sample size versus the model estimated effective sample size for the NEFSC fall (Index 2) survey Gulf of Maine Atlantic cod index.



Age Comp Residuals for Index 2 (NEFSCfall)

Figure A.171. ASAP SAW55\_3BLOCK\_BASE model fit residuals for the NEFSC fall survey (Index 2) Gulf of Maine Atlantic cod age composition.



Years



Figure A.172. ASAP SAW55\_3BLOCK\_BASE predicted mean age of Gulf of Maine Atlantic cod in the NEFSC fall (Index 2) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).





Figure A.173. ASAP SAW55\_3BLOCK\_BASE model fit to the MADMF spring (Index 3) survey Gulf of Maine Atlantic cod index.



Figure A.174. ASAP SAW55\_3BLOCK\_BASE model comparison of input effective sample size versus the model estimated effective sample size for the MADMF spring (Index 3) survey Gulf of Maine Atlantic cod index.



Age Comp Residuals for Index 3 (MAspring)

Figure A.175. ASAP SAW55\_3BLOCK\_BASE model fit residuals for the MADMF spring survey (Index 3) Gulf of Maine Atlantic cod age composition.



Years





Figure A.176. ASAP SAW55\_3BLOCK\_BASE predicted mean age of Gulf of Maine Atlantic cod in the MADMF spring (Index 3) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.177. Gulf of Maine Atlantic cod selectivity-at-age for the NEFSC spring (Index 1), fall (Index 2) and MADMF spring (Index 3) surveys from the ASAP SAW55\_3BLOCK\_BASE model.



Figure A.178. Gulf of Maine Atlantic cod survey catchability, *q*, for the NEFSC spring (Index 1), fall (Index 2) and MADMF spring (Index 3) surveys from the ASAP SAW55\_3BLOCK\_BASE model.



## q Retro for NEFSCspring Index

Figure A.179. Retrospective changes in the NEFSC spring survey catchability estimates, q, as years are removed from the ASAP SAW55\_3BLOCK\_BASE model.



## q Retro for NEFSCfall Index

Figure A.180. Retrospective changes in the NEFSC fall survey catchability estimates, *q*, as years are removed from the ASAP SAW55\_3BLOCK\_BASE model.



## q Retro for MAspring Index

Figure A.181. Retrospective changes in the MADMF spring survey catchability estimates, q, as years are removed from the ASAP SAW55\_3BLOCK\_BASE model.



q Retro for NEFSCspring Index

Figure A.182. Retrospective changes in the NEFSC spring survey catchability estimates, q, as years are removed from the ASAP SAW55\_3BLOCK\_BASE\_1982\_2002 model.







Figure A.183. ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB) and fishing mortality ( $F_{full}$  = fully recruited fishing mortality,  $F_{report}$  = fishing mortality on age 5).



Figure A.184. Comparison of ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine Atlantic cod January 1 biomass after application of maturity ogive (SSB) and fleet selectivity ogives (exploitable).



Year

Figure A.185. Coeffecients of variation (CV) for the ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB), average fishing mortality ( $F_{report}$  = age 5 fishing mortality) and age 1 recruitment.



Figure A.186. ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine cod spawning stock biomass (SSB; solid blue line) and lagged age 1 recruitment (light blue bars).



Figure A.187. ASAP SAW55\_3BLOCK\_BASE estimated Gulf of Maine Atlantic cod age 1 recruitment and recruitment residuals from the geometric mean.



SSB

Figure A.188. Scatterplot of ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB) versus recruitment at age 1 (000s). The symbol for each observation is the last two digits of the year (e.g., 88 indicated age 1 estimates of the 1987 year class). The most recent recruitment estimate is highlighted by an orange circle.



Year

Figure A.189. ASAP SAW55\_3BLOCK\_BASE model estimates of Gulf of Maine Atlantic cod numbers-at-age in absolute (top) numbers (000s) and relative (bottom) terms.



Figure A.190. Trace of MCMC chains for Gulf of Maine Atlantic cod 1982 and 2011 spawning stock biomass, showing good mixing (ASAP SAW55\_3BLOCK\_BASE model). Each chain had initial length of 1,000,000 and was thinned at a rate of one out of every 1000<sup>th</sup> resulting in a final chain length of 1000.



Figure A.191. Trace of MCMC chains for Gulf of Maine Atlantic cod 1982 and 2011 fishing mortality at age 5 (Freport), showing good mixing (ASAP SAW55\_3BLOCK\_BASE model). Each chain had initial length of 1,000,000 and was thinned at a rate of one out of every 1000<sup>th</sup> resulting in a final chain length of 1000.


Figure A.192. Autocorrelation within the 1982 and 2011 Gulf of Maine Atlantic cod spawning stock biomass (SSB) MCMC chains from the ASAP SAW55\_3BLOCK\_BASE model.



Figure A.193. Autocorrelation within the 1982 and 2011 Gulf of Maine Atlantic cod fishing mortality at age 5 (Freport) MCMC chains from the ASAP SAW55\_3BLOCK\_BASE model.



Figure A.194. 90% probability interval for Gulf of Maine Atlantic cod spawning stock biomass (SSB) from the ASAP SAW55\_3BLOCK\_BASE model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is showin in the thin green line with filled triangles.



Figure A.195. MCMC distribution of Gulf of Maine Atlantic cod spawning stock biomass in 1982 and 2011 estimated from the ASAP SAW55\_3BLOCK\_BASE model. The model point estimate is indicated by the dashed red line.



Figure A.196. 90% probability interval for Gulf of Maine Atlantic fully recruited fishing mortality (Full F) from the ASAP SAW55\_3BLOCK\_BASE model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is showin in the thin green line with filled triangles.



Figure A.197. MCMC distribution of Gulf of Maine Atlantic cod fully recruited fishing mortality (Full F) in 1982 and 2011 estimated from the ASAP SAW55\_3BLOCK\_BASE model. The model point estimate is indicated by the dashed red line.

Fleet 1 Catch (Catch)



Figure A.198. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit to the total Gulf of Maine Atlantic cod fishery catch (Fleet 1).



Figure A.199. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model comparison of input effective sample size versus the model estimated effective sample size for the Gulf of Maine Atlantic cod fishery catch.



Figure A.200.a. Comparison of the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.



Figure A.200.b. Comparison of the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.



Figure A.200.c. Comparison of the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT estimates of Gulf of Maine Atlantic cod proportion-at-age in the fishery to the data estimates.

Catch



Age Comp Residuals for Catch by Fleet 1 (Catch)

Figure A.201. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit residuals for the fishery (Fleet 1) catch-at-age of Gulf of Maine Atlantic cod.



Figure A.202. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT predicted mean age of Gulf of Maine Atlantic cod in the fishery catch (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.203. Gulf of Maine Atlantic cod fishery selectivity blocks for block 1 (1982-1989), block 2 (1990-2004) and block 3 (2005-2011) estimated by the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model.

Index 1 (NEFSCspring)



Figure A.204. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit to the NEFSC Gulf of Maine Atlantic cod spring (Index 1) survey.



Figure A.205. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model comparison of input effective sample size versus the model estimated effective sample size for the NEFSC spring (Index 1) Gulf of Maine Atlantic cod index.



Age Comp Residuals for Index 1 (NEFSCspring)

Figure A.206. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit residuals for the NEFSC spring survey (Index 1) Gulf of Maine Atlantic cod age composition.



Figure A.207. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT predicted mean age of Gulf of Maine Atlantic cod in the NEFSC spring (Index 1) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.208. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit to the NEFSC fall (Index 2) survey Gulf of Maine Atlantic cod index.



Figure A.209. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model comparison of input effective sample size versus the model estimated effective sample size for the NEFSC fall (Index 2) survey Gulf of Maine Atlantic cod index.



Age Comp Residuals for Index 2 (NEFSCfall)

Figure A.210. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit residuals for the NEFSC fall survey (Index 2) Gulf of Maine Atlantic cod age composition.



Figure A.211. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT predicted mean age of Gulf of Maine Atlantic cod in the NEFSC fall (Index 2) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.212. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit to the MADMF spring (Index 3) survey Gulf of Maine Atlantic cod index.



Figure A.213. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model comparison of input effective sample size versus the model estimated effective sample size for the MADMF spring (Index 3) survey Gulf of Maine Atlantic cod index.

418



## Age Comp Residuals for Index 3 (MAspring)

Figure A.214. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model fit residuals for the MADMF spring survey (Index 3) Gulf of Maine Atlantic cod age composition.



Figure A.215. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT predicted mean age of Gulf of Maine Atlantic cod in the MADMF spring (Index 3) survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure A.216. Gulf of Maine Atlantic cod selectivity-at-age for the NEFSC spring (Index 1), fall (Index 2) and MADMF spring (Index 3) surveys from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model.



Figure A.217. Gulf of Maine Atlantic cod survey catchability, *q*, for the NEFSC spring (Index 1), fall (Index 2) and MADMF spring (Index 3) surveys from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model.



Figure A.218. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB) and fishing mortality ( $F_{full}$  = fully recruited fishing mortality,  $F_{report}$  = fishing mortality on age 5).



Figure A.219. Comparison of ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine Atlantic cod January 1 biomass after application of maturity ogive (SSB) and fleet selectivity ogives (exploitable).



Figure A.220. Coeffecients of variation (CV) for the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB), average fishing mortality ( $F_{report}$  = age 5 fishing mortality) and age 1 recruitment.



Figure A.221. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine cod spawning stock biomass (SSB; solid blue line) and lagged age 1 recruitment (light blue bars).



Figure A.222. Scatterplot of ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine Atlantic cod spawning stock biomass (SSB) versus recruitment at age 1 (000s). The symbol for each observation is the last two digits of the year (e.g., 88 indicated age 1 estimates of the 1987 year class). The most recent recruitment estimate is highlighted by an orange circle.



Figure A.223. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT estimated Gulf of Maine Atlantic cod age 1 recruitment and recruitment residuals from the geometric mean.



Figure A.224. ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model estimates of Gulf of Maine Atlantic cod numbers-at-age in absolute (top) numbers (000s) and relative (bottom) terms.



Figure A.225. Trace of MCMC chains for Gulf of Maine Atlantic cod 1982 and 2011 spawning stock biomass, showing good mixing (ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model). Each chain had initial length of 100,000 and was thinned at a rate of one out of every 1000<sup>th</sup> resulting in a final chain length of 1000.


Figure A.226. Trace of MCMC chains for Gulf of Maine Atlantic cod 1982 and 2011 fishing mortality at age 5 (Freport), showing good mixing (ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model). Each chain had initial length of 100,000 and was thinned at a rate of one out of every 1000<sup>th</sup> resulting in a final chain length of 1000.



Figure A.227. Autocorrelation within the 1982 and 2011 Gulf of Maine Atlantic cod spawning stock biomass (SSB) MCMC chains from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model.



Figure A.228. Autocorrelation within the 1982 and 2011 Gulf of Maine Atlantic cod fishing mortality at age 5 (Freport) MCMC chains from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model.



Figure A.229. 90% probability interval for Gulf of Maine Atlantic cod spawning stock biomass (SSB) from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is showin in the thin green line with filled triangles.



Figure A.230. MCMC distribution of Gulf of Maine Atlantic cod spawning stock biomass in 1982 and 2011 estimated from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model. The model point estimate is indicated by the dashed red line.



Figure A.231. 90% probability interval for Gulf of Maine Atlantic fully recruited fishing mortality (Full F) from the ASAP SAW55\_3BLOCK\_BASE\_M\_SPLIT model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is showin in the thin green line with filled triangles.



Figure A.232. MCMC distribution of Gulf of Maine Atlantic cod fully recruited fishing mortality (Full F) in 1982 and 2011 estimated from the ASAP SAW55\_3BLOCK\_BASE model. The model point estimate is indicated by the dashed red line.



Figure A.233. Northern shrimp landings (mt) between 1958 and 1994.



Figure A.234. Model retrospective patterns for sensitivity runs of the Gulf of Maine Atlantic ASAP SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH, and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH models. The black circles indicates the Mohn's rho value based on a five year retrospective peel.



Figure A.235. Comparison of the Gulf of Maine Atlantic cod spawning stock biomass, fully recruited fishing mortality and age 1 recruitment from the ASAP SAW55\_3BLOCK\_BASE, SAW55\_3BLOCK\_BASE\_M\_SPLIT, SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH, and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH models.



Figure A.236. Estimated Beverton Holt stock recruitment relationships for the ASAP SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH, and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH models.



Figure A.237. Impacts of profiling over the Beverton and Holt steepness on the reference point estimates for the ASAP SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH (top four plots), and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH (bottom four plots) models.



Figure A.238. Impacts of profiling over the Beverton and Holt steepness parameter on estimates of spawning stock biomass, fishing mortality and recruitment for the ASAP SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH (top six plots), and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH (bottom six plots) models.



Figure A.239. Impacts of profiling over the Beverton and Holt steepness on stock status for the ASAP SAW55\_3BLOCK\_BASE\_1932\_F2N1\_NORPIOR\_BH (top plot), and SAW55\_3BLOCK\_BASE\_M\_SPLIT\_1932\_F2N1\_NORPIOR\_BH (bottom plot) models.



Figure A.240. Comparison of the Gulf of Maine Atlantic cod spawning stock biomass, fishing mortality and age 1 recruitment estimated by the ASAP (1982 start) and SCAA (1932 start) models with assumptions of constant natural mortality, M, of 0.2 and a ramped *M* changing from 0.2 to 0.4.



Figure A.241. Comparison of estimates of average spawning stock biomass (SSB), January 1 stock numbers, January 1 stock biomass, and fishing mortality from previous Gulf of Maine Atlantic cod stock assessments including estimates from the ASAP SAW55\_3BLOCK\_BASE (M = 0.2) and SAW55\_3BLOCK\_BASE\_M\_SPLIT (M-ramp) models.\*Note that the ages included in the average F calculation are not constant across assessments.



**Replacement Lines Using Recent Productivity** 

Figure A.242. Comparison Gulf of Maine Atlantic cod replacement lines under a range of percent spawner per recruit values based on an assumption of M = 0.2 (based on SAW55\_3BLOCK\_BASE model). The most recent ten years of recruitment observations (2001-2010) are highlighted green.



Figure A.243. Time series plot of the Gulf of Maine Atlantic cod fully selected fishing mortality/2011  $F_{MSY}$  ratio relative to the spawning stock biomass/2011  $SSB_{MSY}$  ratio from 1982 to 2011. The 2011 data point is indicated by a black star. Results are shown for both the M = 0.2 (top) and *M*-ramp (bottom) models.



Figure A.244. Trends in Gulf of Maine cod SSB (top row), fully recruited fishing mortality (middle row) and catch (bottom row) during 2000 – 2015; column headers indicate 'true' state of nature; cells provide trend in indicator under 'true' state of nature when catch during projection period (based on 75%  $F_{MSY}$  is correctly specified (black) and mis-specified (red: ASAP, 1982, M = 0.2; blue: ASAP, 1982, M-ramp (project at M = 0.2); green: ASAP, 1982, M-ramp (project at M = 0.4); MSY proxy reference points indicated in dashed line on each plot.

#### APPENDICES

Appendix A.1. List of 55<sup>th</sup> Stock Assessment Workshop (SAW 55) Working Group (WG) participants

| Participant Last Name | Participant First Name | Affiliation                           | SAW 55 WG -<br>Data Meeting | SAW 55 WG -<br>Modeling<br>Meeting | SAW 55 WG -<br>BRP and<br>Modeling<br>Meeting | SAW 55 WG -<br>Follow up BRP<br>and Reports<br>Organization |
|-----------------------|------------------------|---------------------------------------|-----------------------------|------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| Alade                 | Larry                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Blaylock              | Jessica                | NEFSC                                 |                             |                                    |                                               |                                                             |
| Brazer                | Eric                   | CCCHFA                                |                             |                                    |                                               |                                                             |
| Brooks                | Liz                    | NEFSC                                 |                             |                                    |                                               |                                                             |
| Butterworth           | Doug                   | UCT                                   |                             |                                    |                                               |                                                             |
| Cadrin                | Steve                  | SMAST                                 |                             |                                    |                                               |                                                             |
| Clark                 | Don                    | DFO                                   |                             |                                    |                                               |                                                             |
| Col                   | Laurel                 | NEFSC                                 |                             |                                    |                                               |                                                             |
| Correia               | Steve                  | MA DMF                                |                             |                                    |                                               |                                                             |
| Crawford              | Jud                    | Pew Charitable Trusts                 |                             |                                    |                                               |                                                             |
| Curti                 | Kiersten               | NEFSC                                 |                             |                                    |                                               |                                                             |
| Dean                  | Micah                  | MA DMF                                |                             |                                    |                                               |                                                             |
| Deroba                | Jon                    | NEFSC                                 |                             |                                    |                                               |                                                             |
| Dority                | Aaron                  | Penobscot East                        |                             |                                    |                                               |                                                             |
| Fairbrother           | Alison                 | Public Trust Project                  |                             |                                    |                                               |                                                             |
| Giacalone             | Vito                   | Northeast Seafood Coalition           |                             |                                    |                                               |                                                             |
| Hart                  | Dvora                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Hendrickson           | Lisa                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Hogan                 | Fiona                  | NEFMC                                 |                             |                                    |                                               |                                                             |
| King                  | Jeremy                 | MA DMF                                |                             |                                    |                                               |                                                             |
| Legault               | Chris                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Link                  | Jason                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Miller                | Tim                    | NEFSC                                 |                             |                                    |                                               |                                                             |
| Nieland               | Julie                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Nies                  | Tom                    | NEFMC                                 |                             |                                    |                                               |                                                             |
| Nitschke              | Paul                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| O'Boyle               | Robert                 | Beta Scientific Consulting (WG Chair) |                             |                                    |                                               |                                                             |
| O'Brien               | Loretta                | NEFSC (GBK cod assessment lead)       |                             |                                    |                                               |                                                             |
| Odell                 | Jackie                 | Northeast Seafood Coalition           |                             |                                    |                                               |                                                             |
| Palmer                | Michael                | NEFSC (GOM cod assessment lead)       |                             |                                    |                                               |                                                             |
| Pol                   | Mike                   | MADMF                                 |                             |                                    |                                               |                                                             |
| Rago                  | Paul                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Raymond               | Maggie                 | AFM                                   |                             |                                    |                                               |                                                             |
| Richardson            | David                  | NEFSC - Naragansett                   |                             |                                    |                                               |                                                             |
| Serchuk               | Fred                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Shepherd              | Gary                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Sherman               | Sally                  | ME DMR                                |                             |                                    |                                               |                                                             |
| Sosebee               | Kathy                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Terceiro              | Mark                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Traver                | Michelle               | NEFSC                                 |                             |                                    |                                               |                                                             |
| Vecchio               | Victor                 | NERO                                  |                             |                                    |                                               |                                                             |
| Wang                  | Yanjun                 | Fisheries and Oceans Canada           |                             |                                    |                                               |                                                             |
| Waring                | Gordon                 | NEFSC                                 |                             |                                    |                                               |                                                             |
| Weinberg              | James                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Wigley                | Susan                  | NEFSC                                 |                             |                                    |                                               |                                                             |
| Wood                  | Tony                   | NEFSC                                 |                             |                                    |                                               |                                                             |
| Zemeckis              | Doug                   | SMAST                                 |                             |                                    |                                               |                                                             |

Note: participants of at least one day of a working group meeting are listed

[SAW55 Editor's Note: The SARC-55 review panel <u>did</u> <u>not recommend</u> adopting the GOM cod Statistical Catch-at-Age (SCAA) assessment results that are in Appendices A.2 – A.5. These appendices are included in this report to document and demonstrate the work that was done by the SAW Working Group for the December 2012 peer review. ]

Appendix A.2. Preferred Statistical Catch-at-Age Assessments of Gulf of Maine Cod, November 2012.

### Introduction

This Appendix summarizes the development of the Statistical Catch-at-Age (SCAA) methodology applied to Gulf of Maine cod as presented to the NEFMC SSC in March 2012 (Butterworth and Rademeyer 2012) and further refined during deliberations at SAW/SARC 55 Working Group meetings held at Woods Hole over 15-19 October and 30 October-2 November 2012. It also summarises the process leading to the authors' choice of their "preferred" variant of the approach at this time. The primary reason for adopting the SCAA methodology is that it allows age-based assessments to be extended to cover a longer period without, for example, requiring catch-at-age data to be available for every year, and thus tends to provide the enhanced contrast desirable for more precise estimates of Biological Reference Points (BRPs) related to MSY.

The text first outlines the methodology used, and then provides estimates for current stock status and BRPs for a set of four final assessments which cross two factors to which results are particularly sensitive:

- Natural mortality: M = 0.2 and time invariant, or ramping linearly from a constant 0.2 to a constant 0.4 yr<sup>-1</sup> over the period from 1988 to 2003 (*M* ramp).
- Stock-recruitment functional form: Ricker or Beverton-Holt (BH).

It concludes with a summary of the results as they relate to the SAW/SARC55 TORs.

## Methodology

The algebraic details of the methods used for the SCAA assessments, BRP estimation and future projections are set out in Appendix A3.

For the SCAA assessments, there are a number of factors for which choices amongst different options (as detailed in Appendix A3) may be made. The options chosen for the assessments reported here are specified (where this is relevant) in **bold** at the end of each section of Appendix A3. In broad terms, the primary reasons underlying these choices

were AIC-based selection or lower variance of estimates. However in cases where these criteria did not lead to clear-cut guidance (e.g. domes in selectivity) and/or the impact on results was small (e.g. refining of the *Bigelow-Albatross* calibration function within the assessment) relative to factors such as natural mortality or stock-recruitment function choice, the choices made reflect a consensus agreed for practical purposes during the recent Working Group meetings referenced above, rather than necessarily the options the authors' consider to be the most appropriate.

These choices have also been informed by extensive sensitivity tests reported in papers presented to those Working Group meetings, and reproduced here as Appendices A4 and  $A5^1$ . These showed, for example, that the assumptions that have to be made about commercial selectivity for the period prior to 1982 for which commercial catch-at-age data are not available, have very little impact on estimates of past spawning biomass and recruitment trajectories, as well as on BRP estimates. Those tests included a comparison of internal (within assessment) compared to external estimation of stock-recruitment relationships and hence of BRPs, revealing that this made little difference to results. The former was preferred for the results that follow because it take full account of the variance-covariance structure of the estimates of recruitment and spawning biomass used to obtain these relationships (rather than only of the variance of recruitment estimates of their precision.

The choice of an early starting year for these assessments is to be consistent with the intent of using as long a time-series of data as possible to potentially better inform BRP estimates. The specific choice of 1932 is not critical, as the information content of available abundance index and size/age data extends back only to year-classes from about 1960. However commencing calculations earlier is convenient in allowing transient effects associated with uncertainties linked to the estimation of the components of the initial numbers-at-age vector to damp out before the abundance index and size/age information start having an influence on the results.

## Results

App. A2, Table A2.1 lists estimates of primary parameters and management-related quantities for Gulf of Maine cod for the four final assessments listed above, together with estimates for BRPs and projected future catches under a  $0.75F_{MSY}$  strategy evaluated on the basis set out in the final section of Appendix A3. BRP and current stock status estimates are summarized in App. A2, Table A2.2.

As the Ricker is preferred over the BH form of the stock-recruitment relationship for reasons given below, a number of the plots that follow show results for only the two Ricker assessments, rather than for all four variants. App. A2, Fig. A2.1 shows point estimate trajectories for spawning biomass, recruitment (0-year class strength) and fully

<sup>1</sup> An error was subsequently found in the code used to estimate the stock-recruitment function parameters in this paper. This does not change results qualitatively. The error has been corrected for the results reported in this paper.

selected fishing mortality for the four assessments, while App. A2, Fig. A2.2 repeats some of these plots for the two Ricker assessments with the addition of Hessian based estimates of precision, together with a similar plot for the input time-series of annual catches. Note that moving backwards in time, recruitment estimates are generally reasonably precise up to and including the low estimates of the mid- to late 1960s, but are poorly estimated prior to that, whereas the precision of the spawning biomass estimates reduces in the 1970s and reduces further before that in a manner that depends on the natural mortality assumptions made.

App. A2, Fig. A2.3 shows survey and commercial selectivity-at-age estimates for the two Ricker assessments, and App. A2, Fig. A2.4 the (mean-unbiased) stock-recruitment curves fitted internally, together with the associated "data" for all four assessments. For M = 0.2 assessments, higher recruitments tend to occur only for intermediate spawning biomass levels, whereas for M ramp assessments these are absent at the higher spawning biomass levels only, leading to the BH curve estimated hitting an upper bound for the steepness parameter h. These features have an impact on the estimates of the spawning biomass at MSY, which are indicated on each plot as well as reported in App. A2, Tables A2.1 and A2.2.

Diagnostics for the fits of the two Ricker assessments to the abundance indices and catchat-age and –at-length proportions for commercial catches and surveys (as relevant) are shown in App. A2, Figs A2.5 and A2.6, and Fig. A2.7 shows the retrospective analyses for these two cases.

### Preference amongst four final assessments

Some WG members prefer the Ricker to the BH based assessments based on the former's better fits to the "data". This is a reflection of the six or seven points at the highest spawning biomasses in App. A2, Fig. A2.4 which all correspond to the rather low but still reasonably precisely determined recruitments in the 1960s (see App. A2, Fig. A2.2). More quantitatively, Ricker is preferred over BH by 3 log-likelihood points for M = 0.2, and by a more substantial 8 points for M ramp (see App. A2, Table A2.1). Of course a continuum is possible across the BH to Ricker shapes and beyond. If the shape parameter  $\gamma$  of the modified Ricker (equation A3.6 of Appendix A3) is estimated, the result is greater than 1 in both cases, suggesting stronger doming than for the classical Ricker form, and increasing the log-likelihood points difference for BH to 5 for M = 0.2.

Of the two Ricker assessments, the authors prefer the *M* ramp case for three reasons:

- the indications from tagging data (see Working Group reports) that *M* is distinctly larger than 0.2, at least in the 2000s;
- an 11 point improvement in the log-likelihood (see App. A2, Table A2.1), reflecting mainly improved fits to the survey indices of abundance and to the stock-recruitment function; and
- a lesser retrospective pattern (see App. A2, Fig. A2.7).

# **Relationships to ToR**

## <u>*ToR 5*</u> (relating to assessment results)

The assessment results required are to be found in App. A2, Table A2.1 and Figs A2.1-3 and A2.5-7. No survey catchability q estimate exceeds 1. Model details are provided in Appendix A3.

Historical retrospective results are shown in App. A2, Fig. A2.8. They are referenced by the time at which they were developed, as they don't always correspond to the times of advice given in GARM/SAW exercises, and did not always correspond to the authors' preference at the time. For example the Ricker G option of August 2008 was the final documented "preference" in GARM III, but invoked increasing natural mortality at age rather than domed selectivity in response to the preference of the penultimate GARM panel that year – a preference with which the final GARM panel disagreed. The 2007 and March 2012 assessments estimate domed survey selectivity, but the other two shown force this to be asymptotically flat. There is a notable difference in post-1990 estimated trends between the two earlier and two later assessments in this set of four. The reason relates primarily to a revision of the catch (and discard) inputs with their associated age structure information in the intervening period. The earlier data were statistically incompatible with the joint assumptions of M = 0.2 and asymptotically flat survey selectivity. After revision of these data, the evidence against this option became much less clear-cut, and the size of any possible effect on assessment results also much less. ToRs 6 and 7 (relating to stock status and BRP estimates)

The requisite information here is provided in App. A2, Table A2.2. In terms of the authors' preferred assessment (Ricker and M ramp), at present the stock is not overfished and overfishing is not taking place. Estimates of the precision of BRP estimates may be found in App. A2, Table A2.1.

<u>*ToR 8*</u> (relating to projections)

Projected catches under a  $0.75F_{MSY}$  harvesting strategy are given in App. A2, Table A2.1. These and their implications are discussed further in the main text.

# References

- Butterworth DS and Rademeyer RA. 2008a. Statistical catch-at-age analysis vs. ADAPT-VPA: the case of Gulf of Maine cod. ICES Journal of Marine Science, 65. pp 1717-1732.
- Butterworth DS and Rademeyer RA. 2008b. Further SCAA/ASPM Assessments of Gulf of Maine Cod Including Data for 2007 and Exploring the Impact of Age-Dependence in Natural Mortality. GARM WP 1.Fb. 19pp.
- Butterworth DS and Rademeyer RA. 2012. An investigation of differences amongstSCAA and ASAP assessment (including Reference Point) estimates for Gulf ofMaine Cod. Document submitted to the March 2012 meeting of the New EnglandFisheriesManagementCouncilSSC.34pp.

### Appendix A.2 Tables

**App. A2, Table A2.1**: Estimates of abundance, MSY-related biological reference points (BRPs), and related quantities for the Gulf of Maine cod SCAA assessments for all combinations of two assessment factors: the form of the stock-recruitment relationship, and the time dependence of natural mortality M (see text for further details). Values in round parentheses are Hessian based CV's, while maximum gradient refers to the quantity reported with the ADMB estimation results. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment. Recruitment  $N_{y1,0}$  is in millions. Refer to Appendix A3 for definitions of some of the symbols used.

|                                                                 | Start year 1932 |                   |        | Start year 1932   |         |                                   |             |                   |
|-----------------------------------------------------------------|-----------------|-------------------|--------|-------------------|---------|-----------------------------------|-------------|-------------------|
|                                                                 | M=0.2           |                   |        | <i>M</i> ramp     |         |                                   |             |                   |
|                                                                 | Ricker BH       |                   | Ricker |                   | E       | BH                                |             |                   |
| -InL: overall                                                   | -2748           |                   | -2745  |                   | -2759   |                                   | -2751       |                   |
| -InL: survey                                                    | -24.2           |                   | -24.1  |                   | -29.8   |                                   | -31.8       |                   |
| -InL: comCAA                                                    | -786.7          |                   | -786.6 |                   | -783.4  |                                   | -783.3      |                   |
| -InL: survCAA                                                   | -1812.6         |                   | -1813  |                   | -1812.6 |                                   | -1812       |                   |
| -InL: survCAL                                                   | -160.7          |                   | -160.2 |                   | -161.6  |                                   | -160.2      |                   |
| -InL: RecRes                                                    | 32.8            |                   | 35.6   |                   | 25.0    |                                   | 31.8        |                   |
| -InL: Catch                                                     | 3.4             |                   | 3.0    |                   | 3.2     |                                   | 4.0         |                   |
| Maximum gradient                                                | 0.620*          |                   | 0.172* |                   | 0.000   |                                   | $1.544^{+}$ |                   |
| Ν <sub>γ1,0</sub>                                               | 31.40           | (0.66)            | 24.42  | (341.15)          | 5.51    | (1.39)                            | 18.28       | (497.47)          |
| $\phi$                                                          | 0.96            | (0.75)            | 0.72   | (383.39)          | 0.12    | (4.13)                            | 0.58        | (520.66)          |
| <b>B</b> <sup>sp</sup> <sub>2011</sub>                          | 14.51           | (0.05)            | 14.38  | (0.05)            | 13.73   | (0.05)                            | 12.74       | (0.05)            |
| B <sup>sp</sup> <sub>1982</sub>                                 | 22.12           | (0.17)            | 22.16  | (0.16)            | 21.55   | (0.15)                            | 21.64       | (0.14)            |
| B <sup>sp</sup> <sub>y1</sub>                                   | 4.45            | (1.61)            | 8.12   | (740.87)          | 44.16   | (2.32)                            | 10.49       | (870.98)          |
|                                                                 | q               | $\sigma_{ m Add}$ | q      | $\sigma_{ m Add}$ | q       | $\sigma_{\scriptscriptstyle Add}$ | q           | $\sigma_{ m Add}$ |
| NEFSC spring                                                    | 0.84            | 0.16              | 0.84   | 0.16              | 0.79    | 0.11                              | 0.79        | 0.11              |
| NEFSC fall                                                      | 0.67            | 0.10              | 0.68   | 0.10              | 0.64    | 0.12                              | 0.64        | 0.11              |
| MADMF spring                                                    | 0.22            | 0.30              | 0.22   | 0.30              | 0.15    | 0.24                              | 0.15        | 0.24              |
| К                                                               | 62.32           | (0.12)            | 193.02 | (0.22)            | 29.54   | (0.08)                            | 33.97       | (0.09)            |
| h                                                               | 2.62            | (0.14)            | 0.92   | (0.06)            | 1.15    | (0.17)                            | 0.98++      | (0.00)            |
| MSY                                                             | 12.84           | (0.08)            | 13.29  | (0.18)            | 7.17    | (0.14)                            | 5.51        | (0.09)            |
| F <sub>MSY</sub>                                                | 0.75            |                   | 0.31   |                   | 0.95    |                                   | 0.95        |                   |
| <b>B</b> <sup>sp</sup> <sub>MSY</sub>                           | 20.91           | (0.08)            | 46.31  | (0.18)            | 11.18   | (0.14)                            | 8.57        | (0.09)            |
| B <sup>sp</sup> <sub>MSY</sub> /K <sup>sp</sup>                 | 0.34            | (0.11)            | 0.24   | (0.05)            | 0.38    | (0.17)                            | 0.25        | (0.02)            |
| B <sup>sp</sup> <sub>2011</sub> /B <sup>sp</sup> <sub>MSY</sub> | 0.69            | (0.08)            | 0.31   | (0.18)            | 1.23    | (0.14)                            | 1.49        | (0.09)            |
| Projected catch:                                                |                 |                   |        |                   |         |                                   |             |                   |
| 2013                                                            | 8.423           |                   | 3.870  |                   | 5.803   |                                   | 5.066       |                   |
| 2014                                                            | 7.621           |                   | 4.336  |                   | 4.507   |                                   | 3.847       |                   |
| 2015                                                            | 8.424           |                   | 5.229  |                   | 5.020   |                                   | 4.041       |                   |

\* This occurs for the selectivity parameters for ages 3 and 4 in the Massachusetts survey. The selectivity is constrained not to increase with age, and the estimation in these cases hits this bound. + This occurs for a single selectivity parameter (age 4) for the period 1982-1988 of the commercial selectivity. ++ This steepness estimate is at its upper bound.

|                                                                        | Start yea      | ar 1932     | Start year 1932 |                |  |
|------------------------------------------------------------------------|----------------|-------------|-----------------|----------------|--|
|                                                                        | M =0           | 0.2         | <i>M</i> ramp   |                |  |
|                                                                        | Ricker         | BH          | Ricker          | ВН             |  |
| B <sup>sp</sup> <sub>MSY</sub>                                         | 20.91          | 46.31       | 11.18           | 8.57           |  |
| 1/2 B <sup>sp</sup> <sub>MSY</sub>                                     | 10.45          | 23.15       | 5.59            | 4.29           |  |
| MSY                                                                    | 12.84          | 13.29       | 7.17            | 5.51           |  |
| F <sub>MSY</sub>                                                       | 0.75           | 0.31        | 0.95            | 0.95           |  |
| 0.75 F <sub>MSY</sub>                                                  | 0.56           | 0.23        | 0.71            | 0.71           |  |
| <b>B</b> <sup>sp</sup> <sub>2011</sub>                                 | 14.51          | 14.38       | 13.73           | 12.74          |  |
| F 2011                                                                 | 0.52           | 0.53        | 0.61            | 0.66           |  |
| B <sup>sp</sup> <sub>2011</sub> /(1/2 B <sup>sp</sup> <sub>MSY</sub> ) | 1.39           | 0.62        | 2.46            | 2.97           |  |
| F 2011/ F MSY                                                          | 0.70           | 1.73        | 0.64            | 0.70           |  |
| Status                                                                 | Not overfished | Overfished  | Not overfished  | Not overfished |  |
| Status                                                                 | No overfishing | Overfishing | No overfishing  | No overfishing |  |

**App. A2, Table A2.2**: Biological Reference Points and current status for four SCAA assessments of Gulf of Maine cod.



**App. A2, Fig. A2.1**: Spawning biomass, recruitment (0-year-class strength) and fully selected fishing mortality trajectories for the two Ricker and two Beverton-Holt SCAA assessments.



App. A2, Fig. A2.2: Spawning biomass, recruitment and catch trajectories for the Ricker internal assessment, with the start in 1932, and with M = 0.2 (top row) and M ramp (bottom row) with CIs based on Hessian CVs and the assumption of distribution lognormality.



App. A2, Fig. A2.3: Pre-1982 commercial selectivities and the NEFSC survey selectivities for the Ricker internal assessment, with the start in 1932, and with M = 0.2 (top row) and M ramp (bottom row).



App. A2, Fig. A2.4a: Stock-recruitment curve and estimated recruitment for assessments starting in 1932 for the Ricker internal cases (top row), with M = 0.2 (left) and M ramp (right), and for the Beverton-Holt cases (bottom row), with M = 0.2 (left) and M ramp (right). Only values reasonably informed by the data (from 1960 onwards) are shown. Replacement lines are shown dashed; for the M ramp cases these correspond to the current M value of 0.4.



**App. A2, Fig. A2.4b**: Time series of stock-recruit residuals  $\varsigma_y$  (see equation A3.5 of Appendix A3) for the two Ricker and two Beverton-Holt assessments.



App. A2, Fig. A2.5a: Fits to the abundance indices (top row) and to the survey and commercial catch-at-age data for the Ricker internal assessment, with the start in 1932, and with M = 0.2. The second row plots compare the observed and predicted CAA as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



**App. A2, Fig. A2.5b**: Fits to the abundance indices (top row) and to the survey and commercial catch-at-age data for the Ricker internal assessment, with the start in 1932, and with *M* ramp. The second row plots compare the observed and predicted CAA as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A2, Fig. A2.6a: Fits to the survey catch-at-length data for the Ricker internal assessment, with the start in 1932, and with M = 0.2. The first row plots compare the observed and predicted CAL as averaged over all years for which data are available (the spikes correspond to minus and plus groups), while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A2, Fig. A2.6b: Fits to the survey catch-at-length data for the Ricker internal assessment, with the start in 1932, and with M ramp. The first row plots compare the observed and predicted CAL as averaged over all years for which data are available (the spikes correspond to minus and plus groups), while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A2, Fig. A2.7a: Retrospective analysis for the Ricker internal assessment, with the start in 1932 and M = 0.2.



**App. A2, Fig. A2.7b**: Retrospective analysis for the Ricker internal assessment, with the start 1932 and *M* ramp.


**App. A2, Fig. A2.8**: Comparison of spawning biomass and fishing mortality trajectories from previous SCAA assessment of Gulf of Maine cod, including "2007" (Reference Case of Butterworth and Rademeyer, 2008a), "Aug 2008" (Ricker G of Butterworth and Rademeyer, 2008b), "Mar 2012" (NBC2 of Butterworth and Rademeyer, 2012) and "Nov 2012" (Ricker, *M* ramp, this analysis). The fishing mortality shown is the fully selected fishing mortality, but this corresponds to different ages for the different assessments: ages 5 for "2007", 5 for "Aug 2008", 4 (pre 1991) or 5 (post 1990) for "Mar 2012" and 6+ for "Nov 2012". The fishing mortality plot for "2007" after 1995 is virtually identical to that for "Aug 2008", and hence is not readily evident over that period in the plot.

[SAW55 Editor's Note: The SARC-55 review panel <u>did</u> <u>not recommend</u> adopting the GOM cod Statistical Catch-at-Age (SCAA) assessment results that are in Appendices A.2 – A.5. These appendices are included in this report to document and demonstrate the work that was done by the SAW cod Working Group for the December 2012 peer review. ]

Appendix A.3. Algebraic details of the Statistical Catch-at-Age Model.

The text following sets out the equations and other general specifications of the Statistical Catch-at-Age (SCAA) assessment model applied to Gulf of Maine cod, followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is applied to minimize the total negative log-likelihood function to estimate parameter values (the package AD Model Builder<sup>TM</sup>, Otter Research, Ltd is used for this purpose).

Where options are provided under a particular section, the section concludes with a statement in **bold** as to which option was selected for the final assessment run selected.

# A3.1. Population dynamics

A3.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$N_{y+1,0} = R_{y+1} \tag{A3.1}$$

$$N_{y+1,a+1} = N_{y,a} e^{-Z_{y,a}} \qquad \text{for } 0 \le a \le M - 2 \tag{A3.2}$$

$$N_{y+1,m} = N_{y,m-1}e^{-Z_{y,m-1}} + N_{y,m}e^{-Z_{y,m}}$$
(A3.3)

where

 $N_{y,a}$  is the number of fish of age *a* at the start of year *y*,

 $R_y$  is the recruitment (number of 0-year-old fish) at the start of year y,

*m* is the maximum age considered (taken to be a plus-group).

 $Z_{y,a} = F_y S_{y,a} + M_a$  is the total mortality in year y on fish of age a, where

- $M_a$  denotes the natural mortality rate for fish of age *a*,
- $F_{y}$  is the fishing mortality of a fully selected age class in year y, and
- $S_{ya}$  is the commercial selectivity at age *a* for year *y*.

Note that for the "M ramp" scenario for which M increases linearly from 0.2 to 0.4 over

the period from 1988 to 2003, M is year dependent but this complication is omitted from the equations above to avoid clutter.

# A3.1.2. Recruitment

The number of recruits (i.e. new 0-year old) at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by either a modified Ricker or a standard or adjusted Beverton-Holt stock-recruitment relationship, allowing for annual fluctuation about the deterministic relationship.

For the modified Ricker:

$$R_{y} = \alpha B_{y}^{\text{sp}} \exp\left[-\beta \left(B_{y}^{\text{sp}}\right)^{\gamma}\right] e^{(\varsigma_{y} - (\sigma_{\text{R}})^{2}/2)}$$
(A3.4)

for the (standard) Beverton-Holt:

$$R_{y} = \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} e^{(\varsigma_{y} - (\sigma_{R})^{2}/2)}$$
(A3.5)

and for the adjusted Beverton-Holt:

$$R_{y} = \begin{cases} \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} & \text{if } B_{y}^{sp} \le B^{*} \\ \frac{\alpha B^{*}}{\beta + B^{*}} \exp\left(-\left(\frac{B_{y}^{sp} - B^{*}}{\sigma_{N}}\right)^{2}\right) & \text{if } B_{y}^{sp} > B^{*} \end{cases}$$
(A3.6)

where

 $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $B^*$  and  $\sigma_N$  are spawning biomass-recruitment relationship parameters,

 $\varsigma_y$  reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation  $\sigma_R$  (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.

 $B_{y}^{sp}$  is the spawning biomass at the start of year y, computed as:

$$B_{y}^{\rm sp} = \sum_{a=1}^{m} f_{a} w_{y,a}^{\rm strt} N_{y,a} e^{-Z_{y,a}/4}$$
(A3.7)

because spawning for the cod stock under consideration is taken to occur three months after the start of the year and some mortality has therefore occurred,

where

 $w_{y,a}^{\text{strt}}$  is the mass of fish of age *a* during spawning, and

 $f_a$  is the proportion of fish of age *a* that are mature.

Section A3.2.6 details the procedure adopted when recruitment is not assumed to be related to spawning biomass, at least internal to the assessment.

# For the final run, the modified Ricker, with $\gamma$ fixed to 1, has been used, i.e. the classical Ricker function.

## A3.1.3. Total catch and catches-at-age

The total catch by mass in year *y* is given by:

$$C_{y} = \sum_{a=1}^{m} w_{y,a}^{\text{mid}} C_{y,a} = \sum_{a=1}^{m} w_{y,a}^{\text{mid}} N_{y,a} S_{y,a} F_{y} \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(A3.8)

where

 $w_{y,a}^{\text{mid}}$  denotes the mass of fish of age *a* landed in year *y*,

 $C_{y,a}$  is the catch-at-age, i.e. the number of fish of age *a*, caught in year *y*,

The model estimate of survey index is computed as:

$$B_{y}^{\text{surv}} = \sum_{a=1}^{m} w_{y,a}^{\text{surv}} S_{a}^{\text{surv}} N_{y,a} e^{-Z_{y,a} T^{surv}/12}$$
(A3.9)

for biomass indices and

$$N_{y}^{\text{surv}} = \sum_{a=1}^{m} S_{a}^{\text{surv}} N_{y,a} e^{-Z_{y,a} T^{surv}/12}$$
(A3.10)

for numbers indices

### where

 $S_a^{surv}$  is the survey selectivity for age *a*, which is taken to be year-independent.

 $T^{surv}$  is the season in which the survey is taking place ( $T^{surv} = 1$  for spring surveys and  $T^{surv} = 2$  for fall surveys) and

 $T^{surv} = 3$  for fall surveys), and

 $w_{y,a}^{surv}$  denotes the mass of fish of age *a* from survey surv year *y*.

For the Massachusetts spring survey, the summation is taken from age 1 to age 6.

## The final run is fitted to numbers indices.

### A3.1.4. Initial conditions

For the first year  $(y_0)$  considered in the model, the numbers-at-age are estimated directly for ages 0 to  $a^{est}$ , with a parameter  $\phi$  mimicking recent average fishing mortality for ages above  $a^{est}$ , i.e.

$$N_{y_0,a} = N_{\text{start},a} \qquad \text{for } 0 \le a \le a^{est} \tag{A3.11}$$

and

$$N_{\text{start},a} = N_{\text{start},a-1}e^{-M_{a-1}}(1 - \phi S_{a-1}) \qquad \text{for } a^{est} < a \le m-1$$
(A3.12)

$$N_{\text{start},m} = N_{\text{start},m-1} e^{-M_{m-1}} (1 - \phi S_{m-1}) / (1 - e^{-M_m} (1 - \phi S_m))$$
(A3.13)

For the final run which starts in 1932 only the number for age 0 is estimated, with equation A3.12 applying from age 1.

## A3 B.2. The (penalised) likelihood function

The model can be fit to (a subset of) CPUE and survey abundance indices, and commercial and survey catch-at-age and catch-at-length data to estimate model parameters (which may include residuals about the stock-recruitment function, facilitated through the incorporation of a penalty function described below). Contributions by each of these to the negative of the (penalised) log-likelihood (-lnL) are as follows. Details related to fitting to CPUE series are not included below, as such series are not considered in the analyses of this paper.

## A3.2.1. Survey abundance data

The likelihood is calculated assuming that a survey biomass index is lognormally distributed about its expected value:

$$I_{y}^{surv} = \hat{I}_{y}^{surv} \exp\left(\varepsilon_{y}^{surv}\right) \quad \text{or} \quad \varepsilon_{y}^{surv} = \ell n\left(I_{y}^{surv}\right) - \ell n\left(\hat{I}_{y}^{surv}\right)$$
(A3.14)  
where

 $I_{v}^{surv}$  is the survey biomass index for survey surv in year y,

 $\hat{I}_{v}^{surv} = \hat{q}^{surv} \hat{B}_{v}^{surv}$  is the corresponding model estimate, where

 $\hat{q}^{surv}$  is the constant of proportionality (catchability) for the survey biomass series *surv*, and

$$\varepsilon_{y}^{surv}$$
 from  $N(0, (\sigma_{y}^{surv})^{2})$ .

The contribution of the survey biomass data to the negative of the log-likelihood function (after removal of constants) is then given by:

$$-\ell n L^{\text{survey}} = \sum_{surv} \sum_{y} \left\{ \ell n \left( \sqrt{\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2}} \right) + \left(\varepsilon_{y}^{surv}\right)^{2} / \left[ 2 \left(\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2} \right) \right] \right\}$$
(A3.15)

where

- $\sigma_y^{surv}$  is the standard deviation of the residuals for the logarithm of index *i* in year *y* (which is input), and
- $\sigma_{Add}^{surv}$  is the square root of the additional variance for survey biomass series *surv*, which is estimated in the model fitting procedure, with an upper bound of 0.5.

The catchability coefficient  $q^{surv}$  for survey biomass index *surv* is estimated by its maximum likelihood value:

$$\ell n \,\hat{q}^{surv} = 1/n_{surv} \sum_{y} \left( \ln I_{y}^{surv} - \ln \hat{B}_{y}^{surv} \right) \tag{A3.16}$$

## A3.2.3. Commercial catches-at-age

The contribution of the catch-at-age data to the negative of the log-likelihood function under the assumption of an "adjusted" lognormal error distribution is given by:

$$- \ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_{a}^{com} / \sqrt{p_{y,a}} \right) + p_{y,a} \left( \ln p_{y,a} - \ln \hat{p}_{y,a} \right)^{2} / 2 \left( \sigma_{a}^{com} \right)^{2} \right]$$
(A3.17)

where

 $p_{y,a} = C_{y,a} / \sum_{a'} C_{y,a'}$  is the observed proportion of fish caught in year y that are of age a,  $\hat{p}_{y,a} = \hat{C}_{y,a} / \sum_{a'} \hat{C}_{y,a'}$  is the model-predicted proportion of fish caught in year y that are of age a,

where

$$\hat{C}_{y,a} = N_{y,a} S_{y,a} F_y \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(A3.18)
and

 $\sigma_a^{com}$  is the standard deviation associated with the catch-at-age data, which is estimated in the fitting procedure by:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} p_{y,a} (\ln p_{y,a} - \ln \hat{p}_{y,a})^{2} / \sum_{y} 1}$$
(A3.19)

Evaluations in Butterworth and Rademeyer (2012) demonstrated the need for allowing for age dependence in  $\sigma_a^{com}$ .

Commercial catches-at-age are incorporated in the likelihood function using equation (A3.17), for which the summation over age a is taken from age  $a_{\text{minus}}$  (considered as a minus group) to  $a_{\text{plus}}$  (a plus group).

In application of this approach ages are often aggregated to avoid values of  $p_{y,a}$  or  $\hat{p}_{y,a}$  that are too small in the interests of estimation robustness. In this paper individual ages have been maintained between the selected minus and plus-groups to provide potential discrimination of different shapes for the selectivity functions at older ages in particular. This however does mean that there are certain cells for which  $p_{y,a}$  values are zero. That

does not cause any problems because the limit of  $p_{y,a}(\ln p_{y,a})^2$  as  $p_{y,a} \rightarrow 0$  is 0, so these terms can be omitted from the summation in equation B17. One could argue that they should nevertheless be included in the summations in equation B18, but exclusion seems more appropriate as the structural zero contributions then included would seem likely to bias the estimates of  $\hat{\sigma}_a^{com}$  downwards.

In addition to this "adjusted" lognormal error distribution, some computations use an alternative "sqrt(p)" formulation, for which equation A3.20 is modified to:

$$-\ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_{a}^{com} \right) + \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^{2} / 2 \left( \sigma_{a}^{com} \right)^{2} \right]$$
(A3.21)

and equation B21 is adjusted similarly:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^{2} / \sum_{y} 1}$$
(A3.22)

This formulation mimics a multinomial form for the error distribution by forcing a nearequivalent variance-mean relationship for the error distributions.

The final run uses "sqrt(p)" formulation for the error distribution of the commercial catches-at-age, survey catches-at-age and survey catches-at-length.

### A3.2.4. Survey catches-at-age

The survey catches-at-age are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an "adjusted" lognormal error distribution (equation (A19)) where:

 $p_{y,a}^{surv} = C_{y,a}^{surv} / \sum_{a'} C_{y,a'}^{surv}$  is the observed proportion of fish of age *a* in year *y* for survey surv,

 $\hat{p}_{y,a}^{suvv}$  is the expected proportion of fish of age *a* in year *y* in the survey surv, given by:

$$\hat{p}_{y,a}^{surv} = S_a^{surv} N_{y,a} e^{-Z_{y,a}T^{surv}/12} \bigg/ \sum_{a'=1}^{m} S_{a'}^{surv} N_{y,a'} e^{-Z_{y,a'}T^{surv}/12}$$
(A3.23)

For the Massachusetts spring survey, the summation is taken from age 1 to age 6.

## A3.2.5. Survey catches-at-length

In some runs, catches-at-length are also incorporated in the likelihood function. These data are incorporated in the similar manner as the catches-at-age. When the model is fit to catches-at-length, the predicted catches-at-age are converted to catches-at-length:

$$\hat{p}_{y,l}^{surv} = \sum_{a} \hat{p}_{y,a}^{surv} A_{a,l}^{strt}$$
(A3.24)

for the spring survey, and

$$\hat{p}_{y,l}^{surv} = \sum_{a}^{r} \hat{p}_{y,a}^{surv} A_{a,l}^{mid}$$
(A3.25)

for the fall survey,

where  $A_{a,l}^{strt}$  and  $\overline{A}_{a,l}^{mid}$  are the proportions of fish of age *a* that fall in the length group *l* (i.e.,  $\sum_{l} A_{a,l}^{strt} = 1$  and  $\sum_{l} A_{a,l}^{mid} = 1$  for all ages) at the beginning of the year and at the middle of the year respectively.

The matrices  $A_{a,l}^{strt}$  and  $A_{a,l}^{mid}$  are calculated under the assumption that length-at-age is normally distributed about a mean given by the von Bertalanffv equation, i.e.:

$$L_a^{strt} \sim N \left[ L_{\infty} \left( 1 - e^{-\kappa(a-t_o)} \right), \left( \theta_a^{strt} \right)^2 \right]$$
(A3.26)

$$L_a^{mid} \sim N \Big[ L_{\infty} \Big( 1 - e^{-\kappa(a+0.5-t_o)} \Big) \Big( \theta_a^{mid} \Big)^2 \Big]$$
(A3.27)  
for the fall survey

for the fall survey,

where  $\theta_a^{strt}$  and  $\theta_a^{mid}$  are the standard deviation of begin and mid-year length-at-age *a* respectively, which are modelled to be proportional to the expected length-at-age *a*, i.e.:  $\theta_a^{strt} = \beta \left[ L_{\infty} \left( 1 - e^{-\kappa(a-t_o)} \right) \right]^{\gamma}$ (A3.28)

and

$$\theta_a^{mid} = \beta \left[ L_{\infty} \left( 1 - e^{-\kappa (a + 0.5 - t_o)} \right) \right]^{\gamma}$$
(A3.29)

with  $\beta$  an estimable parameter and  $\gamma = 0.5$  (a value which was found to lead to reasonable fits to the data).

 $L_{\infty} = 150.93 \, cm$ ,  $\kappa = 0.11 \ yr^{-1}$ ,  $t_{0} = 0.13 \ yr$ ,

The following term is then added to the negative log-likelihood:

$$- \ln L^{\text{CAL}} = w_{\text{len}} \sum_{surv} \sum_{y} \sum_{l} \left[ \ln \left( \sigma_{\text{len}}^{surv} / \sqrt{p_{y,l}^{surv}} \right) + p_{y,l}^{surv} \left( \ln p_{y,l}^{surv} - \ln \hat{p}_{y,l}^{surv} \right)^2 / 2 \left( \sigma_{\text{len}}^{surv} \right)^2 \right]$$
(A3.30)

The  $w_{len}$  weighting factor may be set to a value less than 1 to downweight the contribution of the catch-at-length data (which tend to be positively correlated between adjacent length groups because the length distributions for adjacent ages overlap) to the overall negative log-likelihood compared to that of the CPUE data. The value used for  $w_{len}$  is 0.1, being roughly equivalent to the ratio of the number to length groups to the number of age groups considered. Instances of observed proportions of zero are dealt with in the same manner as for catches-at-age, as is the alternative "sqrt(p)" error distribution formulation.

## The final run incorporates these catch-at-length data and uses the "sqrt(p)" formulation.

A3.2.6. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be lognormally distributed and serially correlated. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) log-likelihood function is given by:

$$-\ell n L^{\text{pen}} = \sum_{y=y_1+1}^{y_2} \left[ \varepsilon_y^2 / 2\sigma_R^2 \right]$$
(A31)

where

$$\varepsilon_y$$
 from  $N(0, (\sigma_R)^2)$ ,  
 $\sigma_R$  is the standard deviation of the log-residuals, which is input.

Equation A3.31 is used when the stock-recruitment curve is estimated internally. In some analyses reported in this paper where BRP estimates are based on stock-recruitment curves estimated "externally" using the assessment outputs,, this "stock-recruitment" term is included for the last two years only, simply to stabilise these estimates which are not well determined by the other data. In these cases, the  $\varepsilon_{v}$  are calculated as the deviations from the mean log recruitment for the ten preceding years, i.e. recruitment estimates for 2010 and 2011 are shrunk towards the geometric mean recruitment over the preceding decade.

A3.2.7. Catches  

$$-\ell n L^{\text{Catch}} = \sum_{y} \left[ \frac{\ell n C_{y} - \ell n \hat{C}_{y}}{2\sigma_{\text{C}}^{2}} \right]$$
(A3.32)

where

- $C_{y}$  is the observed catch in year y,
- $\hat{C}_{y}$  is the predicted catch in year y (equation A3.8), and
- $\sigma_{\rm c}$  is the CV input: 0.4 for pre-1964 catches, 0.2 for catches between 1964 and 1981 and 0.05 for catches from 1982 onwards.

## A3.2.8 Incorporation of Bigelow vs Albatross survey calibration

The survey data provided are adjusted for the years 2009 to 2012 which were obtained from *Bigelow* surveys have been adjusted to "*Albatross* equivalents" through use of calibration factors estimated independently from paired tow experiments (Miller *et al.*, 2010). However the survey data before and after the switch of vessels also provide information on the calibration factors because they sample the same cohorts. Incorporation of this information in assessments in this paper has been effected by treating the estimates, with their variance-covariance matrix, as a form of "joint-prior" which is effectively updated in the penalised likelihood estimation when fitting the model. The process is as follows.

First *Bigelow* length frequency distributions are converted to *Albatross* equivalent length frequency distributions:

$$C_{y,l}^{surv,A} = C_{y,l}^{surv,B} / F_l$$
(A3.33)

where

 $C_{y,l}^{surv,B}$  is the measured catch-at-length for the *Bigelow* in year y for survey surv,

 $C_{y,l}^{surv,A}$  is the inferred catch-at-length for the *Albatross* equivalent in year y for survey surv.

 $F_l$  is the length-based calibration factor (*Bigelow/Albatross*),

The *Albatross* equivalent length distributions are then converted to age distributions:  

$$C_{y,a}^{surv,A} = \sum_{l} C_{y,l}^{surv,A} ALK_{y,a,l}^{surv}$$
(A3.34)

where

 $ALK_{y,a,l}^{surv}$  is the age-length key (proportion of fish of length *l* that have age *a*) in year *y* for survey *surv*.

Indices are then obtained from the Albatross equivalent age distributions as follows:

$$I_{y}^{surv,A} = \sum_{a} C_{y,a}^{surv,A} w_{y,a}^{surv}$$
(A3.35)  
for biomass indices and  
$$I_{y}^{surv,A} = \sum_{a} C_{y,a}^{surv,A}$$
(A3.36)  
for numbers indices,  
where

 $w_{y,a}^{surv}$  is the weight-at-age in year y for survey surv.

The calibration factor has four parameters, three of which are estimable and the other input:  $X_1$ =20cm,  $X_2$ ,  $F_1$  and  $F_2$ 

$$F_{l} = \begin{cases} F_{1} & \text{if } l \leq X_{1} \\ \frac{(F_{2} - F_{1})}{(X_{2} - X_{1})} l + \frac{(F_{1}X_{2} - F_{2}X_{1})}{(X_{2} - X_{1})} & \text{if } X1 < l < X_{2} \\ F_{2} & \text{if } l \geq X_{2} \end{cases}$$
(A3.37)

The following contribution is therefore added to the negative log-likelihood in the assessment:

$$-\ln L^{calib} = \frac{1}{2}\ln|\boldsymbol{\Sigma}| + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$
(A3.38)

where the parameters  $X_2$ ,  $F_1$  and  $F_2$  are components of the vector  $\boldsymbol{x}$ ,

 $\Sigma$  is the variance covariance matrix as estimated by Miller *et al.* (2010), and

 $\mu$  is a vector which contains the Miller *et al.* (2010) estimates of the parameters.

These estimates and the variance-covariance matrix are given in table A3.1 below:

# In the final run, the calibration parameters are fixed to those estimated by Miller *et al.* (2010).

**App. A3**, Table A3.1: Estimates and variance-covariance matrix for the calibration parameters (Miller, pers. commn).

| μ             | In(F 2)   | $ln(F_1-F_2)$ | $ln(X_2-X_1)$ |
|---------------|-----------|---------------|---------------|
|               | 0.4713    | 1.4163        | 3.5086        |
| Σ             | In(F 2)   | $ln(F_1-F_2)$ | $ln(X_2-X_1)$ |
| $ln(F_2)$     | 0.006674  | -0.002515     | -0.002559     |
| $ln(F_1-F_2)$ | -0.002515 | 0.051592      | -0.007601     |
| $ln(X_2-X_1)$ | -0.002559 | -0.007601     | 0.006757      |

## A3.3. Estimation of precision

Where quoted, CV's or 95% probability interval estimates are based on the Hessian.

# A3.4. Model parameters

A3.4.1. Fishing selectivity-at-age:

For the NEFSC offshore surveys, the fishing selectivities are estimated separately for ages 1 to age 6 and are flat thereafter. For the Massachusetts inshore spring survey, the selectivities are estimated separately for ages 1 to 4. The estimated proportional decrease from ages 3 to 4 is assumed to continue multiplicatively to age 6; this decrease parameter is bounded by 0, i.e. no increase is permitted. For all three surveys, age 0 is not considered.

The commercial fishing selectivity,  $S_a$ , is estimated separately for ages  $a_{\text{minus}}$  to  $a_{\text{plus}}$  (1 to 9) It is taken to differ over four periods: a) pre-1982, b) 1982-1988, c)1989-2004, and d) 2005-present. The selectivities are estimated directly for the last three periods. For the pre-1982 period, the selectivity is taken as that for the 1989-1988 block, but shifted one year to the left. For the implementations in this paper, given that there were difficulties with imprecise estimates at larger ages for period d) given its shortness, a common selectivity at age was estimated across all periods for ages 7 and above.

# In the final run, the commercial fishing selectivities are taken to be flat from age 5 onwards.

| A3.4.2. | Other parameter | ers |
|---------|-----------------|-----|
|---------|-----------------|-----|

| Model plus group                 |                                                   |                            |                     |
|----------------------------------|---------------------------------------------------|----------------------------|---------------------|
| m                                | 9                                                 |                            |                     |
| Commercial CAA                   |                                                   |                            |                     |
| $a_{\min s}^*$                   | 1                                                 |                            |                     |
| a <sub>plus</sub> a              | 9                                                 |                            |                     |
| Survey CAA                       | NEFSC spr                                         | NEFSC fall                 | MASS spr            |
| $a_{\min s}^*$                   | 1                                                 | 1                          | 1                   |
| a <sub>plus</sub>                | 9                                                 | 9                          | 4                   |
| Natural mortality:               |                                                   |                            |                     |
| M                                | Age independent:                                  |                            |                     |
|                                  | i) 0.2 for all years                              |                            |                     |
|                                  | ii) 0.2 until 1988, the<br>constant at 0.4 therea | reafter a linear increase  | to 0.4 in 2003 and  |
| Proportion mature-at-age:        |                                                   |                            |                     |
| $f_a$                            | Input, see main tex                               | t                          |                     |
| Weight-at-age:                   |                                                   |                            |                     |
| $W_{y,a}^{strt}$                 | input, see main tex                               | t                          |                     |
| $W_{y,a}^{mid}$                  | input, see main tex                               | t                          |                     |
| $W_{y,a}^{surv}$                 | input, see main tex                               | t                          |                     |
| Stock recruit residuals std dev: |                                                   |                            |                     |
| $\sigma_R$                       | 0.6                                               |                            |                     |
| Initial conditions :             |                                                   |                            |                     |
| N <sub>y0,a</sub>                | estimated directly                                | for ages 0 to xx depending | ng on AIC criterion |
| $\phi$                           | estimated                                         |                            |                     |

\* Strictly not a minus group anymore since the catches at age zero are ignored.

# A3.5.Biological Reference Points (BRPs)

It is possible to estimate BRPs internally within the assessment by fitting the stockrecruitment relationship directly within the assessment itself. The  $F_{MSY}$  estimate is obtained by using a bisection routine to find where the derivative of the equilibrium catch vs *F* relationship has a zero derivative. This has to be based on point estimates, so that the estimate of other BRPs are conditional on this point estimate of  $F_{MSY}$ , with no Hessian based CV available for this quantity.

For some results reported here, however, the stock-recruitment relationships are fitted to the estimates of recruitment and spawning biomass provided by the various assessments to provide a basis to estimate BRPs. The rationale for estimation external to the assessment itself is to avoid assumptions about the form of the relationship influencing the assessment results. These fits are achieved by minimising the following negative log- $\frac{-\sigma_R^2}{r}$ 

likelihood, where the  $e^{\frac{\pi}{2}}$  term is added for consistency with equation A3.4, i.e. the stock-recruitment curves estimated are mean-unbiased rather than median unbiased:

$$-\ln L = \sum_{y=y_1}^{2009} \left[ \frac{\left( \ln(N_{y,0}) - \ln\left(\hat{N}_{y,0}e^{-\frac{\sigma_R^2}{2}}\right) \right)^2}{2\left( (\sigma_R)^2 + (CV_y)^2 \right)} \right]$$
(A3.39)

where

 $N_{y,0}$  is the "observed" (assessment estimated) recruitment in year y,

 $\hat{N}_{y,0}$  is the stock-recruitment model predicted recruitment in year y,

 $\sigma_R$  is the standard deviation of the log-residuals which is input (and set here to 0.6), and

 $CV_y$  is the Hessian-based CV for the "observed" recruitment in year y.

Note that the differential precision of the assessment estimates of recruitment is taken into account, and that the summation ends at 2009 because little by way of direct observation is as yet available to inform estimates of recruitment for 2010 and 2011.

# For the final run, the stock-recruitment relationship and hence also the BRP's are estimated internally in the model fitting minimisation process.

# A3.6. Projections

The first step in the projections process is generating a future catch vector corresponding to a harvesting strategy, with  $0.75F_{MSY}$  being the strategy chosen for this purpose, where this corresponds to a fishing mortality vector with a maximum *F* of  $0.75F_{MSY}$  and a selectivity-at-age equal to that estimated for the most recent commercial block (2005-2011).

The starting numbers at age vector for ages 0 to 9+ is the best estimate obtained from the assessment for the start of the year 2012. Error is included for ages 0 to 3 because these are poorly estimated in the assessment given limited information on these year-classes; thus:  $N_{2012,a} \rightarrow N_{2012,a} e^{\varepsilon_a}$  with  $\varepsilon_a$  from  $N(0, (\sigma_R)^2)$ . For subsequent years, age-0 recruitment is determined by the stock-recruitment relationship of equation (A3.4), i.e. incorporating a stochastic component with  $\sigma_R$  set to the same value as used in the assessment, i.e. 0.6. For 2012, for which a fixed catch estimate of 3767 t is provided, the catch equation is solved to provide a value for *F*. For subsequent years, the harvest strategy chosen determines the *F* vector, and the catch taken is calculated from that together with the projected numbers-at-age vector.

A total of 1000 forward simulations are run incorporating recruitment variability. This provides a distribution of catches for each future year. For the selected catch vector, the value for each year is then set equal to the median of the distribution calculated for that year.

For "consequences" plots, the process set out above provides the results reported in the main text for the case where the catches are implemented for a real situation corresponding to the assessment from which those catches were derived. However, when the catches implemented were derived from a different assessment, the process is then repeated, though now with fixed input catches for each year to which the catch equation is applied to find the corresponding full-selectivity F value, and hence project the numbers-at-age vector forwards. This then yields 1000 values each year for quantities such as spawning biomass and fully selected fishing mortality. The medians of these distributions for each year then provide the trajectories for the quantities shown in the consequences plots.

Weights-at-age for the projections are taken as the average of the 2009-2011 values (tables in main text) to compute spawning biomass and catches.

## References

- Butterworth DS and Rademeyer RA. 2012. An investigation of differences amongst SCAA and ASAP assessment (including Reference Point) estimates for Gulf of Maine Cod. Document submitted to the March 2012 meeting of the New England Fisheries Management Council SSC. 34pp.
- Miller TJ, Das, C, Politis PJ, Miller AS, Lucey SM, Legault CM, Brown RW and Rago PJ. 2010. Estimation of *Albatross IV* to *Henry B. Bigelow* Calibration Factors. U.S. Depart. of Commerce, Northeast Fisheries Science Center Ref. Doc. 10-05; 233

[SAW55 Editor's Note: The SARC-55 review panel <u>did not</u> <u>recommend</u> adopting the GOM cod Statistical Catch-at-Age (SCAA) assessment results that are in Appendices A.2 – A.5. These appendices are included in this report to document and demonstrate the work that was done by the SAW cod Working Group for the December 2012 peer review.]

Appendix A.4. Applications of Statistical Catch-at-Age Assessment Methodology to Gulf of Maine cod, October 2012.

#### Summary

The Statistical Catch-at-Age assessment conducted by the authors earlier in 2012 is updated to take account of more recent data, and refined by introducing two new features: fitting to length distribution data for the NEFSC surveys in the 1960s for which age information is not available, and adjusting the externally provided estimates of the Bigelow-Albatross calibration function through adding the calibration information contained in cohorts present both before and after the survey vessel change to the model fitting process. The options selected for the Base Case assessment are those motivated in the assessment conducted earlier in the year. The resultant estimate of the 2011 spawning biomass is 12.0 thousand tons with a CV of 13%. The survey calibration function is slightly modified, resulting in an increase of about 3% in the 2011 spawning biomass. The survey catch-atlength data are consistent with previous estimates of poor recruitments from relatively large spawning biomasses in the 1960s. This last result is robust under a range of sensitivity tests, and is suggestive of a Ricker-like stock-recruitment relationship for the stock. These sensitivity tests also suggest that the 2011 spawning biomass estimate of 12.0 thousand tons is robustly determined. The range of this estimate across these sensitivities is 9.9 to 16.6 thousand tons, with lower values arising from the sqrt(p) weighting approach for proportions data and from forcing selectivities above age 6 to be flat, and the higher values coming from inclusion of the stock-recruitment function in the assessment and increasing the value of M. The evidence for commercial selectivities to be domed relative to the NEFSC surveys appears reasonably strong, but less so that for the selectivities for these surveys themselves to be domed.

# Introduction

This paper is an extension of the Statistical Catch-at-Age (SCAA) assessment advocated in Butterworth and Rademeyer (2012) which was presented to a meeting of the NEFMC SSC in March earlier this year (2012). The NBC2 variant selected there is extended here to incorporate one further year's data, and refined to also take account of length distribution data available for the un-aged pre-1970 NEFSC surveys, and to use the population model fit to improve estimates of the *Bigelow-Albatross* survey calibration relationship.

The paper also checks the sensitivity of results for its Base Case assessment to some of the factors on which discussions at the SSC indicated an absence of unanimity. For the most part, only single factor changes to the Base Case have been run. Further runs combining more than one change to such factors could be specified by the coming October assessment meeting, and run during its duration, if required.

This paper focuses on assessment aspects, with a further paper on the estimation of reference points to follow shortly.

## Data and Methodology

The catch and survey based data (including catch-at-length information) and some biological data used for the analyses are listed in Tables in App. A4, Appendix A.

The details of the SCAA assessment methodology are provided in App. A4, Appendix B of this appendix.

# Results

Results are given for a Base Case (Run 1) and various sensitivities. As indicated in the Introduction, this Base Case makes choices for various options in the assessment in line with those motivated in Butterworth and Rademeyer (2012), specifically:

- Start in 1964
- Estimate the first three numbers-at-age for 1964, and then the parameter  $\phi$  (see equation B11) to provide estimates for the numbers at older ages note that unlike in Butterworth and Rademeyer (2012), the value of  $\phi$  is not restricted by bounds in this estimation process
- Set M = 0.2 for all ages
- Use the "adjusted" lognormal formulation of equation B.16 to describe the distribution of proportions-at-age (in relation to numbers of fish)
- Admit the possible estimation of domed selectivity for the NEFSC surveys and for the commercial fishery
- Do not fit the stock-recruitment function is within the population model fitting procedure
- Make allowance for additional variance when fitting to time series of abundance indices

• Fit to the aggregated abundance indices as expressed in terms of biomass rather than numbers.

In addition, this Base Case incorporates what are considered to be improvements to the model:

- Allow the assessment data to update the independent estimate of the *Bigelow-Albatross* calibration function parameters that have been determined from experimental paired trawls (see section B.2.7)
- Incorporate data on NEFSC survey length compositions from the 1960s when catches from these surveys were not aged.

App. A4, Tables 1-4 list results for Base Case and various sensitivities, focusing on the contributions to the assessment period considered, as well values for the survey catchabilities q.

App. A4, Figs 1-4 provide estimates and diagnostic plots for the Base Case fit, while App. A4, Fig. 5 shows how the *Bigelow-Albatross* survey calibration function has been updated. App. A4, Figs 6-12 and 14-15 show results for various sensitivities to the Base Case, while App. A4, Fig. 13 shows results for a retrospective analysis of the Base Case.

# Discussion

The Base Case results in App. A4, Table 1 and Fig. 1 show a spawning biomass that has been decreasing somewhat over the last two years, essentially as a consequence of a decline in recruitment since 2005. As to be expected, the precision of spawning biomass estimates is less in the 1960s and 70s when less age information is available, and also drops for the most recent few years. In contrast the annual recruitment estimates are all fairly precise except for the final year (2011). Survey catchability (q) estimates are all below 1, and non-trivial levels of additional variance are estimated for all three abundance indices. The 2011 spawning biomass is estimated at 12.0 thousand tons with an associated CV of 13%.

For this Base Case, both commercial and NEFSC survey selectivities are estimated to be appreciably domed (Fig. 2). Standard fit diagnostics for both abundance indices and proportion-at-age data in Fig. 3 show broadly reasonable fits, though there is some evidence of systematic trends in the proportion-at-age residuals for the Massachusetts Spring survey and for the commercial catch. The last might be ameliorated by allowing for a change in the recent commercial selectivity pattern (for whose values the model often struggles to obtain convergence) to occur in the mid-2000s. The fits to the survey proportions-at-length data over the 1960s (App. A4, Fig. 4) is fair, but does evidence some data conflict with proportions at the smaller lengths underestimated for the spring surveys and overestimated for the autumn surveys, with the reverse effect at larger lengths.

Updating the *Bigelow-Albatross* calibration function in the model suggests that the results from the paired trawls experiment slightly overestimated the factor at larger lengths, but

similarly underestimated it at smaller lengths (App. A4, Fig. 5). Using the existing *Bigelow-Albatross* calibration function without this model-fitting refinement would result in a slightly lower 2011 spawning biomass of 11.7 thousand tons

Moving on to sensitivity tests, alternative starting years for the assessment have a negligible impact on estimates of the current spawning biomass, but there is some sensitivity shown by the estimates of spawning biomass in the 1960s, though these still remain high relative to estimates for the last two decades (App. A4, Table 1, Runs 2a-d and App. A4, Fig. 6). For a 1982 start, the catchability coefficient (q) estimate for the NEFSC Spring survey increases above 1 to 1.09.

The parameter  $\phi$  related to the starting numbers-at-age vector for 1964 is estimable, but with quite a high CV of 47%, so that it is not surprising that the starting spawning biomass is not that well determined (App. A4, Table 1, Runs 3a-e and App. A4, Figs 1 and 6). The selection of how many ages to estimate starting numbers-at-ages to estimate in this starting vector is clearly suggested to be three (ages 0-2) for the Base Case by the process of considering successive improvements in  $-\ln L$  as this number is increased (App. A4, Table 2, Runs 4a-h). Alternative selections for both these factors have minimal impact on estimates of the 2011 spawning biomass.

Increasing the weight given to the survey catch-at-length data from the 1960s suggests a slight decrease in recruitment in the 1960s (App. A4, Table 3, Runs 5a-b and Fig. 8, so that these data do not contradict earlier inferences of poor recruitment over this period (when spawning biomass was relatively high) which were made in the absence of this information (Butterworth and Rademeyer, 2011 and 2012). If less weight is placed on the input information for the *Bigelow-Albatross* calibration function, the calibration factor moves still lower at higher lengths, and still higher at lower lengths (App. A4, Table 3, Run 6 and Fig.9). This indicates that the information on calibration provided by the presence of common cohorts in both the pre- and post-vessel-change periods points somewhat differently from the independent experiment in regard to the values of the calibration function, so that estimates of this may change further as more data from these cohorts accumulates over the next few years.

Including estimation of a Ricker stock recruitment function in the assessment leads to a higher estimate of the 2011 spawning biomass of about 14 thousand tons as a result of increased estimates of recruitment over recent years (App. A4, Table 3, Run 7 and Fig. 10). In contrast using the sqrt(p) option of weighting proportion-at-age data in the log likelihood in place of the "adjusted" lognormal see this estimate drop to some 11 thousand tons (App. A4, Table 3, Run 8). App. A4, Fig. 3 also shows the fit residuals for age and length distribution data under this alternative; there is no obvious improvement or deterioration in the pattern of these residuals for the sqrt(p) compared to the "adjusted" lognormal run, and so no clear reason from these plots to prefer one distributional form over the other.

Sensitivities which modify the commercial selectivity-at-age for the pre-1982 period to reflect a relatively greater catch of smaller fish (Palmer, pers. commn, advises that nets in that period tended to have smaller mesh sizes) have scarcely any impact on spawning biomass trends, and are somewhat less preferred in likelihood terms (App. A4, Table 3,

Runs 9a-b, and Fig. 11). Increasing natural mortality M from 0.2 to 0.3 increases spawning biomass estimates as would be expected, and is slightly preferred in likelihood terms (App. A4, Table 3, Run 10 and Fig. 12).

App. A4, Fig. 13 shows the results from a retrospective analysis for the Base Case assessment. There is a large difference evident for assessments carried out in 2007 and 2008 (possibly linked to the high NEFSC Spring survey estimates at that time), but thereafter any retrospective effect is fairly small.

Runs 11 and 12 in Table 4 show the consequences of forcing either the survey selectivity or both the survey and commercial selectivities to be flat at older ages above 6. These correspond to estimating 3 or 9 fewer parameter values, with associate deterioration in - lnL by some 7 or 24 points respectively. Assuming domes is thus AIC justified in both cases. Forcing this flatness results in lower spawning biomass (App. A4, Fig. 14), though most of this effect comes from forcing flatness in the commercial selectivity function, e.g. with the survey selectivities only forced to be flat, the 2011 spawning biomass estimate drops only from 12.0 to 11.6 thousand tons (a 4% effect).

App. A4, Table 4 and Fig. 15 show results from repeating the flat selectivity sensitivities of Runs 11 and 12, but here under the sqrt(p) weighting approach for proportions data in place of the "adjusted" lognormal distribution assumption. Again the assumption of a dome in the commercial selectivity is AIC justified, but the extension of that to the NEFSC survey data is marginal in that respect. Butterworth and Rademeyer (2012) found that the Massachusetts Spring survey showed a selectivity pattern which was flat for the sqrt(p) case rather than decreasing at ages above 3 as in the case of the "adjusted" lognormal, which they considered of questionable realism given the more near-shore area which this survey covers. However this argument for preferring the "adjusted" lognormal is less clear for these updated computations. These results may be compromised by failure to achieved convergence in some of these runs (see App. A4, Tables 3 and 4 captions), though as this arises only from sensitivity of the process to estimation of the commercial selectivity parameters for the more recent period, this seems unlikely to have a great influence on abundance estimates and trends. Overall the case for a dome in the commercial relative to the NEFSC survey catches seems reasonably strong, but that for a dome in these survey selectivities themselves less so.

# Conclusions

Key features of these results are:

a) Although there is some uncertainty about spawning biomass estimates in the 1960s, nevertheless these are robustly estimated to be towards the higher end of the range of spawning biomasses through the 1964-2011 period considered. Further the recruitments at that time are precisely and robustly estimated to have been towards the low end of the range of recruitment levels throughout this period. This is suggestive of a Ricker-type stock-recruitment relationship, something that is not *a priori* surprising for a cod stock given the species' cannibalistic behaviour.

b) The spawning biomass in 2011 is relatively robustly estimated at 12.0 thousand tons. The range of this estimate across the sensitivities examined is 9.9 to 16.6 thousand tons, with lower values arising from the sqrt(p) weighting for proportions data and from forcing selectivities above age 6 to be flat, and the higher values coming from including the stock-recruitment function in the assessment and increasing the value of M.

Some Working Group members prefer including a stock recruitment relationship in fitting assessment models. This was not included in the Base Case here so that other sensitivities could be examined without the inclusion of the relationship perhaps confounding interpretation of the results.

## Acknowledgements

We thank Michael Palmer and Tim Miller for provision of the data and/or parameter estimates upon which the analyses reported in this paper are based.

## References

- Butterworth DS and Rademeyer RA. 2011. Applications of statistical catch-at-age assessment methodology to Gulf of Maine cod. Document submitted to the 17-21 October, 2011 workshop on the assessment of Gulf of Maine cod, Falmouth. 31pp.
- Butterworth DS and Rademeyer RA. 2012. An Investigation of Differences Amongst SCAA and ASAP Assessment (including Reference Point) Estimates for Gulf of Maine Cod. Document submitted to the March 2012 meeting of the New England Fisheries Management Council SSC. 34pp.
- Miller TJ, Das, C, Politis PJ, Miller AS, Lucey SM, Legault CM, Brown RW and Rago PJ. 2010. Estimation of *Albatross IV* to *Henry B. Bigelow* Calibration Factors. U.S. Depart. of Commerce, Northeast Fisheries Science Center Ref. Doc. 10-05; 233 pp.

### **Appendix A4. Tables**

**App. A4, Table 1**: Estimates of abundance and related quantities for the Gulf of Maine cod for a series of assessment sensitivities. Values in parentheses are Hessian based CV's. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment.  $N_{y_{1,0}}$  is in millions. Refer to Appendix for definition of some of the symbols used. Note that Runs 2a) to 2d) were conducted with the same number of ages in the starting numbers-at-age vector as for the Base Case (*viz.* ages 0-2); later starting years, it is probable that extending this estimation to further ages is statistically justifiable.

|                                 | 1) Bas | e Case            |        |                   | 2) /   | Alternativ                        | /e start y | ear               |        |                                   |          |                   |        | 3) Alte            | rnative fi | xed valu                          | es of $\phi$ |                   |        |                   |
|---------------------------------|--------|-------------------|--------|-------------------|--------|-----------------------------------|------------|-------------------|--------|-----------------------------------|----------|-------------------|--------|--------------------|------------|-----------------------------------|--------------|-------------------|--------|-------------------|
|                                 |        |                   | 2a)    |                   | 2b)    |                                   | 2c)        |                   | 2d)    |                                   | За) ф=0. | 0                 | 3b)    | 05                 | Зс) ф=0.   | 1                                 | 3d)          | 2                 | 3e)    | 3                 |
| Start year                      | 1964   |                   | 1965   |                   | 1967   |                                   | 1970       |                   | 1982   |                                   | 1964     |                   | 1964   |                    | 1964       |                                   | 1964         |                   |        |                   |
| -InL: overall                   | -162.8 |                   | -158.9 |                   | -148.5 |                                   | -147.9     |                   | -95.0  |                                   | -160.2   |                   | -161.7 |                    | -162.3     |                                   | -162.2       |                   | -159.4 |                   |
| -InL: survey                    | -37.5  |                   | -37.4  |                   | -35.5  |                                   | -32.4      |                   | -17.3  |                                   | -37.5    |                   | -37.5  |                    | -37.5      |                                   | -37.3        |                   | -36.8  |                   |
| -InL: comCAA                    | -129.6 |                   | -129.6 |                   | -129.5 |                                   | -129.5     |                   | -120.8 |                                   | -129.6   |                   | -129.6 |                    | -129.3     |                                   | -129.7       |                   | -129.5 |                   |
| -InL: survCAA                   | -13.9  |                   | -6.4   |                   | 6.8    |                                   | 17.7       |                   | 47.6   |                                   | -13.2    |                   | -13.7  |                    | -13.9      |                                   | -13.5        |                   | -12.6  |                   |
| -InL: survCAL                   | 22.1   |                   | 18.1   |                   | 13.3   |                                   | 0.0        |                   | 0.0    |                                   | 24.0     |                   | 23.1   |                    | 22.3       |                                   | 22.1         |                   | 23.5   |                   |
| -InL: RecRes                    | 1.3    |                   | 1.3    |                   | 1.3    |                                   | 1.3        |                   | 1.2    |                                   | 1.3      |                   | 1.3    |                    | 1.3        |                                   | 1.3          |                   | 1.3    |                   |
| -InL: calibration               | -5.2   |                   | -5.0   |                   | -5.0   |                                   | -5.1       |                   | -5.6   |                                   | -5.2     |                   | -5.2   |                    | -5.3       |                                   | -5.2         |                   | -5.2   |                   |
| N <sub>y1,0</sub>               | 7.49   | (0.13)            | 4.15   | (0.17)            | 3.63   | (0.17)                            | 4.21       | (0.16)            | 12.94  | (0.07)                            | 7.55     | (0.13)            | 7.53   | (0.13)             | 7.42       | (0.13)                            | 7.45         | (0.13)            | 7.43   | (0.13)            |
| ¢                               | 0.14   | (0.47)            | 0.45   | (0.14)            | 0.29   | (0.15)                            | 0.10       | (0.70)            | 0.52   | (0.07)                            | 0.00     | -                 | 0.05   | -                  | 0.10       | -                                 | 0.20         | -                 | 0.30   | -                 |
| B <sup>sp</sup> 2011            | 12.02  | (0.13)            | 12.01  | (0.13)            | 11.97  | (0.14)                            | 11.98      | (0.16)            | 12.03  | (0.17)                            | 12.03    | (0.14)            | 12.03  | (0.13)             | 12.04      | (0.13)                            | 12.03        | (0.13)            | 12.00  | (0.13)            |
| B <sup>sp</sup> <sub>1982</sub> | 32.25  | (0.06)            | 32.24  | (0.07)            | 32.25  | (0.06)                            | 32.25      | (0.12)            | 32.31  | (0.10)                            | 32.25    | (0.06)            | 32.25  | (0.06)             | 32.40      | (0.06)                            | 32.21        | (0.06)            | 32.25  | (0.06)            |
| B <sup>sp</sup> y1              | 42.40  | (0.24)            | 25.32  | (0.20)            | 42.52  | (0.16)                            | 45.17      | (0.32)            | 32.31  | (0.10)                            | 56.88    | (0.15)            | 51.58  | (0.14)             | 46.82      | (0.14)                            | 36.68        | (0.14)            | 28.46  | (0.14)            |
|                                 | q      | $\sigma_{ m Add}$ | q      | $\sigma_{ m Add}$ | q      | $\sigma_{\scriptscriptstyle Add}$ | q          | $\sigma_{ m Add}$ | q      | $\sigma_{\scriptscriptstyle Add}$ | q        | $\sigma_{ m Add}$ | q      | $\sigma_{\rm Add}$ | q          | $\sigma_{\scriptscriptstyle Add}$ | q            | $\sigma_{ m Add}$ | q      | $\sigma_{ m Add}$ |
| NEFSC spring                    | 0.91   | 0.19              | 0.91   | 0.19              | 0.91   | 0.19                              | 0.91       | 0.19              | 1.09   | 0.24                              | 0.91     | 0.19              | 0.91   | 0.19               | 0.90       | 0.19                              | 0.91         | 0.19              | 0.91   | 0.19              |
| NEFSC fall                      | 0.83   | 0.07              | 0.84   | 0.07              | 0.84   | 0.07                              | 0.84       | 0.07              | 0.73   | 0.10                              | 0.82     | 0.07              | 0.83   | 0.07               | 0.83       | 0.07                              | 0.84         | 0.07              | 0.85   | 0.07              |
| MADMF spring                    | 0.20   | 0.13              | 0.20   | 0.13              | 0.20   | 0.13                              | 0.20       | 0.13              | 0.20   | 0.16                              | 0.20     | 0.13              | 0.20   | 0.13               | 0.20       | 0.13                              | 0.20         | 0.13              | 0.20   | 0.13              |

App. A4, Table 2: Estimates of abundance and related quantities for the Gulf of Maine cod for a series of assessment sensitivities relating to the initial numbers-at-age vector. Values in parentheses are Hessian based CV's. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment.  $N_{y_{1,0}}$  is in millions. Refer to Appendix B for definition of some of the symbols used.

|                      |           |                                   |          |                                        |                  | 4)                                     | Fewer or | more N                            | <sub>y1,a</sub> value | s estima                          | ted      |                                   |          |                                   |          |                                        |
|----------------------|-----------|-----------------------------------|----------|----------------------------------------|------------------|----------------------------------------|----------|-----------------------------------|-----------------------|-----------------------------------|----------|-----------------------------------|----------|-----------------------------------|----------|----------------------------------------|
|                      | 4a) age ( | )                                 | 4b) ages | s 0-1                                  | 4c) ages<br>(BC) | 0-2                                    | 4d) ages | ; <b>0-</b> 3                     | 4e) ages              | s <mark>0-4</mark>                | 4f) ages | 0-5                               | 4g) ages | 0-6                               | 4h) ages | s 0-7                                  |
| Start year           | 1964      |                                   | 1964     |                                        | 1964             |                                        | 1964     |                                   | 1964                  |                                   | 1964     |                                   | 1964     |                                   | 1964     |                                        |
| -InL: overall        | -146.7    |                                   | -147.4   |                                        | -162.8           |                                        | -163.1   |                                   | -163.7                |                                   | -163.8   |                                   | -164.9   |                                   | -164.9   |                                        |
| -InL: survey         | -36.8     |                                   | -36.7    |                                        | -37.5            |                                        | -37.3    |                                   | -37.4                 |                                   | -37.3    |                                   | -37.6    |                                   | -37.6    |                                        |
| -InL: comCAA         | -129.7    |                                   | -129.8   |                                        | -129.6           |                                        | -129.8   |                                   | -129.6                |                                   | -130.0   |                                   | -129.6   |                                   | -129.5   |                                        |
| -InL: survCAA        | -1.1      |                                   | -2.2     |                                        | -13.9            |                                        | -13.7    |                                   | -13.9                 |                                   | -13.5    |                                   | -14.0    |                                   | -14.0    |                                        |
| -InL: survCAL        | 24.6      |                                   | 25.0     |                                        | 22.1             |                                        | 21.7     |                                   | 21.1                  |                                   | 20.9     |                                   | 20.2     |                                   | 20.2     |                                        |
| -InL: RecRes         | 1.3       |                                   | 1.3      |                                        | 1.3              |                                        | 1.3      |                                   | 1.3                   |                                   | 1.3      |                                   | 1.3      |                                   | 1.3      |                                        |
| -InL: calibration    | -5.0      |                                   | -5.0     |                                        | -5.2             |                                        | -5.2     |                                   | -5.2                  |                                   | -5.2     |                                   | -5.2     |                                   | -5.2     |                                        |
| N <sub>y1,0</sub>    | 7.93      | (0.08)                            | 7.17     | (0.14)                                 | 7.49             | (0.13)                                 | 7.48     | (0.13)                            | 7.57                  | (0.13)                            | 7.71     | (0.13)                            | 7.56     | (0.13)                            | 7.57     | (0.13)                                 |
| ф                    | 0.38      | (0.15)                            | 0.40     | (0.16)                                 | 0.14             | (0.47)                                 | 0.19     | (0.45)                            | 0.29                  | (0.44)                            | 0.43     | (0.44)                            | 0.68     | (0.39)                            | 0.87     | (1.19)                                 |
| B <sup>sp</sup> 2011 | 12.01     | (0.13)                            | 12.02    | (0.13)                                 | 12.02            | (0.13)                                 | 12.01    | (0.13)                            | 12.01                 | (0.18)                            | 11.97    | (0.14)                            | 12.03    | (0.13)                            | 12.03    | (0.13)                                 |
| B <sup>sp</sup> 1982 | 32.29     | (0.07)                            | 32.34    | (0.08)                                 | 32.25            | (0.06)                                 | 32.39    | (0.06)                            | 32.29                 | (0.06)                            | 32.58    | (0.06)                            | 32.31    | (0.06)                            | 32.31    | (0.06)                                 |
| B <sup>sp</sup> y1   | 26.88     | (0.24)                            | 26.20    | (0.24)                                 | 42.40            | (0.24)                                 | 39.90    | (0.25)                            | 38.50                 | (0.24)                            | 36.46    | (0.24)                            | 34.55    | (0.22)                            | 33.95    | (0.23)                                 |
|                      | q         | $\sigma_{\scriptscriptstyle Add}$ | q        | $\sigma_{\scriptscriptstyle { m Add}}$ | q                | $\sigma_{\scriptscriptstyle { m Add}}$ | 9        | $\sigma_{\scriptscriptstyle Add}$ | q                     | $\sigma_{\scriptscriptstyle Add}$ | q        | $\sigma_{\scriptscriptstyle Add}$ | q        | $\sigma_{\scriptscriptstyle Add}$ | q        | $\sigma_{\scriptscriptstyle { m Add}}$ |
| NEFSC spring         | 0.91      | 0.19                              | 0.92     | 0.19                                   | 0.91             | 0.19                                   | 0.91     | 0.19                              | 0.91                  | 0.19                              | 0.90     | 0.19                              | 0.91     | 0.19                              | 0.91     | 0.19                                   |
| NEFSC fall           | 0.84      | 0.07                              | 0.84     | 0.07                                   | 0.83             | 0.07                                   | 0.83     | 0.07                              | 0.83                  | 0.07                              | 0.82     | 0.07                              | 0.83     | 0.07                              | 0.83     | 0.07                                   |
| MADMF spring         | 0.20      | 0.13                              | 0.20     | 0.13                                   | 0.20             | 0.13                                   | 0.20     | 0.13                              | 0.20                  | 0.13                              | 0.20     | 0.13                              | 0.20     | 0.13                              | 0.20     | 0.13                                   |

**App. A4, Table 3**: Estimates of abundance and related quantities for the Gulf of Maine cod for a series of assessment sensitivities. Values in parentheses are Hessian based CV's. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment.  $N_{y_{1,0}}$  is in millions. Refer to Appendix B for definition of some of the symbols used. Runs marked \* did not converge fully. The associated sensitivity of the fitting process arises in estimating the selectivity vector for the second commercial period. In all such cases, a rerun was conducted with this vector fixed at the best estimates that had been achieved thus far, and convergence was readily achieved.

|                      | 1) Base | e Case                            | 5) ⊢   | ligher we                         | eight for | CAL                 | 6) Less<br>inp<br>calibr | weight<br>out<br>ation            | 7) Ri<br>inte | cker<br>rnal                      | 8) sqrt(p<br>for CAA<br>weigh | ) option<br>and CAL<br>nting      | 9) /<br>co | Alternati<br>mmercia | ve pre-19<br>Il selectiv | 982<br>ity        | 10) Hig | her <i>M</i>                      |
|----------------------|---------|-----------------------------------|--------|-----------------------------------|-----------|---------------------|--------------------------|-----------------------------------|---------------|-----------------------------------|-------------------------------|-----------------------------------|------------|----------------------|--------------------------|-------------------|---------|-----------------------------------|
|                      |         |                                   | 5a) W  | / <sub>CAL</sub> =1               | 5b) V     | / <sub>CAL</sub> =5 |                          |                                   |               |                                   |                               |                                   | 9a) op     | otion 1              | 9b) op                   | otion 2           | 10a) /  | ∕ <b>/</b> =0.3                   |
| Start year           | 1964    |                                   | 1964   |                                   | 1964      | *                   | 1964                     | *                                 | 1964          |                                   | 1964                          | *                                 | 1964       |                      | 1964                     |                   | 1964    | *                                 |
| -InL: overall        | -162.8  |                                   | 15.1   |                                   | 660.2     |                     | -160.2                   |                                   | -125.5        |                                   | -2503.7                       |                                   | -161.2     |                      | -158.4                   |                   | -164.6  |                                   |
| -InL: survey         | -37.5   |                                   | -37.6  |                                   | -39.1     |                     | -38.0                    |                                   | -35.4         |                                   | -36.7                         |                                   | -37.8      |                      | -37.8                    |                   | -37.9   |                                   |
| -InL: comCAA         | -129.6  |                                   | -129.3 |                                   | -131.0    |                     | -129.7                   |                                   | -129.5        |                                   | -737.6                        |                                   | -128.8     |                      | -128.0                   |                   | -131.3  |                                   |
| -InL: survCAA        | -13.9   |                                   | 2.1    |                                   | 89.6      |                     | -16.1                    |                                   | -12.6         |                                   | -1611.9                       |                                   | -13.0      |                      | -10.8                    |                   | -12.9   |                                   |
| -InL: survCAL        | 22.1    |                                   | 183.9  |                                   | 744.8     |                     | 22.1                     |                                   | 22.0          |                                   | -113.4                        |                                   | 22.2       |                      | 22.3                     |                   | 21.8    |                                   |
| -InL: RecRes         | 1.3     |                                   | 1.2    |                                   | 1.3       |                     | 1.3                      |                                   | 35.3          |                                   | 1.4                           |                                   | 1.2        |                      | 1.2                      |                   | 0.7     |                                   |
| -InL: calibration    | -5.2    |                                   | -5.2   |                                   | -5.3      |                     | 1.8                      |                                   | -5.3          |                                   | -5.5                          |                                   | -5.2       |                      | -5.2                     |                   | -5.0    |                                   |
| N <sub>y1,0</sub>    | 7.49    | (0.13)                            | 6.89   | (0.12)                            | 7.45      | (0.11)              | 7.52                     | (0.13)                            | 7.26          | (0.13)                            | 7.23                          | (0.14)                            | 8.19       | (0.13)               | 8.65                     | (0.13)            | 16.30   | (0.13)                            |
| φ                    | 0.14    | (0.47)                            | 0.11   | (1.21)                            | 0.18      | (0.23)              | 0.14                     | (0.46)                            | 0.08          | (0.99)                            | 0.17                          | (0.37)                            | 0.12       | (0.48)               | 0.12                     | (0.45)            | 0.01    | (0.03)                            |
| B <sup>sp</sup> 2011 | 12.02   | (0.13)                            | 12.89  | (0.48)                            | 11.38     | (0.14)              | 12.04                    | (0.19)                            | 14.03         | (0.17)                            | 10.83                         | (0.10)                            | 11.94      | (0.13)               | 11.88                    | (0.11)            | 16.61   | (0.11)                            |
| B <sup>sp</sup> 1982 | 32.25   | (0.06)                            | 33.72  | (0.25)                            | 29.91     | (0.07)              | 32.24                    | (0.06)                            | 33.30         | (0.07)                            | 28.91                         | (0.03)                            | 33.29      | (0.07)               | 33.96                    | (0.04)            | 39.23   | (0.06)                            |
| B <sup>sp</sup> y1   | 42.40   | (0.24)                            | 58.53  | (0.86)                            | 34.60     | (0.26)              | 42.15                    | (0.25)                            | 53.65         | (0.29)                            | 33.69                         | (0.19)                            | 42.54      | (0.24)               | 42.54                    | (0.18)            | 74.73   | (0.11)                            |
|                      | q       | $\sigma_{\scriptscriptstyle Add}$ | q      | $\sigma_{\scriptscriptstyle Add}$ | q         | $\sigma_{ m Add}$   | q                        | $\sigma_{\scriptscriptstyle Add}$ | q             | $\sigma_{\scriptscriptstyle Add}$ | q                             | $\sigma_{\scriptscriptstyle Add}$ | q          | $\sigma_{Add}$       | q                        | $\sigma_{ m Add}$ | q       | $\sigma_{\scriptscriptstyle Add}$ |
| NEFSC spring         | 0.91    | 0.19                              | 0.86   | 0.18                              | 0.89      | 0.17                | 0.91                     | 0.19                              | 0.89          | 0.20                              | 0.95                          | 0.19                              | 0.92       | 0.18                 | 0.93                     | 0.17              | 0.63    | 0.19                              |
| NEFSC fall           | 0.83    | 0.07                              | 1.03   | 0.08                              | 1.57      | 0.07                | 0.84                     | 0.07                              | 0.82          | 0.07                              | 0.85                          | 0.07                              | 0.86       | 0.08                 | 0.87                     | 0.08              | 0.58    | 0.07                              |
| MADMF spring         | 0.20    | 0.13                              | 0.19   | 0.13                              | 0.20      | 0.13                | 0.20                     | 0.13                              | 0.19          | 0.14                              | 0.32                          | 0.13                              | 0.20       | 0.13                 | 0.20                     | 0.13              | 0.13    | 0.12                              |

**App. A4, Table 4**: Estimates of abundance and related quantities for the Gulf of Maine cod for a series of assessment sensitivities. Values in parentheses are Hessian based CV's. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment.  $N_{y_{1,0}}$  is in millions. Refer to Appendix B for definition of some of the symbols used. Runs marked \* did not converge fully. The associated sensitivity of the fitting process arises in estimating the selectivity vector for the second commercial period. In all such cases, a rerun was conducted with this vector fixed at the best estimates that had been achieved thus far, and convergence was readily achieved.

|                      | 1) Base | e Case                                 | 11) Flat<br>sur<br>select | t NEFSC<br>vey<br>tivities | 12) Fla<br>surve<br>comn<br>select | t NEFSC<br>ey and<br>nercial<br>ivities | 8) sqrt(p<br>for CAA<br>weig | ) option<br>and CAL<br>nting           | 13) so<br>option a<br>NEFSC s | qrt(p)<br>and flat<br>surv sel    | 14) so<br>option a<br>NEFSC s<br>com | art(p)<br>and flat<br>urv and<br>sel |
|----------------------|---------|----------------------------------------|---------------------------|----------------------------|------------------------------------|-----------------------------------------|------------------------------|----------------------------------------|-------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|
| Start year           | 1964    |                                        | 1964                      | *                          | 1964                               | *                                       | 1964                         | *                                      | 1964                          | *                                 | 1964                                 | *                                    |
| -InL: overall        | -162.8  |                                        | -155.6                    |                            | -138.5                             |                                         | -2503.7                      |                                        | -2501.0                       |                                   | -2491.6                              |                                      |
| -InL: survey         | -37.5   |                                        | -39.3                     |                            | -36.8                              |                                         | -36.7                        |                                        | -37.8                         |                                   | -37.1                                |                                      |
| -InL: comCAA         | -129.6  |                                        | -129.2                    |                            | -120.5                             |                                         | -737.6                       |                                        | -737.3                        |                                   | -735.0                               |                                      |
| -InL: survCAA        | -13.9   |                                        | -6.8                      |                            | 1.3                                |                                         | -1611.9                      |                                        | -1609.3                       |                                   | -1601.5                              |                                      |
| -InL: survCAL        | 22.1    |                                        | 23.3                      |                            | 21.6                               |                                         | -113.4                       |                                        | -112.4                        |                                   | -113.8                               |                                      |
| -InL: RecRes         | 1.3     |                                        | 1.4                       |                            | 1.4                                |                                         | 1.4                          |                                        | 1.4                           |                                   | 1.5                                  |                                      |
| -InL: calibration    | -5.2    |                                        | -5.0                      |                            | -5.4                               |                                         | -5.5                         |                                        | -5.5                          |                                   | -5.7                                 |                                      |
| N                    | 7 49    | (0 13)                                 | 7 39                      | (0 13)                     | 6 89                               | (0.13)                                  | 7 23                         | (0 14)                                 | 7 56                          | (0.13)                            | 6 70                                 | (0.14)                               |
| ¥y1,0                | 0.14    | (0.13)                                 | 0.17                      | (0.15)                     | 0.05                               | (0.10)                                  | 0.17                         | (0.17)                                 | 0.00                          | (0.13)                            | 0.70                                 | (0.17)                               |
| φ                    | 0.14    | (0.47)                                 | 0.17                      | (0.35)                     | 0.17                               | (0.36)                                  | 0.17                         | (0.37)                                 | 0.20                          | (0.31)                            | 0.17                                 | (0.37)                               |
| B <sup>3p</sup> 2011 | 12.02   | (0.13)                                 | 11.63                     | (0.11)                     | 9.94                               | (0.10)                                  | 10.83                        | (0.10)                                 | 10.78                         | (0.10)                            | 10.03                                | (0.09)                               |
| B <sup>sp</sup> 1982 | 32.25   | (0.06)                                 | 29.80                     | (0.03)                     | 28.09                              | (0.03)                                  | 28.91                        | (0.03)                                 | 28.56                         | (0.03)                            | 27.03                                | (0.03)                               |
| B <sup>sp</sup> y1   | 42.40   | (0.24)                                 | 31.88                     | (0.15)                     | 29.72                              | (0.16)                                  | 33.69                        | (0.19)                                 | 28.61                         | (0.16)                            | 30.19                                | (0.16)                               |
|                      | q       | $\sigma_{\scriptscriptstyle { m Add}}$ | q                         | $\sigma_{ m Add}$          | q                                  | $\sigma_{\scriptscriptstyle Add}$       | q                            | $\sigma_{\scriptscriptstyle { m Add}}$ | q                             | $\sigma_{\scriptscriptstyle Add}$ | q                                    | $\sigma_{\scriptscriptstyle Add}$    |
| NEFSC spring         | 0.91    | 0.19                                   | 0.75                      | 0.18                       | 0.90                               | 0.19                                    | 0.95                         | 0.19                                   | 0.84                          | 0.19                              | 0.92                                 | 0.19                                 |
| NEFSC fall           | 0.83    | 0.07                                   | 0.73                      | 0.07                       | 0.87                               | 0.07                                    | 0.85                         | 0.07                                   | 0.79                          | 0.07                              | 0.84                                 | 0.07                                 |
| MADMF spring         | 0.20    | 0.13                                   | 0.20                      | 0.13                       | 0.20                               | 0.14                                    | 0.32                         | 0.13                                   | 0.32                          | 0.13                              | 0.32                                 | 0.13                                 |

Appendix A4. Figures.



App. A4, Fig. 1: Spawning biomass and recruitment trajectories for the Base Case with  $\pm 2$  s.e.



App. A4, Fig. 2: Survey and commercial selectivities-at-age estimated for the Base Case.



**App. A4, Fig. 3**: Fits to the abundance indices (top row) and to the survey and commercial catch-at-age data for the Base Case. The second row plots compare the observed and predicted CAA as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white. The last row plots show the comparable standardised residuals for Case 8 (sqrt(p)).



**App. A4, Fig. 4**: Fits to the survey catch-at-length data for the Base Case. The first row plots compare the observed and predicted CAL as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A4, Fig. 5: Comparison of calibration results for the calibration factor estimated within the assessment (Base Case) and calibration factor given.



App. A4, Fig. 6: Spawning biomass trajectories for the Base Case and four sensitivities with different starting year.



**App. A4, Fig. 7**: Spawning biomass trajectories for the Base Case and two sensitivities with different fixed  $\phi$  values. For the Base Case,  $\phi$  is estimated ( $\phi$ =0.14).



App. A4, Fig. 8: Recruitment trajectories for the Base Case and Case 5a for which more weight is given to the CAL data.



App. A4, Fig. 9: Calibration factor.



**App. A4, Fig. 10**: Fits to the stock-recruitment data for the case with an internal Ricker stock-recruitment curve estimated (Case 7) (left-hand plot) and trajectories of recruitment for the Base Case and Case 7.



**App. A4, Fig. 11**: Commercial selectivities (left-hand plot) for cases 9a-b with alternative pre-1982 commercial selectivities and spawning biomass trajectories.



App. A4, Fig. 12: Spawning biomass trajectories for the Base Case and Case 10 with M=0.3.



App. A4, Fig. 13 Retrospective analysis for the Base Case A for spawning biomass and recruitment.



**App. A4, Fig. 14**: Selectivities and spawning biomass trajectories for the Base Case and Cases 11 and 12 for which the selectivity functions indicated are forced to be flat above age 6.



**App.** A4, Fig. 15: Selectivities and spawning biomass trajectories for the Base Case and the sqrt(p) cases (Cases 8, 13 and 14).

## Appendix A4 (Appendices A and B within App. A4)

## APPENDIX A – Data

App. A4 (Append. A), Table A1: Total catch (incl. USA, DWF and recreational landings, and discards) (thousand metric tons) of Atlantic cod from the Gulf of Maine (NAFO Division 5Y), 1964-2012 (Michael Palmer, pers. commn). The revised discard mortality assumptions have been applied. Note that pre-1982 catches have been increased by 25% in the Base Case to allow for levels of discards suggested by recent analyses by the NEFSC. The 2012 catch is assumed to be 6.830 thousand metric tons, as in 2011; some assumption is needed to be able to take account of the Spring 2012 NEFSC survey given that this occurs though equation B.9 which requires this input.

| Year | Total catch | Year | Total catch | Year | Total catch |
|------|-------------|------|-------------|------|-------------|
| 1964 | 3.242       | 1980 | 12.515      | 1996 | 7.757       |
| 1965 | 3.759       | 1981 | 16.512      | 1997 | 5.814       |
| 1966 | 4.225       | 1982 | 17.096      | 1998 | 4.578       |
| 1967 | 5.824       | 1983 | 16.487      | 1999 | 3.078       |
| 1968 | 6.137       | 1984 | 12.868      | 2000 | 5.823       |
| 1969 | 8.155       | 1985 | 14.391      | 2001 | 8.055       |
| 1970 | 7.961       | 1986 | 12.572      | 2002 | 6.509       |
| 1971 | 7.475       | 1987 | 12.005      | 2003 | 6.497       |
| 1972 | 6.927       | 1988 | 10.333      | 2004 | 5.766       |
| 1973 | 6.138       | 1989 | 13.371      | 2005 | 5.441       |
| 1974 | 7.550       | 1990 | 19.314      | 2006 | 4.268       |
| 1975 | 8.788       | 1991 | 20.978      | 2007 | 5.527       |
| 1976 | 9.894       | 1992 | 12.347      | 2008 | 7.375       |
| 1977 | 11.993      | 1993 | 9.960       | 2009 | 8.355       |
| 1978 | 11.890      | 1994 | 9.060       | 2010 | 7.670       |
| 1979 | 10.972      | 1995 | 7.566       | 2011 | 6.830       |

App. A4 (Append. A), Table A2: Mean weight-at-age (kg) at the beginning of the year for the Gulf of Maine cod stock. Values derived from aggregated commercial landings and discard mean weight-at-age data (mid-year) using procedures described by Rivard (1980) (Michael Palmer, pers. commn) and applying the revised mortality assumptions. Pre-1982, the 1982-1991 average mean weight-at-age is assumed; for 2012, the 2002-2011 average mean weight-at-age is used.

|      | 0      | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9      | 10     | 11+    |
|------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| 1982 | 0.0024 | 0.241 | 0.594 | 1.165 | 2.127 | 4.635 | 7.622 | 9.289 | 9.037  | 13.235 | 15.592 | 18.240 |
| 1983 | 0.0077 | 0.050 | 0.501 | 1.114 | 1.894 | 3.136 | 5.539 | 6.549 | 9.962  | 10.565 | 12.076 | 18.713 |
| 1984 | 0.0001 | 0.075 | 0.372 | 1.019 | 2.021 | 2.952 | 4.593 | 7.118 | 7.845  | 11.843 | 12.834 | 16.087 |
| 1985 | 0.0146 | 0.014 | 0.403 | 0.910 | 2.013 | 3.532 | 4.608 | 6.863 | 9.700  | 11.147 | 13.591 | 14.610 |
| 1986 | 0.0009 | 0.104 | 0.316 | 1.077 | 1.917 | 3.670 | 5.504 | 6.908 | 9.315  | 12.169 | 13.018 | 18.102 |
| 1987 | 0.0007 | 0.028 | 0.406 | 0.777 | 2.273 | 3.574 | 5.889 | 8.079 | 9.487  | 11.842 | 14.008 | 16.407 |
| 1988 | 0.0003 | 0.022 | 0.293 | 0.980 | 1.709 | 4.010 | 4.927 | 6.705 | 10.069 | 10.761 | 15.633 | 12.054 |
| 1989 | 0.0223 | 0.027 | 0.292 | 0.887 | 2.179 | 3.172 | 5.578 | 6.945 | 8.799  | 13.032 | 14.593 | 24.532 |
| 1990 | 0.0063 | 0.095 | 0.431 | 0.937 | 1.742 | 3.627 | 5.750 | 8.043 | 10.440 | 13.894 | 16.575 | 22.637 |
| 1991 | 0.0069 | 0.071 | 0.450 | 1.083 | 1.689 | 2.846 | 5.654 | 8.972 | 11.518 | 13.416 | 9.721  | 24.937 |
| 1992 | 0.0116 | 0.028 | 0.476 | 1.215 | 2.026 | 2.564 | 4.629 | 8.832 | 10.453 | 12.827 | 17.092 | 23.406 |
| 1993 | 0.0116 | 0.046 | 0.191 | 1.254 | 1.702 | 3.449 | 4.083 | 7.388 | 12.219 | 12.332 | 15.361 | 23.790 |
| 1994 | 0.0095 | 0.038 | 0.236 | 1.003 | 2.244 | 2.571 | 5.294 | 6.601 | 11.095 | 11.435 | 17.872 | 22.643 |
| 1995 | 0.0122 | 0.051 | 0.275 | 0.946 | 2.021 | 3.934 | 4.722 | 8.526 | 10.045 | 15.741 | 14.877 | 22.643 |
| 1996 | 0.0223 | 0.060 | 0.356 | 1.462 | 1.784 | 2.971 | 6.185 | 8.967 | 12.844 | 14.654 | 19.623 | 22.643 |
| 1997 | 0.0049 | 0.049 | 0.391 | 1.466 | 2.407 | 2.571 | 3.973 | 8.245 | 11.940 | 14.994 | 17.039 | 17.655 |
| 1998 | 0.0015 | 0.059 | 0.256 | 1.445 | 2.245 | 3.423 | 3.558 | 5.739 | 10.442 | 14.585 | 15.340 | 17.655 |
| 1999 | 0.0224 | 0.044 | 0.343 | 1.196 | 2.237 | 3.139 | 4.752 | 5.301 | 8.351  | 12.198 | 17.158 | 17.655 |
| 2000 | 0.0092 | 0.120 | 0.461 | 1.063 | 2.257 | 3.422 | 4.773 | 5.508 | 7.882  | 11.040 | 13.348 | 18.741 |
| 2001 | 0.0229 | 0.097 | 0.456 | 1.305 | 2.420 | 3.851 | 5.091 | 6.513 | 6.912  | 9.042  | 14.823 | 16.934 |
| 2002 | 0.0115 | 0.089 | 0.465 | 1.050 | 2.249 | 3.247 | 5.296 | 6.514 | 7.924  | 10.032 | 9.746  | 18.741 |
| 2003 | 0.0217 | 0.089 | 0.346 | 1.053 | 1.742 | 2.977 | 4.118 | 6.837 | 8.011  | 9.693  | 11.538 | 15.128 |
| 2004 | 0.0105 | 0.066 | 0.351 | 0.971 | 2.110 | 2.620 | 4.199 | 5.908 | 8.627  | 10.747 | 12.280 | 15.612 |
| 2005 | 0.0082 | 0.060 | 0.248 | 0.821 | 1.654 | 3.338 | 3.841 | 5.758 | 7.593  | 10.204 | 13.212 | 15.649 |
| 2006 | 0.0428 | 0.089 | 0.295 | 0.808 | 1.890 | 2.467 | 4.076 | 4.912 | 6.744  | 8.837  | 11.620 | 16.704 |
| 2007 | 0.0086 | 0.124 | 0.450 | 0.925 | 1.771 | 3.005 | 3.723 | 5.020 | 6.329  | 8.703  | 10.979 | 15.470 |
| 2008 | 0.0464 | 0.085 | 0.420 | 1.117 | 1.888 | 2.892 | 3.630 | 5.147 | 6.803  | 8.308  | 12.351 | 16.157 |
| 2009 | 0.0137 | 0.171 | 0.480 | 1.248 | 2.283 | 2.908 | 3.658 | 4.735 | 6.735  | 9.047  | 9.942  | 15.516 |
| 2010 | 0.0061 | 0.100 | 0.589 | 1.168 | 2.328 | 3.198 | 3.685 | 4.778 | 7.153  | 8.815  | 10.755 | 14.649 |
| 2011 | 0.0836 | 0.087 | 0.492 | 1.353 | 1.972 | 3.262 | 4.114 | 4.788 | 5.751  | 10.189 | 11.448 | 18.157 |
| 2012 | 0.0253 | 0.096 | 0.414 | 1.052 | 1.989 | 2.991 | 4.034 | 5.440 | 7.167  | 9.457  | 11.387 | 16.178 |

App. A4 (Append. A), Table A3: Mean weight-at-age (kg) of landings for the Gulf of Maine cod stock applying the revised mortality assumptions (Michael Palmer, pers. commn). Pre-1982, the 1982-1991 average mean weight-at-age is assumed.

|      | 0      | 1      | 2      | 3      | 4     | 5      | 6     | 7      | 8      | 9      | 10     | 11+    |
|------|--------|--------|--------|--------|-------|--------|-------|--------|--------|--------|--------|--------|
| 1982 | 0.013  | 0.356  | 0.858  | 1.514  | 2.606 | 5.067  | 7.065 | 9.620  | 9.772  | 12.642 | 19.230 | 18.240 |
| 1983 | 0.024  | 0.224  | 0.768  | 1.542  | 2.418 | 3.808  | 6.055 | 6.071  | 10.317 | 11.424 | 11.535 | 18.713 |
| 1984 | 0.001  | 0.234  | 0.653  | 1.478  | 2.678 | 3.609  | 5.540 | 8.368  | 10.138 | 13.595 | 14.419 | 16.087 |
| 1985 | 0.039  | 0.206  | 0.733  | 1.404  | 2.819 | 4.658  | 5.884 | 8.502  | 11.244 | 12.256 | 13.587 | 14.610 |
| 1986 | 0.005  | 0.277  | 0.501  | 1.699  | 2.774 | 4.778  | 6.504 | 8.109  | 10.207 | 13.170 | 13.827 | 18.102 |
| 1987 | 0.004  | 0.154  | 0.642  | 1.323  | 3.090 | 4.668  | 7.259 | 10.036 | 11.099 | 13.739 | 14.899 | 16.407 |
| 1988 | 0.003  | 0.122  | 0.577  | 1.667  | 2.360 | 5.206  | 5.200 | 6.193  | 10.103 | 10.434 | 17.787 | 12.054 |
| 1989 | 0.046  | 0.237  | 0.752  | 1.518  | 2.959 | 4.282  | 5.980 | 9.276  | 12.519 | 16.810 | 20.410 | 24.532 |
| 1990 | 0.021  | 0.193  | 0.811  | 1.349  | 2.141 | 4.474  | 7.721 | 10.820 | 11.750 | 15.440 | 16.344 | 22.637 |
| 1991 | 0.014  | 0.236  | 1.113  | 1.601  | 2.281 | 3.894  | 7.144 | 10.429 | 12.261 | 15.276 | 6.122  | 24.937 |
| 1992 | 0.023  | 0.055  | 1.033  | 1.530  | 2.747 | 2.976  | 5.588 | 10.921 | 10.483 | 13.418 | 19.072 | 23.406 |
| 1993 | 0.021  | 0.081  | 0.690  | 1.748  | 2.150 | 4.420  | 5.670 | 9.817  | 13.673 | 12.332 | 17.586 | 23.790 |
| 1994 | 0.022  | 0.058  | 0.730  | 1.712  | 3.085 | 3.251  | 6.335 | 7.684  | 12.542 | 9.563  | 22.008 | 22.643 |
| 1995 | 0.027  | 0.103  | 1.288  | 1.591  | 2.649 | 5.090  | 6.865 | 11.466 | 13.128 | 19.756 | 23.143 | 22.643 |
| 1996 | 0.033  | 0.100  | 1.293  | 2.096  | 2.260 | 3.462  | 7.558 | 11.728 | 14.455 | 16.269 | 19.490 | 22.643 |
| 1997 | 0.017  | 0.064  | 1.351  | 2.128  | 3.022 | 3.074  | 4.699 | 9.000  | 12.156 | 15.625 | 17.749 | 17.655 |
| 1998 | 0.008  | 0.202  | 1.071  | 1.931  | 2.633 | 3.972  | 4.255 | 7.122  | 12.118 | 17.500 | 15.060 | 17.655 |
| 1999 | 0.052  | 0.222  | 0.635  | 1.723  | 2.777 | 3.892  | 5.670 | 6.704  | 9.811  | 12.279 | 16.823 | 17.655 |
| 2000 | 0.030  | 0.282  | 1.081  | 2.150  | 3.316 | 4.325  | 5.898 | 5.352  | 9.331  | 12.401 | 14.506 | 19.056 |
| 2001 | 0.045  | 0.316  | 0.890  | 2.176  | 3.144 | 4.666  | 6.140 | 7.273  | 9.072  | 8.788  | 17.660 | 15.417 |
| 2002 | 0.032  | 0.185  | 0.795  | 1.797  | 2.906 | 3.792  | 6.132 | 6.969  | 8.809  | 11.036 | 10.796 | 19.056 |
| 2003 | 0.038  | 0.202  | 0.809  | 1.843  | 2.378 | 3.654  | 5.112 | 7.649  | 9.191  | 10.871 | 11.890 | 15.176 |
| 2004 | 0.025  | 0.111  | 0.483  | 1.606  | 2.965 | 3.547  | 5.350 | 7.220  | 9.764  | 12.557 | 13.931 | 15.657 |
| 2005 | 0.027  | 0.126  | 0.558  | 1.625  | 2.401 | 4.233  | 4.502 | 6.350  | 8.002  | 10.698 | 13.899 | 15.627 |
| 2006 | 0.071  | 0.289  | 0.648  | 1.493  | 2.932 | 3.357  | 4.463 | 5.562  | 7.430  | 9.779  | 12.646 | 16.704 |
| 2007 | 0.025  | 0.220  | 0.744  | 1.731  | 2.922 | 3.735  | 4.771 | 6.167  | 7.302  | 10.554 | 12.338 | 15.470 |
| 2008 | 0.085  | 0.247  | 0.862  | 2.179  | 2.818 | 3.530  | 3.988 | 5.819  | 7.528  | 9.464  | 14.461 | 16.174 |
| 2009 | 0.032  | 0.337  | 0.911  | 2.153  | 3.126 | 3.575  | 4.368 | 5.959  | 8.000  | 10.894 | 10.454 | 15.523 |
| 2010 | 0.023  | 0.264  | 1.200  | 1.995  | 3.203 | 3.914  | 4.447 | 5.708  | 8.730  | 9.967  | 10.628 | 14.650 |
| 2011 | 0.0856 | 0.3289 | 0.9331 | 2.0561 | 2.874 | 3.8696 | 4.839 | 5.7166 | 5.9528 | 11.876 | 13.15  | 18.157 |
App. A4 (Append. A), Table A4: Mean weight-at-age (kg) in the NEFSC spring and fall surveys, used to compute Albatross converted survey biomass indices.

|          | 0         | 1     | 2     | 3     | 4     | 5      | 6     | 7      | 8      | 9      | 10     | 11+    |
|----------|-----------|-------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|
| NEFSC sp | ring surv | /ey   |       |       |       |        |       |        |        |        |        |        |
| 2009     | 0.000     | 0.031 | 0.523 | 1.441 | 2.067 | 2.601  | 2.876 | 8.067  | 9.930  | 0.000  | 12.919 | -      |
| 2010     | 0.000     | 0.076 | 0.356 | 1.203 | 2.805 | 3.849  | 4.602 | 7.314  | 10.712 | 10.247 | 22.407 | 17.019 |
| 2011     | 0.000     | 0.064 | 0.453 | 1.177 | 1.717 | 2.706  | 3.509 | 5.906  | 8.521  | -      | -      | -      |
| 2012     | 0.000     | 0.082 | 0.517 | 1.299 | 2.060 | 2.462  | 3.235 | 5.047  | 11.576 | 6.323  | -      | -      |
| NEFSC fa | ll survey |       |       |       |       |        |       |        |        |        |        |        |
| 2009     | 0.035     | 0.555 | 1.174 | 3.366 | 4.503 | 10.575 | 6.618 | -      | -      | -      | -      | -      |
| 2010     | 0.019     | 0.335 | 1.170 | 1.774 | 3.904 | 4.784  | 4.548 | 3.461  | -      | -      | -      | 25.000 |
| 2011     | 0.022     | 0.286 | 0.942 | 1.775 | 2.323 | 4.581  | 4.931 | 10.775 | 7.135  | -      | -      | -      |

App. A4 (Append. A), Table A5: Total (commercial and recreational landings and discards) catches-at-age for the Gulf of Maine cod stock, applying the revised mortality assumptions (Michael Palmer, pers. commn).

|      | 0      | 1      | 2       | 3       | 4       | 5       | 6      | 7      | 8     | 9+    |
|------|--------|--------|---------|---------|---------|---------|--------|--------|-------|-------|
| 1982 | 1346   | 448849 | 2926542 | 2287192 | 1430682 | 748755  | 65880  | 94051  | 72553 | 90055 |
| 1983 | 13645  | 597496 | 2462037 | 2913215 | 1201593 | 704010  | 452680 | 50022  | 62542 | 56198 |
| 1984 | 18275  | 370324 | 2129556 | 1675931 | 1643588 | 437453  | 219625 | 105649 | 9495  | 53395 |
| 1985 | 67101  | 505660 | 1944327 | 2405137 | 1151815 | 738096  | 161362 | 107192 | 48359 | 33213 |
| 1986 | 17767  | 760701 | 1747046 | 2747811 | 991982  | 279282  | 202725 | 48016  | 38188 | 47527 |
| 1987 | 100702 | 281794 | 2018317 | 1568334 | 1574499 | 345353  | 89415  | 81032  | 14459 | 37549 |
| 1988 | 3446   | 415081 | 1542790 | 2086633 | 1156925 | 447729  | 67430  | 25560  | 26247 | 9267  |
| 1989 | 43     | 166436 | 1247203 | 2385088 | 1651856 | 521108  | 87147  | 70289  | 9369  | 19564 |
| 1990 | 0      | 65527  | 812544  | 5547767 | 2717623 | 541353  | 189069 | 29703  | 36417 | 43315 |
| 1991 | 3251   | 121627 | 499588  | 942731  | 5561272 | 1037852 | 150670 | 55540  | 25983 | 15805 |
| 1992 | 23803  | 370302 | 830147  | 867564  | 502084  | 2189957 | 226167 | 80181  | 6044  | 5530  |
| 1993 | 26570  | 105929 | 512307  | 2149041 | 944709  | 103328  | 497117 | 41561  | 11264 | 0     |
| 1994 | 11734  | 123996 | 201923  | 1525603 | 1294203 | 266291  | 66224  | 74158  | 28714 | 7870  |
| 1995 | 11572  | 78932  | 319462  | 1321833 | 1260435 | 221653  | 29931  | 6521   | 18184 | 2808  |
| 1996 | 22067  | 37536  | 111569  | 627693  | 2003886 | 405881  | 36651  | 4039   | 491   | 1623  |
| 1997 | 1472   | 69144  | 137484  | 519557  | 467768  | 869161  | 72472  | 5523   | 2272  | 1029  |
| 1998 | 917    | 5941   | 171062  | 492301  | 628941  | 152820  | 205873 | 28696  | 5168  | 2257  |
| 1999 | 63     | 73948  | 90853   | 347840  | 336596  | 172344  | 53699  | 59469  | 12388 | 1067  |
| 2000 | 0      | 24758  | 485043  | 556537  | 813684  | 176640  | 85157  | 12485  | 10521 | 0     |
| 2001 | 0      | 584    | 393951  | 1163770 | 684449  | 385530  | 106600 | 57232  | 8262  | 11577 |
| 2002 | 0      | 16831  | 41591   | 374949  | 912638  | 323797  | 163476 | 66392  | 28087 | 20263 |
| 2003 | 22873  | 44899  | 125587  | 167812  | 582079  | 706098  | 186022 | 75694  | 29224 | 26844 |
| 2004 | 187    | 149420 | 105917  | 609344  | 259720  | 407447  | 251632 | 68378  | 33017 | 27442 |
| 2005 | 1487   | 23545  | 180064  | 159581  | 945815  | 89223   | 246596 | 109148 | 28457 | 31674 |
| 2006 | 231    | 19249  | 59082   | 426566  | 290132  | 461742  | 30341  | 79655  | 39016 | 27343 |
| 2007 | 430    | 12171  | 108471  | 299416  | 976424  | 137404  | 230163 | 7947   | 19244 | 21999 |
| 2008 | 415    | 12156  | 130508  | 598424  | 707392  | 780450  | 86355  | 110576 | 4041  | 16558 |
| 2009 | 99     | 10651  | 101492  | 622453  | 1093273 | 477852  | 304754 | 20896  | 30506 | 9646  |
| 2010 | 213    | 8159   | 83580   | 394486  | 888549  | 668256  | 164291 | 71683  | 11213 | 7611  |
| 2011 | 653    | 8683   | 60526   | 322164  | 589583  | 573856  | 339910 | 34926  | 38408 | 9433  |

App. A4 (Append. A), Table A6: Standardized stratified mean numbers per tow at age and standardized mean weight (kg) per tow of Atlantic cod in NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine, 1968-2012 (Michael Palmer, pers. commn).

|      |       |       |       |       |       |       |       |       |       |       |       |       | Stratified |         |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|---------|
|      |       |       |       |       |       |       |       |       |       |       |       |       | mean       |         |
|      | 0     | 1     | 2     | з     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11+   | wt/tow     | CV      |
| 1968 |       |       |       |       |       |       |       |       |       |       |       |       | 17.480     | (0.153) |
| 1969 |       |       |       |       |       |       |       |       |       |       |       |       | 13.100     | (0.329) |
| 1970 | 0.000 | 0.159 | 0.124 | 0.053 | 0.098 | 0.290 | 0.475 | 0.589 | 0.073 | 0.045 | 0.076 | 0.210 | 11.089     | (0.237) |
| 1971 | 0.000 | 0.069 | 0.109 | 0.099 | 0.280 | 0.086 | 0.096 | 0.280 | 0.207 | 0.142 | 0.050 | 0.013 | 7.004      | (0.211) |
| 1972 | 0.053 | 0.300 | 0.153 | 0.499 | 0.208 | 0.205 | 0.052 | 0.083 | 0.119 | 0.300 | 0.027 | 0.059 | 8.031      | (0.233) |
| 1973 | 0.000 | 0.053 | 4,273 | 0.917 | 0.614 | 0.384 | 0.144 | 0.106 | 0.186 | 0.276 | 0.186 | 0.386 | 18.807     | (0.415) |
| 1974 | 0.164 | 0.311 | 0.081 | 1.534 | 0.177 | 0.231 | 0.082 | 0.000 | 0.064 | 0.038 | 0.089 | 0.131 | 7.419      | (0.199) |
| 1975 | 0.012 | 0.094 | 0.707 | 0.095 | 1.139 | 0 246 | 0.073 | 0.000 | 0.006 | 0.025 | 0.028 | 0.088 | 6.039      | (0.249) |
| 1976 | 0.000 | 0.052 | 0.253 | 1 114 | 0.150 | 0.870 | 0 131 | 0.056 | 0.038 | 0.000 | 0.036 | 0.081 | 7 556      | (0.166) |
| 1977 | 0.000 | 0.068 | 0.264 | 0.460 | 2 015 | 0 139 | 0.775 | 0.000 | 0.114 | 0.000 | 0.000 | 0.038 | 8 541      | (0.208) |
| 1079 | 0.000 | 0.070 | 0.093 | 0.207 | 0 292 | 0.764 | 0.094 | 0.226 | 0.012 | 0.109 | 0.000 | 0.030 | 7 697      | (0.200) |
| 1070 | 0.000 | 0.070 | 1 407 | 0.195 | 0.385 | 0.201 | 0.004 | 0.004 | 0.104 | 0.108 | 0.000 | 0.022 | 7.555      | (0.175) |
| 1020 | 0.070 | 0.027 | 0.500 | 0.100 | 0.172 | 0.301 | 0.345 | 0.034 | 0.000 | 0.105 | 0.031 | 0.020 | 6 333      | (0.193) |
| 1001 | 0.070 | 1.001 | 0.500 | 0.450 | 1 335 | 0.294 | 0.220 | 0.000 | 0.000 | 0.103 | 0.020 | 0.000 | 10 650     | (0.102) |
| 1901 | 0.000 | 1.091 | 0.019 | 0.850 | 1.555 | 0.510 | 0.504 | 0.080 | 0.144 | 0.091 | 0.000 | 0.000 | 10.050     | (0.205) |
| 1982 | 0.014 | 0.357 | 1.040 | 0.498 | 0.737 | 0.848 | 0.083 | 0.135 | 0.000 | 0.040 | 0.010 | 0.000 | 8.616      | (0.223) |
| 1983 | 0.013 | 0.610 | 0.968 | 1.042 | 0.453 | 0.336 | 0.250 | 0.060 | 0.000 | 0.0/1 | 0.033 | 0.077 | 10.962     | (0.225) |
| 1984 | 0.000 | 0.151 | 1.309 | 0.987 | 0.853 | 0.229 | 0.047 | 0.090 | 0.000 | 0.000 | 0.000 | 0.000 | 6.143      | (0.324) |
| 1985 | 0.000 | 0.029 | 0.238 | 0.676 | 0.612 | 0.707 | 0.094 | 0.109 | 0.026 | 0.026 | 0.000 | 0.000 | 7.645      | (0.223) |
| 1986 | 0.000 | 0.537 | 0.259 | 0.767 | 0.218 | 0.075 | 0.046 | 0.038 | 0.000 | 0.000 | 0.000 | 0.018 | 3.476      | (0.197) |
| 1987 | 0.000 | 0.030 | 0.471 | 0.191 | 0.222 | 0.075 | 0.000 | 0.068 | 0.011 | 0.000 | 0.000 | 0.015 | 1.976      | (0.314) |
| 1988 | 0.029 | 0.719 | 0.926 | 0.791 | 0.283 | 0.205 | 0.099 | 0.036 | 0.020 | 0.020 | 0.000 | 0.000 | 3.603      | (0.281) |
| 1989 | 0.000 | 0.025 | 0.609 | 0.712 | 0.630 | 0.069 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.424      | (0.207) |
| 1990 | 0.000 | 0.009 | 0.233 | 1.325 | 0.669 | 0.076 | 0.032 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 3.077      | (0.280) |
| 1991 | 0.000 | 0.028 | 0.077 | 0.233 | 1.750 | 0.247 | 0.041 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 2.891      | (0.240) |
| 1992 | 0.000 | 0.050 | 0.247 | 0.223 | 0.248 | 1.368 | 0.213 | 0.073 | 0.000 | 0.012 | 0.000 | 0.000 | 8.627      | (0.374) |
| 1993 | 0.000 | 0.201 | 0.507 | 0.804 | 0.364 | 0.084 | 0.446 | 0.055 | 0.023 | 0.000 | 0.023 | 0.000 | 5.875      | (0.347) |
| 1994 | 0.000 | 0.015 | 0.316 | 0.407 | 0.201 | 0.083 | 0.053 | 0.142 | 0.009 | 0.027 | 0.018 | 0.000 | 2.428      | (0.216) |
| 1995 | 0.000 | 0.037 | 0.187 | 1.165 | 0.321 | 0.147 | 0.034 | 0.000 | 0.011 | 0.000 | 0.028 | 0.000 | 2.432      | (0.257) |
| 1996 | 0.000 | 0.057 | 0.022 | 0.586 | 1.355 | 0.385 | 0.060 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 5.427      | (0.275) |
| 1997 | 0.000 | 0.159 | 0.139 | 0.390 | 0.271 | 0.874 | 0.244 | 0.115 | 0.000 | 0.000 | 0.000 | 0.000 | 5.616      | (0.192) |
| 1998 | 0.000 | 0.018 | 0.228 | 0.359 | 0.513 | 0.143 | 0.408 | 0.021 | 0.020 | 0.000 | 0.000 | 0.000 | 4.180      | (0.324) |
| 1999 | 0.000 | 0.166 | 0.342 | 0.726 | 0.351 | 0.305 | 0.134 | 0.266 | 0.000 | 0.000 | 0.000 | 0.011 | 5.090      | (0.320) |
| 2000 | 0.026 | 1.173 | 0.737 | 0.438 | 0.485 | 0.099 | 0.092 | 0.011 | 0.022 | 0.000 | 0.000 | 0.000 | 3.211      | (0.155) |
| 2001 | 0.000 | 0.029 | 0.355 | 0.683 | 0.510 | 0.342 | 0.065 | 0.097 | 0.055 | 0.000 | 0.011 | 0.000 | 6.215      | (0.327) |
| 2002 | 0.000 | 0.340 | 0.045 | 0.548 | 1.584 | 0.606 | 0.342 | 0.185 | 0.057 | 0.017 | 0.000 | 0.000 | 10.934     | (0.215) |
| 2003 | 0.000 | 0.075 | 0.825 | 0.059 | 0.718 | 1.072 | 0.387 | 0.340 | 0.081 | 0.082 | 0.030 | 0.011 | 9.495      | (0.368) |
| 2004 | 0.000 | 0.136 | 0.045 | 0.230 | 0.116 | 0.208 | 0.213 | 0.011 | 0.011 | 0.010 | 0.000 | 0.000 | 2.412      | (0.293) |
| 2005 | 0.000 | 0.029 | 0.739 | 0.081 | 0.623 | 0.011 | 0.138 | 0.128 | 0.015 | 0.000 | 0.000 | 0.000 | 2.701      | (0.248) |
| 2006 | 0.028 | 0.184 | 0.237 | 0.434 | 0.049 | 0.197 | 0.023 | 0.126 | 0.069 | 0.000 | 0.015 | 0.000 | 2.702      | (0.249) |
| 2007 | 0.000 | 0.100 | 3.422 | 3.077 | 4,446 | 0.437 | 0.796 | 0.075 | 0.041 | 0.000 | 0.000 | 0.000 | 15.811     | (0.540) |
| 2008 | 0.000 | 0.079 | 1,165 | 3,930 | 1.582 | 1.099 | 0.053 | 0.082 | 0.000 | 0.000 | 0.000 | 0.000 | 10.823     | (0.609) |
| 2009 | 0.000 | 0.063 | 0.279 | 1.050 | 1.135 | 0.600 | 0.438 | 0.008 | 0.022 | 0.000 | 0.004 | 0.000 | 7.161      | (0.491) |
| 2010 | 0.000 | 0.059 | 0.279 | 0.335 | 0.197 | 0.229 | 0.113 | 0.043 | 0.016 | 0.010 | 0.005 | 0.010 | 3.336      | (0.264) |
| 2011 | 0,000 | 0.005 | 0.024 | 0.140 | 0.383 | 0,189 | 0.086 | 0.033 | 0.035 | 0.000 | 0.000 | 0.000 | 2.133      | (0,201) |
| 2012 | 0,000 | 0.069 | 0,105 | 0.224 | 0.243 | 0.159 | 0.051 | 0.036 | 0.004 | 0.003 | 0.000 | 0.000 | 1 645      | (0,209) |
|      |       |       |       |       |       |       |       |       |       |       |       |       |            |         |

App. A4 (Append. A), Table A7: Standardized stratified mean numbers per tow at age and standardized mean weight (kg) per tow of Atlantic cod in NEFSC offshore autumn research vessel bottom trawl surveys in the Gulf of Maine, 1964-2011 (Michael Palmer, pers. commn).

|      |       |                   |          |       |       |       |       |       |       |       |            |       | Stratified |         |
|------|-------|-------------------|----------|-------|-------|-------|-------|-------|-------|-------|------------|-------|------------|---------|
|      |       |                   |          |       |       |       |       |       |       |       |            |       | mean       |         |
|      | 0     | 1                 | 2        | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10         | 11+   | wt/tow     | CV      |
| 1964 | -     | 5. <del>.</del> 5 |          | -     | -     | 1.70  | -     | -     |       | -     | -          |       | 22.799     | (0.496) |
| 1965 |       |                   | -        |       |       |       | -     |       |       | -     | -          |       | 12.089     | (0.273) |
| 1966 |       | -                 |          | -     | -     |       | -     | •     | -     |       | ÷.         |       | 12.838     | (0.227) |
| 1967 | -     | -                 | <u>_</u> | -     | -     |       | -     | -     |       | -     | <u>u</u> 2 |       | 9.313      | (0.219) |
| 1968 | -     |                   | 37       | -     | 1.00  | 100   | -     | 72    | 1.5   |       | <b>7</b> 3 |       | 19.437     | (0.198) |
| 1969 |       |                   | 54 - C   | -     | -     |       | -     | •     | -     | -     |            |       | 15.154     | (0.217) |
| 1970 | 0.743 | 0.938             | 0.254    | 0.520 | 0.336 | 0.487 | 0.424 | 0.836 | 0.130 | 0.090 | 0.037      | 0.110 | 16.442     | (0.248) |
| 1971 | 1.334 | 0.207             | 0.224    | 0.190 | 0.607 | 0.444 | 0.509 | 0.222 | 0.280 | 0.193 | 0.031      | 0.121 | 16.529     | (0.307) |
| 1972 | 0.031 | 5,663             | 1.118    | 1.595 | 0.181 | 0.072 | 0.122 | 0.031 | 0.121 | 0.351 | 0.000      | 0.016 | 12.988     | (0.199) |
| 1973 | 0.638 | 0.327             | 2.146    | 0.179 | 0.540 | 0.191 | 0.055 | 0.018 | 0.039 | 0.182 | 0.122      | 0.016 | 8.764      | (0.267) |
| 1974 | 0.265 | 1.131             | 0.267    | 1.922 | 0.125 | 0.276 | 0.000 | 0.052 | 0.036 | 0.066 | 0.000      | 0.189 | 8.959      | (0.201) |
| 1975 | 0.006 | 0.223             | 3.028    | 0.139 | 2.354 | 0.250 | 0.105 | 0.020 | 0.000 | 0.000 | 0.000      | 0.018 | 8,619      | (0.153) |
| 1976 | 0.000 | 0.209             | 0.216    | 0.578 | 0.104 | 0.835 | 0.044 | 0.099 | 0.000 | 0.000 | 0.063      | 0.000 | 6,740      | (0.214) |
| 1977 | 0.000 | 0.046             | 0.446    | 0.456 | 1.151 | 0.133 | 0.604 | 0.024 | 0.083 | 0.021 | 0.061      | 0.048 | 10,199     | (0.126) |
| 1978 | 0.241 | 1 411             | 0.359    | 1 141 | 0.661 | 1 450 | 0.101 | 0 269 | 0.012 | 0.082 | 0.000      | 0.047 | 12,899     | (0.151) |
| 1979 | 0.000 | 0 364             | 0.617    | 0 131 | 0.696 | 0.319 | 0 754 | 0.056 | 0 135 | 0.000 | 0.053      | 0.018 | 13 927     | (0.128) |
| 1980 | 0.027 | 1 319             | 2 558    | 1 664 | 0.518 | 0.236 | 0.402 | 0.192 | 0.022 | 0.012 | 0.000      | 0.085 | 14 202     | (0.153) |
| 1091 | 0.010 | 0.591             | 0 200    | 0.469 | 0.509 | 0.097 | 0.091 | 0.091 | 0.000 | 0.000 | 0.028      | 0.000 | 7 522      | (0.222) |
| 1002 | 0.000 | 0.001             | 2 764    | 2 476 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 0.020      | 0.000 | 15 010     | (0.570) |
| 1002 | 0.000 | 0.205             | 0.005    | 0.757 | 0.371 | 0.222 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 0 416      | (0.100) |
| 1903 | 0.000 | 0.505             | 0.903    | 0.757 | 0.207 | 0.250 | 0.104 | 0.000 | 0.000 | 0.000 | 0.000      | 0.005 | 0.410      | (0.100) |
| 1904 | 0.000 | 0.315             | 0.410    | 0.560 | 0.304 | 0.190 | 0.194 | 0.002 | 0.000 | 0.010 | 0.000      | 0.000 | 0.755      | (0.354) |
| 1985 | 0.218 | 0.445             | 0.917    | 0.627 | 0.201 | 0.240 | 0.064 | 0.000 | 0.034 | 0.070 | 0.000      | 0.000 | 8.204      | (0.354) |
| 1960 | 0.000 | 0.594             | 0.404    | 0.626 | 0.308 | 0.075 | 0.041 | 0.000 | 0.000 | 0.045 | 0.000      | 0.000 | 4.715      | (0.226) |
| 1987 | 0.128 | 0.570             | 1.388    | 0.586 | 0.198 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 3.394      | (0.234) |
| 1988 | 0.000 | 1.889             | 2.300    | 1.069 | 0.367 | 0.146 | 0.000 | 0.044 | 0.000 | 0.011 | 0.011      | 0.000 | 6.616      | (0.232) |
| 1989 | 0.000 | 0.145             | 2.468    | 1.458 | 0.283 | 0.138 | 0.053 | 0.000 | 0.009 | 0.000 | 0.000      | 0.000 | 4.535      | (0.181) |
| 1990 | 0.000 | 0.057             | 0.218    | 1.788 | 0.611 | 0.255 | 0.048 | 0.010 | 0.000 | 0.000 | 0.000      | 0.000 | 4.912      | (0.204) |
| 1991 | 0.009 | 0.144             | 0.151    | 0.230 | 0.621 | 0.075 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000      | 0.000 | 2.782      | (0.246) |
| 1992 | 0.059 | 0.289             | 0.448    | 0.144 | 0.041 | 0.327 | 0.126 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 2.448      | (0.243) |
| 1993 | 0.031 | 0.210             | 0.575    | 0.361 | 0.017 | 0.000 | 0.038 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 1.003      | (0.263) |
| 1994 | 0.032 | 0.184             | 0.909    | 0.816 | 0.093 | 0.051 | 0.000 | 0.045 | 0.000 | 0.000 | 0.000      | 0.000 | 2.737      | (0.292) |
| 1995 | 0.008 | 0.068             | 0.308    | 1.226 | 0.304 | 0.082 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 3.665      | (0.325) |
| 1996 | 0.029 | 0.122             | 0.379    | 0.231 | 0.516 | 0.050 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 2.352      | (0.249) |
| 1997 | 0.000 | 0.297             | 0.091    | 0.165 | 0.168 | 0.151 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 1.872      | (0.307) |
| 1998 | 0.050 | 0.085             | 0.342    | 0.110 | 0.185 | 0.041 | 0.031 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 1.501      | (0.287) |
| 1999 | 0.025 | 0.432             | 0.375    | 0.590 | 0.244 | 0.122 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 3.505      | (0.193) |
| 2000 | 0.008 | 0.540             | 0.981    | 0.399 | 0.492 | 0.140 | 0.010 | 0.000 | 0.034 | 0.000 | 0.000      | 0.000 | 4.652      | (0.332) |
| 2001 | 0.018 | 0.000             | 0.171    | 0.720 | 0.478 | 0.356 | 0.124 | 0.092 | 0.000 | 0.023 | 0.000      | 0.000 | 7.324      | (0.279) |
| 2002 | 0.000 | 0.269             | 0.104    | 0.333 | 2.683 | 1.070 | 0.750 | 0.077 | 0.043 | 0.000 | 0.000      | 0.000 | 24.659     | (0.686) |
| 2003 | 0.542 | 0.461             | 0.186    | 0.216 | 0.518 | 0.451 | 0.071 | 0.062 | 0.000 | 0.011 | 0.000      | 0.011 | 5.988      | (0.251) |
| 2004 | 1.369 | 0.661             | 0.172    | 0.577 | 0.254 | 0.250 | 0.149 | 0.057 | 0.023 | 0.010 | 0.011      | 0.000 | 4.906      | (0.214) |
| 2005 | 0.034 | 0.153             | 0.378    | 0.078 | 0.456 | 0.023 | 0.090 | 0.082 | 0.023 | 0.021 | 0.000      | 0.000 | 2.897      | (0.228) |
| 2006 | 0.064 | 1.241             | 0.599    | 1.007 | 0.252 | 0.293 | 0.037 | 0.053 | 0.036 | 0.000 | 0.000      | 0.014 | 4.229      | (0.188) |
| 2007 | 0.011 | 0.136             | 0.863    | 0.395 | 0.496 | 0.023 | 0.067 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 2.714      | (0.277) |
| 2008 | 0.165 | 0.650             | 1.227    | 1.060 | 0.189 | 0.139 | 0.000 | 0.000 | 0.000 | 0.010 | 0.021      | 0.000 | 5.307      | (0.285) |
| 2009 | 0.020 | 0.660             | 2.096    | 0.314 | 0.277 | 0.045 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000      | 0.000 | 5.845      | (0,429) |
| 2010 | 0.008 | 0.094             | 0.132    | 0.290 | 0.288 | 0.092 | 0.023 | 0.013 | 0.000 | 0.000 | 0.000      | 0.006 | 2.572      | (0.304) |
| 2011 | 0.036 | 0.060             | 0.091    | 0.210 | 0.304 | 0.175 | 0.078 | 0.005 | 0.031 | 0.000 | 0.000      | 0.000 | 2.647      | (0.336) |
|      |       |                   |          |       |       |       |       |       |       |       |            |       |            | 1       |

App. A4 (Append. A), Table A8: Stratified mean catch per tow in numbers and weight (kg) of Atlantic cod in State of Massachusetts inshore spring bottom trawl surveys in territorial waters adjacent to the Gulf of Maine (Mass. Regions 4-5), 1978-2012 (Michael Palmer, pers. commn).

| <u>,</u> , |         |        |        |        |       |       |       |       |       |       |       |       | Stratified |         |
|------------|---------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|------------|---------|
|            |         |        |        |        |       |       |       |       |       |       |       |       | mean       |         |
|            | 0       | 1      | 2      | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11+   | wt/tow     | CV      |
| 1978       |         |        |        |        |       |       |       |       |       |       |       |       | 11.058     | (0.138) |
| 1979       |         |        |        |        |       |       |       |       |       |       |       |       | 14.276     | (0.219) |
| 1980       |         |        |        |        |       |       |       |       |       |       |       |       | 14.509     | (0.128) |
| 1981       |         |        |        |        |       |       |       |       |       |       |       |       | 18.689     | (0.265) |
| 1982       | 1.668   | 13.218 | 6.649  | 2.921  | 1.024 | 0.216 | 0.049 | 0.046 | 0.050 | 0.000 | 0.000 | 0.000 | 12.161     | (0.175) |
| 1983       | 0.718   | 30.253 | 17.570 | 4.710  | 0.347 | 1.121 | 0.075 | 0.023 | 0.033 | 0.000 | 0.000 | 0.000 | 18.746     | (0.153) |
| 1984       | 0.257   | 1.898  | 5.090  | 2.101  | 0.751 | 0.147 | 0.086 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.240      | (0.259) |
| 1985       | 1.569   | 1.670  | 2.695  | 2.024  | 0.498 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4.765      | (0.194) |
| 1986       | 1.075   | 18.031 | 3.376  | 0.903  | 0.582 | 0.100 | 0.023 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.841      | (0.354) |
| 1987       | 0.725   | 8.622  | 5.376  | 2.045  | 0.168 | 0.147 | 0.053 | 0.000 | 0.000 | 0.070 | 0.000 | 0.000 | 7.865      | (0.271) |
| 1988       | 1.895   | 10.409 | 6.750  | 1.927  | 1.211 | 0.016 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.703      | (0.237) |
| 1989       | 0.298   | 21.463 | 22.947 | 6.868  | 0.513 | 0.108 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 17.346     | (0.342) |
| 1990       | 4.930   | 4.972  | 5.938  | 14.182 | 2.149 | 0.155 | 0.083 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 15.879     | (0.341) |
| 1991       | 0.355   | 5.331  | 2.295  | 1.801  | 3.669 | 0.249 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 8.730      | (0.122) |
| 1992       | 1.506   | 4.379  | 5.699  | 3.444  | 0.484 | 1.301 | 0.066 | 0.044 | 0.000 | 0.000 | 0.000 | 0.000 | 8.766      | (0.321) |
| 1993       | 80.090  | 2.842  | 6.100  | 2.509  | 0.879 | 0.166 | 0.074 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 5.861      | (0.270) |
| 1994       | 4.627   | 5.406  | 3.883  | 1.703  | 0.608 | 0.131 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4.334      | (0.241) |
| 1995       | 11.998  | 5.985  | 2.420  | 2.408  | 0.525 | 0.028 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.993      | (0.225) |
| 1996       | 8.843   | 0.777  | 0.497  | 0.955  | 1.590 | 0.299 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.152      | (0.305) |
| 1997       | 12.431  | 2.910  | 1.035  | 0.920  | 0.190 | 0.383 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.500      | (0.250) |
| 1998       | 23.481  | 1.487  | 0.924  | 0.779  | 0.637 | 0.034 | 0.211 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 3.250      | (0.468) |
| 1999       | 143.000 | 11.832 | 2.407  | 2.275  | 0.735 | 0.630 | 0.036 | 0.127 | 0.017 | 0.000 | 0.000 | 0.000 | 8.997      | (0.261) |
| 2000       | 2.151   | 35.360 | 6.995  | 2.371  | 2.316 | 0.784 | 0.663 | 0.059 | 0.073 | 0.000 | 0.000 | 0.000 | 20.604     | (0.459) |
| 2001       | 25.987  | 0.084  | 4.998  | 4.710  | 3.448 | 1.961 | 0.323 | 0.227 | 0.106 | 0.000 | 0.000 | 0.000 | 26.445     | (0.536) |
| 2002       | 0.924   | 19.340 | 0.220  | 1.379  | 1.145 | 0.561 | 0.318 | 0.111 | 0.253 | 0.025 | 0.049 | 0.012 | 11.158     | (0.390) |
| 2003       | 0.000   | 17.109 | 5.496  | 0.439  | 1.938 | 0.937 | 0.221 | 0.074 | 0.014 | 0.025 | 0.000 | 0.014 | 10.984     | (0.219) |
| 2004       | 116.135 | 8.927  | 1.882  | 2.627  | 0.361 | 1.083 | 0.455 | 0.076 | 0.029 | 0.000 | 0.014 | 0.000 | 8.147      | (0.278) |
| 2005       | 179.479 | 5.524  | 4.141  | 0.795  | 1.955 | 0.263 | 0.663 | 0.243 | 0.094 | 0.105 | 0.000 | 0.000 | 10.402     | (0.197) |
| 2006       | 0.000   | 9.992  | 7.139  | 3.930  | 0.525 | 1.532 | 0.109 | 0.057 | 0.000 | 0.017 | 0.028 | 0.000 | 9.177      | (0.181) |
| 2007       | 49.323  | 3.776  | 3.078  | 2.303  | 2.163 | 0.343 | 0.519 | 0.025 | 0.046 | 0.000 | 0.000 | 0.000 | 8.430      | (0.251) |
| 2008       | 456.954 | 7.275  | 10.336 | 3.242  | 2.287 | 1.695 | 0.155 | 0.155 | 0.000 | 0.000 | 0.000 | 0.000 | 12.229     | (0.215) |
| 2009       | 466.098 | 8.907  | 2.350  | 1.654  | 1.045 | 0.348 | 0.112 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 4.489      | (0.187) |
| 2010       | 1.165   | 2.415  | 1.393  | 1.423  | 0.819 | 0.678 | 0.129 | 0.000 | 0.000 | 0.000 | 0.052 | 0.000 | 5.645      | (0.456) |
| 2011       | 55.378  | 0.326  | 1.001  | 0.621  | 0.933 | 0.558 | 0.139 | 0.086 | 0.021 | 0.000 | 0.000 | 0.000 | 4.519      | (0.424) |
| 2012       | 6.239   | 3.368  | 0.671  | 0.446  | 0.304 | 0.415 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.276      | (0.401) |

App. A4 (Append. A), Table A9: Percentage of mature females for each age for the Gulf of Maine cod stock (Michael Palmer, pers. commn).

| 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11+   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.025 | 0.092 | 0.287 | 0.613 | 0.862 | 0.961 | 0.990 | 0.997 | 0.999 | 1.000 | 1.000 | 1.000 |

App. A4 (Append. A), Table A10: Length frequency distributions for NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

|        | 1       | NEFSC spr | ing survey | r      | NEF    | SC call su | vey     |
|--------|---------|-----------|------------|--------|--------|------------|---------|
| Year   | 2009    | 2010      | 2011       | 2012   | 2009   | 2010       | 2011    |
| -25cm  | 0.5634  | 0.4138    | 0.0286     | 0.4159 | 0.3967 | 0.0605     | 0.2489  |
| 26cm   | 0.0496  | 0.0189    | 0.0000     | 0.0113 | 0.1330 | 0.0283     | 0.0850  |
| 27cm   | 0.0425  | 0.0756    | 0.0000     | 0.0057 | 0.1731 | 0.0142     | 0.0283  |
| 28cm   | 0.0638  | 0.1501    | 0.0000     | 0.0170 | 0.1251 | 0.0000     | 0.0142  |
| 29cm   | 0.0553  | 0.0945    | 0.0000     | 0.0057 | 0.1330 | 0.0283     | 0.0000  |
| 30cm   | 0.0283  | 0.1134    | 0.0000     | 0.0113 | 0.2330 | 0.0567     | 0.0142  |
| 31cm   | 0.0544  | 0.1397    | 0.0486     | 0.0057 | 0.2834 | 0.0283     | 0.0136  |
| 32cm   | 0.0142  | 0.0945    | 0.0113     | 0.0337 | 0.4412 | 0.1134     | 0.0377  |
| 33cm   | 0.0213  | 0.0935    | 0.0113     | 0.0113 | 0.5951 | 0.0425     | 0.0142  |
| 34cm   | 0.0958  | 0.1572    | 0.0000     | 0.0404 | 0.9068 | 0.0567     | 0.0506  |
| 35cm   | 0.0743  | 0.1407    | 0.0227     | 0.01/0 | 0./14/ | 0.0142     | 0.0283  |
| 37cm   | 0.0605  | 0.1029    | 0.0000     | 0.0362 | 0.0000 | 0.0394     | 0.0142  |
| 38cm   | 0.1204  | 0.0005    | 0.0113     | 0.0203 | 0.5014 | 0.0425     | 0.0000  |
| 39cm   | 0.1748  | 0.0567    | 0.0000     | 0.0659 | 0.3400 | 0.0142     | 0.0543  |
| 40cm   | 0.1559  | 0.0283    | 0.0431     | 0.0548 | 0.2516 | 0.0242     | 0.0283  |
| 41cm   | 0.1629  | 0.0283    | 0.0227     | 0.0453 | 0.2888 | 0.0425     | 0.0364  |
| 42cm   | 0.1771  | 0.0276    | 0.0599     | 0.0639 | 0.3103 | 0.0850     | 0.0380  |
| 43cm   | 0.1565  | 0.0378    | 0.0793     | 0.0564 | 0.2834 | 0.0425     | 0.0401  |
| 44cm   | 0.2125  | 0.0378    | 0.0907     | 0.0860 | 0.3400 | 0.0283     | 0.0222  |
| 45cm   | 0.2287  | 0.0378    | 0.0340     | 0.0746 | 0.3280 | 0.0384     | 0.0640  |
| 46cm   | 0.2196  | 0.0283    | 0.0214     | 0.0380 | 0.2776 | 0.0283     | 0.0567  |
| 47cm   | 0.1913  | 0.0189    | 0.0340     | 0.0434 | 0.1901 | 0.0242     | 0.0000  |
| 48cm   | 0.2371  | 0.0095    | 0.0340     | 0.0283 | 0.2692 | 0.0425     | 0.0364  |
| 49cm   | 0.2017  | 0.0283    | 0.0214     | 0.0394 | 0.2125 | 0.0343     | 0.0623  |
| 50cm   | 0.2240  | 0.064/    | 0.0793     | 0.0510 | 0.1700 | 0.0283     | 0.0647  |
| 52cm   | 0.1845  | 0.0095    | 0.0441     | 0.0264 | 0.0951 | 0.0394     | 0.0384  |
| 53cm   | 0.2122  | 0.0000    | 0.0680     | 0.0394 | 0.0992 | 0.0142     | 0.0425  |
| 54cm   | 0.2517  | 0.1236    | 0.0826     | 0.0567 | 0.0809 | 0.0425     | 0.0506  |
| 55cm   | 0.3245  | 0.0322    | 0.0340     | 0.0453 | 0.0708 | 0.0384     | 0.0330  |
| 56cm   | 0.1946  | 0.0646    | 0.0700     | 0.0491 | 0.0000 | 0.0425     | 0.0599  |
| 57cm   | 0.2046  | 0.0276    | 0.0441     | 0.0377 | 0.0492 | 0.0567     | 0.0000  |
| 58cm   | 0.2358  | 0.0370    | 0.0582     | 0.0644 | 0.0384 | 0.0242     | 0.0000  |
| 59cm   | 0.2347  | 0.0455    | 0.0000     | 0.0519 | 0.0686 | 0.0257     | 0.0161  |
| 60cm   | 0.2537  | 0.0444    | 0.0227     | 0.0349 | 0.0425 | 0.0142     | 0.0383  |
| 61cm   | 0.2547  | 0.0000    | 0.0803     | 0.0511 | 0.0447 | 0.0242     | 0.0588  |
| 62cm   | 0.1164  | 0.0081    | 0.0214     | 0.0227 | 0.0307 | 0.0401     | 0.0383  |
| 63cm   | 0.2003  | 0.0180    | 0.0113     | 0.0154 | 0.0142 | 0.0236     | 0.0222  |
| 65cm   | 0.0241  | 0.0227    | 0.0214     | 0.0408 | 0.0874 | 0.0142     | 0.0222  |
| 66cm   | 0.0611  | 0.0189    | 0.0467     | 0.0170 | 0.0667 | 0.0401     | 0.0303  |
| 67cm   | 0.0850  | 0.0544    | 0.0101     | 0.0321 | 0.0201 | 0.0242     | 0.0303  |
| 68cm   | 0.0414  | 0.0276    | 0.0227     | 0.0154 | 0.0196 | 0.0848     | 0.0401  |
| 69cm   | 0.0370  | 0.0000    | 0.0372     | 0.0154 | 0.0142 | 0.0000     | 0.0481  |
| 70cm   | 0.0923  | 0.0632    | 0.0259     | 0.0170 | 0.0283 | 0.0201     | 0.0581  |
| 71cm   | 0.0387  | 0.0161    | 0.0101     | 0.0097 | 0.0142 | 0.0353     | 0.0283  |
| 72cm   | 0.0287  | 0.0719    | 0.0322     | 0.0057 | 0.0696 | 0.0236     | 0.0259  |
| 73cm   | 0.0259  | 0.0322    | 0.0349     | 0.0000 | 0.0350 | 0.0310     | 0.0420  |
| 74cm   | 0.0128  | 0.0423    | 0.0113     | 0.0097 | 0.0108 | 0.0142     | 0.0081  |
| 75cm   | 0.0199  | 0.0000    | 0.0101     | 0.0000 | 0.0101 | 0.0360     | 0.0081  |
| 76cm   | 0.0704  | 0.0081    | 0.0000     | 0.0000 | 0.0283 | 0.0840     | 0.0222  |
| 70cm   | 0.0058  | 0.0161    | 0.0000     | 0.0196 | 0.0142 | 0.0000     | 0.0222  |
| 79cm   | 0.00115 | 0.0181    | 0.0101     | 0.0057 | 0.0000 | 0.0201     | 0.0109  |
| 80cm   | 0.0270  | 0.0181    | 0.0101     | 0.0040 | 0.0000 | 0.0101     | 0.0000  |
| 81cm   | 0.0270  | 0.0343    | 0.0000     | 0.0054 | 0.0000 | 0.0000     | 0.0540  |
| 82cm   | 0.0000  | 0.0000    | 0.0101     | 0.0000 | 0.0101 | 0.0000     | 0.0222  |
| 83cm   | 0.0283  | 0.0000    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0161  |
| 84cm   | 0.0115  | 0.0489    | 0.0000     | 0.0000 | 0.0000 | 0.0454     | 0.0000  |
| 85cm   | 0.0115  | 0.0081    | 0.0259     | 0.0000 | 0.0000 | 0.0236     | 0.0081  |
| 86cm   | 0.0071  | 0.0262    | 0.0101     | 0.0000 | 0.0000 | 0.0101     | 0.0000  |
| 87cm   | 0.0186  | 0.0081    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0000  |
| 88cm   | 0.0058  | 0.0000    | 0.0000     | 0.0057 | 0.0142 | 0.0101     | 0.0142  |
| 89cm   | 0.0058  | 0.0161    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0000  |
| 90cm   | 0.0071  | 0.0081    | 0.0113     | 0.0000 | 0.0101 | 0.0000     | 0.0000  |
| 91cm   | 0.0000  | 0.0000    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0000  |
| 92cm   | 0.0058  | 0.0000    | 0.0000     | 0.0057 | 0.0000 | 0.0000     | 0.0091  |
| 94cm   | 0.0058  | 0.0081    | 0.0340     | 0.0000 | 0.0000 | 0.0000     | 0.00001 |
| 95cm   | 0.0058  | 0.0000    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0081  |
| 96cm   | 0.0128  | 0.0000    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0000  |
| 97cm   | 0.0000  | 0.0000    | 0.0000     | 0.0000 | 0.0142 | 0.0000     | 0.0000  |
| 98cm   | 0.0000  | 0.0081    | 0.0000     | 0.0057 | 0.0000 | 0.0000     | 0.0081  |
| 99cm   | 0.0000  | 0.0175    | 0.0000     | 0.0000 | 0.0000 | 0.0000     | 0.0000  |
| 100cm+ | 0.0115  | 0.0403    | 0.0214     | 0.0000 | 0.0000 | 0.0101     | 0.0081  |

App. A4 (Append. A), Table A11a: Age-length keys for NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

|        | NEF | SC | Sprin | ig, 21 | 009 |   | 1  | Age |   |   |    |     | NEF | SC | Sprin | g, 20 | 010 |   |   | Age |   |   |      |     |
|--------|-----|----|-------|--------|-----|---|----|-----|---|---|----|-----|-----|----|-------|-------|-----|---|---|-----|---|---|------|-----|
| Length | 0   | 1  | 2     | 3      | 4   | 5 | 6  | 7   | 8 | 9 | 10 | 11+ | 0   | 1  | 2     | 3     | 4   | 5 | 6 | 7   | 8 | 9 | 10 1 | 11+ |
| <25    | 0   | 30 | 24    | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 28 | 11    | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 36     |     | -  |       |        | 0   | ~ | ~  | 0   | 0 | ~ | 0  | ~   |     | -0 | 1     | 0     | ~   | 0 | 0 | 0   | 0 | 0 | ~    | ő   |
| 20     | 0   | 0  | 2     |        | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 27     | 0   | 0  | 4     | 1      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 28     | 0   | 0  | 3     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 29     | 0   | 0  | 7     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 30     | 0   | 0  | 2     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 31     | 0   | 0  | 6     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 6     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 31     |     | 0  | 0     |        | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  |       | -     | 0   | 0 | 0 | 0   | 0 |   | 0    | 0   |
| 32     | 0   | 0  | 0     | 1      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 33     | 0   | 0  | 3     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 34     | 0   | 0  | 1     | 5      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 35     | 0   | 0  | 4     | 3      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 26     | 0   | 0  | 4     | 1      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | -     |       | 0   | 0 | 0 | 0   | 0 | 0 | 0    | õ   |
| 30     | 0   | 0  | 4     | 1      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 37     | 0   | 0  | 2     | 4      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 38     | 0   | 0  | 2     | 4      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 39     | 0   | 0  | 1     | 2      | 1   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 40     | 0   | 0  | 2     | 6      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 41     | ő   | 0  | 2     | 2      | 1   | 1 | 0  | 0   | 0 | 0 | ő  | 0   | 0   | 0  | 1     | 2     | 0   | 0 | 0 | 0   | ñ | 0 | 0    | ñ   |
| 41     | 0   | 0  | -     | -      | 1   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 3     | 0   | 0 | 0 | 0   | 0 | 0 | U    | 0   |
| 42     | 0   | 0  | 1     | 1      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 43     | 0   | 0  | 2     | 5      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 44     | 0   | 0  | 1     | 5      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 3     | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 45     | 0   | 0  | 1     | 6      | 4   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 16     | 0   | 0  | 0     | 2      | 2   | 2 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 1   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 40     | 0   | V  | 0     | 0      | -   | 4 | 4  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 4     | -   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 4/     | 0   | 0  | 0     | 2      | 2   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 4   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 48     | 0   | 0  | 0     | 2      | 4   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 3   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 49     | 0   | 0  | 0     | 3      | 4   | 1 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 50     | 0   | 0  | 0     | 2      | 5   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 3   | 2 | 0 | 0   | 0 | 0 | 0    | 0   |
| 51     | 0   | 0  | 1     | 2      | 2   | 0 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 57     | 0   | 0  | -     | -      | -   | 0 | 6  | C   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | -     | 2   | 1 | 0 | 0   | 0 | 0 | 0    | ő   |
| 52     |     | 0  | 0     | 4      | 4   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 4     | 4   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 53     | 0   | 0  | 0     | 3      | 4   | 4 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 54     | 0   | 0  | 0     | 2      | 2   | 2 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 7     | 1   | 2 | 0 | 0   | 0 | 0 | 0    | 0   |
| 55     | 0   | 0  | 0     | 5      | 1   | 2 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 56     | 0   | 0  | 0     | 1      | 2   | 0 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 2   | 2 | 0 | 0   | 0 | 0 | 0    | 0   |
| 57     | Ň   | ~  |       | -      | -   | 2 | ÷. | ~   | 0 | ~ |    | Ň   | ~   | ő  | ő     | ĩ     | 2   | ő |   | 0   | à | ~ | ~    | č   |
| 57     |     | 0  | 0     | 4      | 3   | 4 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 4   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 58     | 0   | 0  | 0     | 0      | 5   | 3 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 59     | 0   | 0  | 0     | 1      | 3   | 1 | 5  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 60     | 0   | 0  | 0     | 1      | 3   | 1 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 1   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 61     | o i | 0  | 0     | 4      | 2   | 1 | 0  | ò   | 0 | 0 | 0  | 0   | 0   | 0  | ò     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 61     |     | 0  |       | 1      | -   | 1 |    |     | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     |     | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 62     | 0   | 0  | 0     | 1      | 1   | 3 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 63     | 0   | 0  | 0     | 0      | 3   | 3 | 4  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 64     | 0   | 0  | 0     | 1      | 5   | 1 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 65     | 0   | 0  | 0     | 0      | 1   | 0 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 66     | 0   | 0  | 0     | 1      | 1   | 1 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 67     | 0   | 0  | 0     | 1      | -   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 07     | 0   | 0  | 0     | 1      | 4   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 4   | 1 | 0 | 0   | U | 0 | U    | 0   |
| 68     | 0   | 0  | 0     | 0      | 0   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 69     | 0   | 0  | 0     | 0      | 1   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 70     | 0   | 0  | 0     | 0      | 3   | 1 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 2 | 1 | 1   | 0 | 0 | 0    | 0   |
| 71     | 0   | 0  | 0     | 0      | 0   | 2 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 72     | 0   | 0  | 0     | 0      | 2   | 2 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 72     | 0   | 0  |       | 0      | -   | ~ | 1  |     | 0 | 0 | 0  | 0   | 0   | 0  |       | 0     | ~   | - |   | 0   | 0 | 0 | 0    | 0   |
| 15     | 0   | U  | 0     | U      | 1   | 0 | 1  | 0   | 0 | U | 0  | 0   | 0   | 0  | 0     | U     | 0   | 1 | 1 | 0   | U | 0 | U    | 0   |
| 74     | 0   | 0  | 0     | 0      | 1   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 75     | 0   | 0  | 0     | 0      | 2   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 76     | 0   | 0  | 0     | 0      | 2   | 3 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 77     | 0   | 0  | 0     | 0      | 0   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 78     | 0   | 0  | 0     | 0      | 0   | 1 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 70     |     | 0  | 0     | 0      | 1   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 2 | 1 | 0   | 0 | 0 | 0    | 0   |
| 19     | 0   | U  | 0     | 0      | 1   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | U     | 0   | 4 | 1 | U   | 0 | 0 | 0    | 0   |
| 80     | 0   | 0  | 0     | 0      | 1   | 1 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0   |
| 81     | 0   | 0  | 0     | 0      | 0   | 1 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 1   | 0 | 0 | 0    | 0   |
| 82     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 83     | 0   | 0  | 0     | 0      | 0   | 2 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 84     | o l | 0  | 0     | 0      | 0   | 0 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 2 | 0 | 1   | 0 | 0 | 0    | 0   |
| 04     | 0   | 0  | 0     | 0      | 0   |   | 4  | 0   |   | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 4 | 0 | 1   | 0 |   | 0    | 0   |
| 85     | 0   | 0  | 0     | 0      | 0   | 1 | 0  | 0   | 1 | U | 0  | 0   | 0   | 0  | 0     | U     | 0   | 0 | U | 0   | 0 | 1 | 0    | 0   |
| 86     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 1   | 0 | 0 | 0    | 0   |
| 87     | 0   | 0  | 0     | 0      | 0   | 0 | 2  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 88     | 0   | 0  | 0     | 0      | 0   | 0 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 80     | 0   | 0  | 0     | 0      | 0   | 0 | 1  | 0   | 0 | 0 | 0  | õ   | ñ   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 00     |     | 0  | 0     | 0      | 0   | 0 | 4  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0    | 0   |
| 90     | 0   | 0  | 0     | 0      | 0   | 0 | 1  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0    | 0   |
| 91     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 92     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 93     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 0.4    | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0    | 0   |
| 94     |     | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0    | 0   |
| 95     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 96     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 2 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 97     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0   |
| 98     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0   |
| 00     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0    | 0   |
| 39     | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   |   | 0 |    | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 |     | 1 |   |      | 0   |
| >100   | 0   | 0  | 0     | 0      | 0   | 0 | 0  | 0   | 1 | 0 | 1  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 1 | 1    | 2   |
|        |     |    |       |        |     |   |    |     |   |   |    |     |     |    |       |       |     |   |   |     |   |   |      |     |

App. A4 (Append. A), Table A11b: Age-length keys for NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

| -      | NEF | SC S | Sprin | g, 2 | 011 |   |   | Age |   |   |    |      | NEF | SC | Sprin | ig, 20 | 012 |   |   | Age |   |   |      |    |
|--------|-----|------|-------|------|-----|---|---|-----|---|---|----|------|-----|----|-------|--------|-----|---|---|-----|---|---|------|----|
| Length | 0   | 1    | 2     | 3    | 4   | 5 | 6 | 7   | 8 | 9 | 10 | 11 + | 0   | 1  | 2     | 3      | 4   | 5 | 6 | 7   | 8 | 9 | 10 1 | 1+ |
| ≤25    | 0   | 2    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 1   | 38 | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 26     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 1  | 2     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 27     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 28     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 29     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 1     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 30     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 31     | 0   | 0    | 2     | 1    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 1     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 32     | 0   | 0    | 0     | 1    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 4     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 33     | 0   | 0    | 1     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 34     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 4     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 35     | 0   | 0    | 1     | 1    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 36     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 2      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 37     | 0   | 0    | 0     | 2    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 38     | 0   | 0    | 0     | 1    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 1      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 39     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 3      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 40     | 0   | 0    | 1     | 2    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 5     | 6      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 41     | 0   | 0    | 0     | 1    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 5      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 42     | 0   | 0    | 1     | 1    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 3     | 7      | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 43     | 0   | 0    | 0     | 2    | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 7      | 2   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 44     | 0   | 0    | 0     | 0    | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 2     | 9      | 1   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 45     | 0   | 0    | 0     | 0    | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 1     | 5      | 2   | 2 | 0 | 0   | 0 | 0 | 0    | 0  |
| 46     | 0   | 0    | 0     | 0    | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 3      | 2   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 47     | 0   | 0    | 0     | 0    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 3      | 4   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 48     | 0   | 0    | 0     | 0    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 5      | 2   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 49     | 0   | 0    | 0     | 1    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 5      | 4   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 50     | 0   | 0    | 0     | 1    | 3   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 4      | 1   | 3 | 0 | 0   | 0 | 0 | 0    | 0  |
| 51     | 0   | 0    | 0     | 0    | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 2      | 3   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 52     | 0   | 0    | 0     | 0    | 3   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 3      | 7   | 4 | 1 | 0   | 0 | 0 | 0    | 0  |
| 53     | 0   | 0    | 0     | 0    | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 2      | 5   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 54     | 0   | 0    | 0     | 2    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 3      | 2   | 3 | 0 | 0   | 0 | 0 | 0    | 0  |
| 55     | 0   | 0    | 0     | 0    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 1      | 6   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 56     | 0   | 0    | 0     | 1    | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 5      | 4   | 5 | 2 | 0   | 0 | 0 | 0    | 0  |
| 57     | 0   | 0    | 0     | 0    | 3   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 2      | 3   | 1 | 1 | 0   | 0 | 0 | 0    | 0  |
| 58     | 0   | 0    | 0     | 2    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 1      | 6   | 3 | 1 | 0   | 0 | 0 | 0    | 0  |
| 59     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 1      | 4   | 0 | 1 | 2   | 0 | 0 | 0    | 0  |
| 60     | 0   | 0    | 0     | 0    | 0   | 2 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 2      | 2   | 2 | 1 | 0   | 0 | 0 | 0    | 0  |
| 61     | 0   | 0    | 0     | 0    | 3   | 1 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 1      | 1   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 62     | 0   | 0    | 0     | 0    | 0   | 1 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 6   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 63     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 2   | 3 | 1 | 1   | 0 | 0 | 0    | 0  |
| 64     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 3   | 2 | 1 | 0   | 0 | 0 | 0    | 0  |
| 65     | 0   | 0    | 0     | 0    | 0   | 2 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 2   | 2 | 2 | 0   | 0 | 0 | 0    | 0  |
| 66     | 0   | 0    | 0     | 0    | 1   | 1 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 1 | 2 | 0   | 0 | 0 | 0    | 0  |
| 67     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 3   | 4 | 0 | 0   | 0 | 0 | 0    | 0  |
| 68     | 0   | 0    | 0     | 0    | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 3 | 0 | 0   | 0 | 0 | 0    | 0  |
| 69     | 0   | 0    | 0     | 0    | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 2   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 70     | 0   | 0    | 0     | 0    | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 1   | 1 | 0 | 1   | 0 | 0 | 0    | 0  |
| 71     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 72     | 0   | 0    | 0     | 0    | 0   | 2 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 73     | 0   | 0    | 0     | 0    | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 74     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 1 | 0 | 0   | 0 | 0 | 0    | 0  |
| 15     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 70     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 1 | 0   | 0 | 0 | 0    | 0  |
| 70     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 1 | 1   | 0 | 0 | 0    | 0  |
| 70     | 0   | 0    | 0     | 0    | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 20     | 0   | 0    | 0     | 0    | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 81     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 1 | 0    | 0  |
| 10     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 1 | 0    | 0  |
| 82     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 84     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 85     | 0   | 0    | 0     | 0    | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 82     | 0   | 0    | 0     | 0    | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 87     | 0   | 0    | 0     | 0    | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 80     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 80     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 00     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 01     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 07     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 92     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0    | 0  |
| 95     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 94     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 95     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 5 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 90     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| 9/     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 2 | 0 | 0    | 0  |
| 98     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 1 | 0 | 0    | 0  |
| 99     | 0   | 0    | 0     | 0    | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0    | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0    | 0  |
| >100   | 0   | 0    | 0     | 0    | 0   | Ų | 0 | 1   | 1 | Q | 0  | 0    | U   | Q  | 0     | Q      | 0   | Ų | U | 0   | U | 0 | 0    | Ų  |

|        | NEE | SC. | Antes | me | 2004 |   | - | Ace   | _ |   |    | 1   | NET | SC. | Antes | me | 201/ |   | - | Aga      |   |   | _     | NET | SC | Antes |   | 2011 |   | - | Ace |   |   |    |     |
|--------|-----|-----|-------|----|------|---|---|-------|---|---|----|-----|-----|-----|-------|----|------|---|---|----------|---|---|-------|-----|----|-------|---|------|---|---|-----|---|---|----|-----|
| Length | O   | 1   | 2     | 3  | 4    | 5 | 6 | Age 7 | 8 | 9 | 10 | 11+ | O   | 1   | 2     | 3  | 4    | 5 | 6 | Age<br>7 | 8 | 9 | 10 11 | + 0 | 1  | 2     | 3 | 2011 | 5 | 6 | nge | 8 | 9 | 10 | 11+ |
| <25    | 9   | 11  | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 2   | 1   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 15  | 4  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 26     | 0   | 4   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 2   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 4  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 27     | 0   | 4   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 1   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 1  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 28     | 0   | 3   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 1     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 29     | 0   | 4   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 2   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 30     | 0   | 3   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 3   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 1  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 31     | 0   | 1   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 5   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 1  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 32     | 0   | 4   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 5   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 2  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 33     | 0   | 1   | 4     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 2   | 2     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   |     | 1  | 2     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 35     | 0   | 2   | 4     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 1     | 1 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 36     | 0   | õ   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 2   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 1     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 37     | 0   | 0   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 1   | 1     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 38     | 0   | 2   | 5     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 2     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 39     | 0   | 1   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 1   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 2     | 1 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 40     | 0   | 1   | 3     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 2     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 1     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 41     | 0   | 1   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 2  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 2     | 1 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 42     | 0   | 0   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 2     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   |     | 1  | 0     | 1 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 44     | 0   | 0   | 1     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 2  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 2 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 45     | 0   | 0   | 3     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 2  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 2     | 3 | 0    | õ | 0 | 0   | 0 | 0 | 0  | 0   |
| 46     | 0   | 0   | 7     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 1 | 3    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 47     | 0   | 0   | 3     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 48     | 0   | 0   | 2     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 3  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 1     | 2 | 1    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 49     | 0   | 0   | 1     | 1  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 2  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 0     | 1 | 3    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 50     | 0   | 0   | 2     | 1  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 2  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 1     | 3 | 0    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 52     | 0   | 0   | 3     | 0  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 1     | 1 | 2    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 53     | 0   | 0   | 0     | 1  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 1 | 2    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 54     | 0   | 0   | 2     | 1  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 2  | 1    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 1 | 2    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 55     | 0   | 0   | 2     | 1  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 2  | 1    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 3    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 56     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 1  | 1    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 0     | 2 | 1    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 57     | 0   | 0   | 1     | 1  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 0  | 1    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 1     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 58     | 0   | 0   | 1     | 0  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 0  | 1    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 2     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 59     | 0   | 0   | 0     | 4  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 1     | 1  | 2    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 0 | 2    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 61     | 0   | 0   | 0     | 2  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 1  | 1    | 0 | 1 | 0        | 0 | 0 | 0 0   | 0   | 0  | 1     | 2 | 2    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 62     | 0   | 0   | 0     | 2  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | õ   | 0   | 0   | õ     | 0  | 2    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 2 | 2    | õ | 0 | 0   | 0 | 0 | 0  | 0   |
| 63     | 0   | 0   | 0     | 0  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 1  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 1    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 64     | 0   | 0   | 1     | 1  | 3    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 1    | 0 | 1 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 0     | 4 | 6    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 65     | 0   | 0   | 0     | 0  | 0    | 0 | 1 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 2  | 0    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 ( | 0  | 0     | 0 | 1    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 66     | 0   | 0   | 0     | 2  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 3  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 2    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 67     | 0   | 0   | 0     | 0  | 1    | 1 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 1  | 3    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 0     | 1 | 1    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 60     | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 1 | 0    | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 70     | 0   | 0   | 0     | 2  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 2 | õ | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 3    | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 71     | 0   | 0   | 0     | 1  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 1  | 0    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 1    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 72     | 0   | 0   | 0     | 2  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 73     | 0   | 0   | 0     | 0  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 2    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 2 | 1 | 0   | 0 | 0 | 0  | 0   |
| 74     | 0   | 0   | 0     | 0  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 1    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 75     | 0   | 0   | 0     | 0  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 2    | 0 | 1 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 0 | 0    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 70     | 0   | 0   | 0     | 0  | 0    | 0 | 1 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 4    | 0 | 0 | 0        | 0 | 0 | 0     |     | 0  | 0     | 0 | 0    | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 78     | 0   | Ő   | 0     | ő  | ő    | 0 | 0 | o     | õ | õ | õ  | ŏ   | Ő   | ő   | ő     | 0  | 1    | 1 | ő | ő        | 0 | 0 | 0     | 0 O | 0  | 0     | ő | ő    | õ | 0 | ő   | o | 0 | 0  | 0   |
| 79     | 0   | 0   | 0     | 0  | 2    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 2    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 0     | 0 | 0    | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 80     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 1    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 81     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 1 | 1 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 0    | 4 | 0 | 0   | 0 | 0 | 0  | 0   |
| 82     | 0   | 0   | 0     | 0  | 1    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 1    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 0    | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 83     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 0    | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 85     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 1    | 2 | 0 | 0        | 0 | 0 | 0     | 0   | 0  | 0     | 0 | 0    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 86     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 1 | 0        | 0 | 0 | 0     | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 87     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 88     | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 1 | 0 | 0  | 0   |
| 89     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 90     | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 91     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 92     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0   | 0  | 0     | 0 | 0    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 93     | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 0   | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 1 | 0 | 0  | 0   |
| 94     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 1        | 0 | 0 | 0     |     | 0  | 0     | 0 | 0    | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 96     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0     | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 97     | 0   | 0   | 0     | 0  | 0    | 1 | 0 | 0     | 0 | õ | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 98     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 1   | 0 | 0 | 0  | 0   |
| 99     | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0 (   | 0 0 | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| >100   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0     | 0 | 0 | 0  | 0   | 0   | 0   | 0     | 0  | 0    | 0 | 0 | 0        | 0 | 0 | 0     | 0   | 0  | 0     | 0 | 0    | 0 | 0 | 0   | 1 | 0 | 0  | 0   |

App. A4 (Append. A), Table A12: Age-length keys for NEFSC offshore autumn research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

### Appendix B (within App. A4) - The Statistical Catch-at-Age Model

The text following sets out the equations and other general specifications of the SCAA followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is then applied to minimize the total negative log-likelihood function to estimate parameter values (the package AD Model Builder<sup>TM</sup>, Otter Research, Ltd is used for this purpose).

For the convenience of readers, details which are changed or newly added relative to the specifications used for the analyses reported in Butterworth and Rademeyer (2012) are shown highlighted.

# **B.1. Population dynamics**

# B.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$N_{y+1,0} = R_{y+1}$$
(B1)

$$N_{y+1,a+1} = N_{y,a} e^{-Z_{y,a}}$$
 for  $0 \le a \le M - 2$  (B2)

$$N_{y+1,m} = N_{y,m-1} e^{-Z_{y,m-1}} + N_{y,m} e^{-Z_{y,m}}$$
(B3)

## where

 $N_{y,a}$  is the number of fish of age *a* at the start of year *y*,

 $R_y$  is the recruitment (number of 0-year-old fish) at the start of year y,

*m* is the maximum age considered (taken to be a plus-group).

 $Z_{y,a} = F_y S_{y,a} + M_a$  is the total mortality in year y on fish of age a, where

 $M_a$  denotes the natural mortality rate for fish of age *a*,

 $F_{y}$  is the fishing mortality of a fully selected age class in year y, and

 $S_{ya}$  is the commercial selectivity at age *a* for year *y*.

# B.1.2. Recruitment

The number of recruits (i.e. new 0-year old) at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by either a modified Ricker or a standard or adjusted Beverton-Holt stock-recruitment relationship, allowing for annual fluctuation about the deterministic relationship.

For the modified Ricker:

$$R_{y} = \alpha B_{y}^{\rm sp} \exp\left[-\beta \left(B_{y}^{\rm sp}\right)^{\gamma}\right] e^{(\varsigma_{y} - (\sigma_{\rm R})^{2}/2)}$$
(B4)

for the (standard) Beverton-Holt:

$$R_{y} = \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} e^{(\varsigma_{y} - (\sigma_{R})^{2}/2)}$$
(B5)

and for the adjusted Beverton-Holt:

$$R_{y} = \begin{cases} \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} & \text{if } B_{y}^{sp} \le B * \\ \frac{\alpha B *}{\beta + B *} \exp\left(-\left(\frac{B_{y}^{sp} - B *}{\sigma_{N}}\right)^{2}\right) & \text{if } B_{y}^{sp} > B * \end{cases}$$
(B6)

where

r

 $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $B^*$  and  $\sigma_N$  are spawning biomass-recruitment relationship parameters,

- $\varsigma_y$  reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation  $\sigma_R$  (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.
- $B_{v}^{sp}$  is the spawning biomass at the start of year y, computed as:

$$B_{y}^{\rm sp} = \sum_{a=0}^{m} f_{a} w_{y,a}^{\rm strt} N_{y,a} e^{-M_{a}/4}$$
(B7)

because spawning for the cod stock under consideration is taken to occur three months after the start of the year and some mortality has therefore occurred,

where

 $w_{y,a}^{\text{strt}}$  is the mass of fish of age *a* during spawning, and

 $f_a$  is the proportion of fish of age *a* that are mature.

Section *B.2.6* details the procedure adopted when recruitment is not assumed to be related to spawning biomass , at least internal to the assessment.

#### B.1.3. Total catch and catches-at-age

The total catch by mass in year *y* is given by:

$$C_{y} = \sum_{a=0}^{m} w_{y,a}^{\text{mid}} C_{y,a} = \sum_{a=0}^{m} w_{y,a}^{\text{mid}} N_{y,a} S_{y,a} F_{y} \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(B8)

where

 $w_{y,a}^{\text{mid}}$  denotes the mass of fish of age *a* landed in year *y*,

 $C_{y,a}$  is the catch-at-age, i.e. the number of fish of age *a*, caught in year *y*,

The model estimate of survey biomass is computed as:

$$B_{y}^{\text{surv}} = \sum_{a=0}^{m} w_{y,a}^{\text{surv}} S_{a}^{\text{surv}} N_{y,a} e^{-Z_{y,a} T^{\text{surv}}/12}$$
(B9)

where

 $S_a^{surv}$  is the survey selectivity for age *a*, which is taken to be year-independent.

 $T^{surv}$  is the season in which the survey is taking place ( $T^{surv}=1$  for spring surveys and  $T^{surv}=3$  for fall surveys), and

 $w_{v,a}^{surv} = w_{v,a}^{strt}$  for spring surveys and  $w_{v,a}^{surv} = w_{v,a}^{mid}$  for fall surveys.

#### B.1.4. Initial conditions

For the first year  $(y_0)$  considered in the model, the numbers-at-age are estimated directly for ages 0 to  $a^{est}$ , with a parameter  $\phi$  mimicking recent average fishing mortality for ages above  $a^{est}$ , i.e.

$$N_{y_0,a} = N_{\text{start},a} \qquad \qquad \text{for } 0 \le a \le a^{est} \tag{B10}$$

and

$$N_{\text{start},a} = N_{\text{start},a-1} e^{-M_{a-1}} (1 - \phi S_{a-1}) \qquad \text{for } a^{est} < a \le m - 1 \tag{B11}$$

$$N_{\text{start},m} = N_{\text{start},m-1} e^{-M_{m-1}} (1 - \phi S_{m-1}) / (1 - e^{-M_m} (1 - \phi S_m))$$
(B12)

#### B.2. The (penalised) likelihood function

The model can be fit to (a subset of) CPUE and survey abundance indices, and commercial and survey catch-at-age and catch-at-length data to estimate model parameters (which may include residuals about the stock-recruitment function, facilitated through the incorporation of a penalty function described below). Contributions by each of these to the negative of the (penalised) log-likelihood (-lnL) are as follows. Details related to fitting to CPUE series are not included below, as such series are not considered in the analyses of this paper.

#### B2.1. Survey abundance data

The likelihood is calculated assuming that a survey biomass index is lognormally

distributed about its expected value:

$$I_{y}^{surv} = \hat{I}_{y}^{surv} \exp\left(\varepsilon_{y}^{surv}\right) \quad \text{or} \quad \varepsilon_{y}^{surv} = \ell n \left(I_{y}^{surv}\right) - \ell n \left(\hat{I}_{y}^{surv}\right)$$
(B13)

where

 $I_{y}^{surv}$  is the survey biomass index for survey surv in year y,

 $\hat{I}_{v}^{surv} = \hat{q}^{surv} \hat{B}_{v}^{surv}$  is the corresponding model estimate, where

 $\hat{q}^{surv}$  is the constant of proportionality (catchability) for the survey biomass series *surv*, and

$$\varepsilon_{y}^{surv}$$
 from  $N(0,(\sigma_{y}^{surv})^{2})$ .

The contribution of the survey biomass data to the negative of the log-likelihood function (after removal of constants) is then given by:

$$-\ln L^{\text{survey}} = \sum_{surv} \sum_{y} \left\{ \ln \left( \sqrt{\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2}} \right) + \left(\varepsilon_{y}^{surv}\right)^{2} / \left[ 2 \left(\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2} \right) \right] \right\}$$
(B14)

where

 $\sigma_y^{surv}$  is the standard deviation of the residuals for the logarithm of index *i* in year *y* (which is input), and

 $\sigma_{Add}^{surv}$  is the square root of the additional variance for survey biomass series *surv*, which is estimated in the model fitting procedure, with an upper bound of 0.5.

The catchability coefficient  $q^{surv}$  for survey biomass index *surv* is estimated by its maximum likelihood value:

$$\ell n \hat{q}^{surv} = 1/n_{surv} \sum_{y} \left( \ln I_{y}^{surv} - \ln \hat{B}_{y}^{suvv} \right)$$
(B15)

### B.2.3. Commercial catches-at-age

The contribution of the catch-at-age data to the negative of the log-likelihood function under the assumption of an "adjusted" lognormal error distribution is given by:

$$- \ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_{a}^{com} / \sqrt{p_{y,a}} \right) + p_{y,a} \left( \ln p_{y,a} - \ln \hat{p}_{y,a} \right)^{2} / 2 \left( \sigma_{a}^{com} \right)^{2} \right]$$
(B16)

where

 $p_{y,a} = C_{y,a} / \sum_{a'} C_{y,a'}$  is the observed proportion of fish caught in year y that are of age a,  $\hat{p}_{y,a} = \hat{C}_{y,a} / \sum_{a'} \hat{C}_{y,a'}$  is the model-predicted proportion of fish caught in year y that are of age a,

where

$$\hat{C}_{y,a} = N_{y,a} S_{y,a} F_y \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(B17)

and

 $\sigma_a^{com}$  is the standard deviation associated with the catch-at-age data, which is estimated in the fitting procedure by:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} p_{y,a} \left( \ln p_{y,a} - \ln \hat{p}_{y,a} \right)^{2} / \sum_{y} 1}$$
(B18)

Commercial catches-at-age are incorporated in the likelihood function using equation (B16), for which the summation over age a is taken from age  $a_{\text{minus}}$  (considered as a minus group) to  $a_{\text{plus}}$  (a plus group).

In application of this approach ages are often aggregated to avoid values of  $p_{y,a}$  or  $\hat{p}_{y,a}$  that are too small in the interests of estimation robustness. In this paper individual ages have been maintained between the selected minus and plus-groups to provide potential discrimination of different shapes for the selectivity functions at older ages in particular. This however does mean that there are certain cells for which  $p_{y,a}$  values are zero. That

does not cause any problems because the limit of  $p_{y,a}(\ln p_{y,a})^2$  as  $p_{y,a} \rightarrow 0$  is 0, so these terms can be omitted from the summation in equation B16. One could argue that they should nevertheless be included in the summations in equation B18, but exclusion seems more appropriate as the structural zero contributions then included would seem likely to bias the estimates of  $\hat{\sigma}_a^{com}$  downwards.

In addition to this "adjusted" lognormal error distribution, some computations use an alternative "sqrt(p)" formulation, for which equation B19 is modified to:

$$-\ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_{a}^{com} \right) + \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^{2} / 2 \left( \sigma_{a}^{com} \right)^{2} \right]$$
(B19)

and equation B21 is adjusted similarly:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^2 / \sum_{y} 1}$$
(B20)

This formulation mimics a multinomial form for the error distribution by forcing a nearequivalent variance-mean relationship for the error distributions.

#### B.2.4. Survey catches-at-age

The survey catches-at-age are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an "adjusted" lognormal

error distribution (equation (B19)) where:

 $p_{y,a}^{surv} = C_{y,a}^{surv} / \sum_{a'} C_{y,a'}^{surv}$  is the observed proportion of fish of age *a* in year *y* for survey surv,

 $\hat{p}_{y,a}^{surv}$  is the expected proportion of fish of age *a* in year *y* in the survey surv, given by:

$$\hat{p}_{y,a}^{surv} = S_a^{surv} N_{y,a} e^{-Z_{y,a}T^{surv}/12} \bigg/ \sum_{a'=0}^{m} S_{a'}^{surv} N_{y,a'} e^{-Z_{y,a'}T^{surv}/12}$$
(B21)

## B.2.5. Survey catches-at-length

In some runs, catches-at-length are also incorporated in the likelihood function. These data are incorporated in the similar manner as the catches-at-age. When the model is fit to catches-at-length, the predicted catches-at-age are converted to catches-at-length:

$$\hat{p}_{y,l}^{surv} = \sum_{a} \hat{p}_{y,a}^{surv} A_{a,l}$$
(B22)

where  $A_{a,l}$  is the proportion of fish of age *a* that fall in the length group *l* (i.e.,  $\sum_{l} A_{a,l} = 1$ 

for all ages).

The matrix  $A_{a,l}$  is calculated under the assumption that length-at-age is normally distributed about a mean given by the von Bertalanffy equation, i.e.:

$$L_a \sim N \Big[ L_{\infty} \Big( 1 - e^{-\kappa (a - t_o)} \Big), \theta_a^2 \Big]$$
(B23)

where

 $\theta_a$  is the standard deviation of mid-year length-at-age a, which is modelled to be proportional to the expected length-at-age *a*, i.e.:

$$\theta_a = \beta \left[ L_{\infty} \left( 1 - e^{-\kappa (a+0.5 - t_o)} \right) \right]^{\gamma} \tag{B24}$$

with  $\beta$  an estimable parameter and  $\gamma = 0.5$  (a value which was found to lead to reasonable fits to the data).

 $L_{\infty} = 150.93\,cm$ 

 $\kappa = 0.11 \, yr^{-1},$ 

 $t_{o} = 0.13 \ yr$ ,

The following term is then added to the negative log-likelihood:

$$- \ln L^{\text{CAL}} = w_{len} \sum_{surv} \sum_{y} \sum_{l} \left[ \ln \left( \sigma_{len}^{surv} / \sqrt{p_{y,l}^{surv}} \right) + p_{y,l}^{surv} \left( \ln p_{y,l}^{surv} - \ln \hat{p}_{y,l}^{surv} \right)^2 / 2 \left( \sigma_{len}^{surv} \right)^2 \right]$$
(B25)  
The  $w_l$  weighting factor may be set to a value less than 1 to downweight the

contribution of the catch-at-length data (which tend to be positively correlated between adjacent length groups because the length distributions for adjacent ages overlap) to the overall negative log-likelihood compared to that of the CPUE data. The value used for  $w_{len}$  is 0.1, being roughly equivalent to the ratio of the number to length groups to the number of age groups considered. Instances of observed proportions of zero are dealt with in the same manner as for catches-at-age, as is the alternative "sqrt(p)" error distribution formulation.

## B.2.6. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be lognormally distributed and serially correlated. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) log-likelihood function is given by:

$$-\ell n L^{\text{pen}} = \sum_{y=y_1+1}^{y_2} \left[ \varepsilon_y^2 / 2\sigma_R^2 \right]$$
(B26)

where

$$\varepsilon_y$$
 from  $N(0,(\sigma_R)^2)$ ,

 $\sigma_{R}$  is the standard deviation of the log-residuals, which is input.

In the analyses reported in this paper, unless otherwise stated, this "stock-recruitment" term is included for the last two years only, simply to stabilise these estimates which are not well determined by the other data. The  $\varepsilon_y$  are calculated as the deviations from the mean log recruitment for the ten preceding years, i.e. recruitment estimates for 2010 and 2011 are shrunk towards the geometric mean recruitment over the preceding decade.

# B.2.7 Incorporation of Bigelow vs Albatross survey calibration

The survey data provided are adjusted for the years 2009 to 2012 which were obtained from *Bigelow* surveys have been adjusted to "*Albatross* equivalents" through use of calibration factors estimated independently from paired tow experiments (Miller *et al.*, 2010). However the survey data before and after the switch of vessels also provide information on the calibration factors because they sample the same cohorts. Incorporation of this information in assessments in this paper has been effected by treating the estimates, with their variance-covariance matrix, as a form of "joint-prior" which is effectively updated in the penalised likelihood estimation when fitting the model. The process is as follows.

First *Bigelow* length frequency distributions are converted to *Albatross* equivalent length frequency distributions:

$$C_{y,l}^{surv,A} = C_{y,l}^{surv,B} / F_l$$
(B27)

where

 $C_{y,l}^{surv,B}$  is the measured catch-at-length for the *Bigelow* in year y for survey surv,

 $C_{y,l}^{surv,A}$  is the inferred catch-at-length for the *Albatross* equivalent in year y for survey

The Albatross equivalent length distributions are then converted to age distributions:

$$C_{y,a}^{surv,A} = \sum C_{y,l}^{surv,A} ALK_{y,a,l}^{surv}$$

where

 $ALK_{y,a,l}^{surv}$  is the age-length key (proportion of fish of length *l* that have age *a*) in year *y* for survey *surv*.

B28)

Biomass indices are then obtained from the *Albatross* equivalent age distributions as follows:

$$I_{y}^{surv,A} = \sum_{a} C_{y,a}^{surv,A} w_{y,a}^{surv}$$
(B29)

where

 $w_{y,a}^{surv}$  is the weight-at-age in year y for survey surv.

The calibration factor has four parameters, three of which are estimable and the other input:  $X_1$ =20cm,  $X_2$ ,  $F_1$  and  $F_2$ 

$$F_{l} = \begin{cases} F_{1} & \text{if } l \leq X_{1} \\ \frac{(F_{2} - F_{1})}{(X_{2} - X_{1})} l + \frac{(F_{1}X_{2} - F_{2}X_{1})}{(X_{2} - X_{1})} & \text{if } X1 < l < X_{2} \\ F_{2} & \text{if } l \geq X_{2} \end{cases}$$
(B30)

The following contribution is therefore added to the negative log-likelihood in the assessment:

$$-\ln L^{calib} = \frac{1}{2}\ln|\boldsymbol{\Sigma}| + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$

where the parameters  $X_2$ ,  $F_1$  and  $F_2$  are components of the vector  $\boldsymbol{x}$ ,

 $\Sigma$  is the variance covariance matrix as estimated by Miller *et al.* (2010), and

 $\mu$  is a vector which contains the Miller *et al.* (2010) estimates of the parameters.

These estimates and the variance-covariance matrix are given in table B1 below:

Table B1: Estimates and variance-covariance matrix for the calibration parameters (Miller, pers. commn).

| μ                 | $ln(F_2)$ | $ln(F_1-F_2)$ | $ln(X_2-X_1)$ |
|-------------------|-----------|---------------|---------------|
|                   | 0.4713    | 1.4163        | 3.5086        |
| Σ                 | $ln(F_2)$ | $ln(F_1-F_2)$ | $ln(X_2-X_1)$ |
| In(F 2)           | 0.006674  | -0.002515     | -0.002559     |
| $ln(F_1-F_2)$     | -0.002515 | 0.051592      | -0.007601     |
| $ln(X_{2}-X_{1})$ | -0.002559 | -0.007601     | 0.006757      |

## **B.3.** Estimation of precision

Where quoted, CV's or 95% probability interval estimates are based on the Hessian.

## **B.4.** Model parameters

B.4.1. Fishing selectivity-at-age:

The commercial fishing selectivity,  $S_a$ , as well as the fishing selectivities for the Massachusetts inshore spring survey, are estimated separately for ages  $a_{\text{minus}}$  to  $a_{\text{plus}}$ . The estimated proportional decrease from ages  $a_{\text{plus}}$ -1 to  $a_{\text{plus}}$  is assumed to continue multiplicatively to age 9+ for the commercial selectivity and to age 11+ (the model plus group) for the Massachusetts spring survey (if not otherwise specified) (see Table below for  $a_{\text{minus}}$  to  $a_{\text{plus}}$ ). For the NEFSC offshore surveys, the fishing selectivities are estimated separately for ages  $a_{\text{minus}}$  to age 7 for the spring survey, and to age 6 for the fall survey, and thereafter an exponential decline to age 9+ is estimated separately for each survey.

The commercial selectivity is taken to differ over the 1893-1991 and 1992+ periods. The decision to incorporate a change after 1991 was made to remove non-random residual patterns in the fit to the commercial catch-at-age data if time-independence in selectivity was assumed.

#### B.4.2. Other parameters



## **B.5.Reference** points

It is possible to estimate reference points internally within the assessment by fitting the stock-recruitment relationship directly within the assessment itself.

For most results reported here, however, the stock-recruitment relationships are fitted to the estimates of recruitment and spawning biomass provided by the various assessments to provide a basis to estimate reference points. The rationale for estimation external to the assessment itself is to avoid assumptions about the form of the relationship influencing the assessment results. These fits are achieved by minimising the following negative loglikelihood:

$$-\ln L = \sum_{y=yl}^{2009} \left[ \frac{\left( \ln(N_{y,0}) - \ln(\hat{N}_{y,0}) \right)^2}{2\left( (\sigma_R)^2 + (CV_y)^2 \right)} + \ln\left( \sqrt{(\sigma_R)^2 + (CV_y)^2} \right) \right]$$
(B31)

where

 $N_{y,0}$  is the "observed" (assessment estimated) recruitment in year y,

 $\hat{N}_{y,0}$  is the stock-recruitment model predicted recruitment in year y,

 $\sigma_R$  is the standard deviation of the log-residuals, and

 $CV_y$  is the Hessian-based CV for the "observed" recruitment in year y.

Note that the differential precision of the assessment estimates of recruitment is taken into account, and that the summation ends at 2009 because little by way of direct observation is as yet available to inform estimates of recruitment for 2010 and 2011.

[SAW55 Editor's Note: The SARC-55 review panel <u>did</u> <u>not recommend</u> adopting the GOM cod Statistical Catch-at-Age (SCAA) assessment results that are in Appendices A.2 – A.5. These appendices are included in this report to document and demonstrate the work that was done by the SAW cod Working Group for the December 2012 peer review. ]

Appendix A.5. Further Statistical Catch-at-Age Assessment Results together with Biological Reference Point estimates for Gulf of Maine cod, October 2012

#### Summary

The Statistical Catch-at-Age assessments of the Gulf of Maine cod stock by Butterworth and Rademeyer (2012) are extended, with a particular focus on the estimation of Biological Reference Points (BRPs). The analysis supports starting these assessments from an early year to provide precise estimates of these BRPs, and the estimation n of the Ricker form of the stock -recruitment relationship within the assessment is found to be preferred. Across a wide range of sensitivity tests the 2011 spawning biomass is robustly estimated at about 14 thousand tons with specific estimates ranging from about 12.5 to 16 thousand tons. When starting the assessments in the 1960s or earlier with a Ricker stock-recruitment function, most estimates of the spawning biomass which provides MSY are around 25 thousand tons for the M = 0.2 scenario, and around 13 thousand tons for the M increasing scenario; the corresponding estimates of MSY itself are about 13 and 6 thousand tons respectively. The AIC selection criterion and a reduced retrospective pattern suggest that greater weight should be accorded to results for the M increasing compared to the M = 0.2scenario.

#### Introduction

This paper continues from that (Butterworth and Rademeyer, 2012) submitted to the earlier SAW/SARC 55 Modeling Meeting. Taking account of advances made and some agreements reached at that meeting, it extends SCAA assessment analyses for Gulf of Maine cod, now particularly focusing also on the estimation of MSY-related biological reference points. (BRPs)

## Data and Methodology

The catch and survey based data (including catch-at-length information) and some biological data used for the analyses are listed in Tables in Appendix A (within Appendix

A5). These have been updated in a few respects in the light of discussions at the earlier Modeling Meeting; the consequent changes are indicates through highlighting.

The details of the SCAA assessment methodology are provided in Appendix B (within Appendix A5). As in Appendix A, there are some recent changes which are highlighted.

# Results

Results are first given for variants on an assessment run which incorporates the following choices, based primarily on those made for a comparison exercise with ASAP outputs run during the Modeling Meeting. These include:

- Use the sqrt(p) formulation of equation B.21 to describe the distribution of proportions-at-age (in relation to numbers of fish).
- No refinement of the *Bigelow-Albatross* calibration function within the assessment.
- Force flat selectivity at ages of 5/6 and above for the NEFSC autumn/spring surveys (though estimation of a common doming trend in the commercial selectivities is allowed see Section B.4.1).
- Make allowance for additional variance when fitting to time series of abundance indices
- Fit to the aggregated abundance indices as expressed in terms of numbers (equation B10) rather than biomass.
- Where pertinent given the starting year, incorporate data on NEFSC survey length compositions from the 1960s when catches from these surveys were not aged.

The first sensitivity exercise conducted is run conduct assessments comprising a full cross of the following factors:

- a) Start in 1963 (estimating the first three numbers-at-age in the starting vector and then the parameter  $\phi$ ) vs start in 1982 (estimating all elements of the starting numbers at age vector).
- b) M = 0.2 vs M increasing linearly from 0.2 prior to 1989 to 0.4 from 2003
- c) Internal (equation B31) *vs* external (equation B39) estimation of the stock-recruitment relationship; note that with external estimation, the assessment shrinks only the last two recruitment estimates as detailed in section B.2.6
- d) Use of a Ricker (equation B4 with  $\gamma = 1$ ) *vs* a Beverton Holt (equation B5) stock-recruitment relationship.

App. A5, Tables 1 and 2 list the results of this examination, showing log likelihood contributions and model parameter estimates, and also now estimates of BRPs.

For the purpose of further evaluation, a Reference Case (RC) is selected from the cases considered above, with the same specifications for each of the M = 0.2 and M increasing scenarios. This RC starts the assessment in 1963, and estimates a Ricker stock-recruitment curve internally.

App. A5, Table 3 shows results for sensitivities to the RC for M = 0.2. First sensitivities to different starting years are shown, and then some other factors investigated. For the different starting years, the numbers of ages which are estimated individually in the

starting vector are (1, 3, 3, 4, 5, all, all) for the years (1934, 1963, 1964, 1965, 1967, 1970 and 1982) respectively. These choices were made on an AIC basis. App. A5, Table 4 is similar to Table 3, but for the RC with *M* increasing and with somewhat fewer sensitivities.

App. A5, Table 5 gives results for the authors' "preferred" runs for the two different M scenarios. These "preferred" runs differ from the RC only in starting in 1934 rather than 1963, and in incorporating refinement of the *Bigelow-Albatross* calibration function within the assessment. The reasons for the various choices made for these "preferred" runs are given in the Discussion section following.

App. A5, Figs 1-7 are constructed to illustrate some of the sensitivities associated with different choices for a number of the factors requiring specification in the assessment. App. A5, Figs 1-3 show various trajectory plots for spawning biomass and recruitment, some of which also show approximate Hessian-based 95% CIs, and Fig. 1 also shows the total catch trajectory. Fig. 4 plots some of the selectivity functions that differ across the sensitivities investigated, while Fig. 5 compares spawning biomass trajectories for the two different M scenarios for the RC. App. A5, Figs 6-7 compare different estimated stock recruitment functions.

App. A5, Figs 8-13 show diagnostic plots for the "preferred" case with M = 0.2. These include spawning biomass and recruitment trajectories showing approximate 95% CIs, selectivity-at-age plots, fits/residuals to abundance indices and proportions-at-age and -at-length data, refined *Bigelow-Albatross* calibration functions, and retrospective analyses. App. A5, Figs 14-19 repeat these same plots for the other "preferred" case with M increasing. App. A5, Fig. 20 shows the fitted stock-recruiment relationships for each case.

# Discussion

Several features are evident from the exploratory results in App. A5, Tables 1 and 2:

- Starting the assessment in 1982 provides no basis to discriminate alternative stock-recruitment relations, and the estimates of spawning biomass at MSY are hopelessly imprecise for the M = 0.2 case.
- For a 1963 start to the assessment, the Ricker form is preferred over the Beverton-Holt form in terms of AIC, particularly for the *M* increasing scenario. For M = 0.2, the Beverton-Holt estimate of spawning biomass at MSY is appreciably larger than its Ricker counterpart.
- Internal estimates of the spawning biomass at MSY for a 1963 start to the assessment are both somewhat higher and less precise than their external estimation counterparts, but this last result is not unexpected since the internal estimates take account of errors in estimates of spawning biomass and correlations amongst estimates over time, unlike the external estimates.
- Estimates of current (2011) spawning biomass are typically 1000 tons lower without internal estimation of the stock-recruitment function.

With BRP estimation in mind, and given the results summarised in the first three bullets above, preference is indicated for internal estimation using a Ricker form for the stock-

recruitment relationship, and for starting the assessment in an early year. Hence the Reference Case (RC) was selected to include these specifications, and with a 1963 start because that corresponded to the beginning of the NEFSC survey time series.

Further results shown in App. A5, Table 3 and plotted in App. A5, Figs 1-7 suggest little sensitivity of recruitment estimates to most of the assessment options examined, and also of the spawning biomass trajectory except for some variability in the early years depending on the 1960s starting year chosen (App. A5, Figs 1-3). However when the starting year is taken back to 1934, this results in a clear and relatively precise trend in spawning biomass of an increase over the 1950s and early 1960s co-incident with the low catches over that period (App. A5, Fig. 2). The survey CAL data from the 1960s also support this trend (lowest left plot in Fig. 3). Another feature of the results for BRPs is that once the contrast provided by the assessment estimates from the 1960s is lost, the ability for precise estimation of the stock-recruitment relationship, and hence of BRPs such as the spawning biomass at MSY, is lost with it (App. A5, Table 3 and Fig. 7). Comparison of relationships found by internal and external stock-recruit function estimation shows little difference (App. A5, Fig. 6).

The above points towards preferring an earlier start to the assessment than the 1963 of the RC, as the combination of the data and the stock-recruit relationship assumption inform the overall BRP estimation process further through providing meaningful information on stock dynamics back into the 1950s at least.

Regarding the other sensitivity tests for M = 0.2, alternative assumptions about selectivity-at-age pre-1982 make little difference to results (App. A5, Table 3 and Fig.3, third row). Fitting to abundance indices in terms of biomass rather than numbers decreases the current spawning biomass estimate slightly, but makes little difference otherwise (App. A5, Table 3, and Fig. 3, second row). Use of the adjusted log-normal form for the proportions data appreciably increases the variance of the BRP estimates (App. A5, Table 3). A domed survey selectivity is preferred under AIC, but trends into the 1960s (App. A5, Fig. 3, second row) seem at variance with the pattern suggested by Fig. 1 when earlier years are included in the assessment. Inclusion of the *Bigelow* calibration refinement has little impact on results (App. A5, Table 3).

Where examined, these same features seem broadly present for the increasing M case, though to lesser extents. Unsurprisingly once M becomes higher, both spawning biomass and recruitment estimates increase (App. A5, Fig. 5).

Based on these results, the authors' preference is to leave the RC specifications unchanged except to move to a 1934 starting year to make maximal use of data contrast in estimating BRPs, and to include the *Bigelow* calibration refinement because of its in principle desirability.

In broad terms the diagnostics for both the consequent "preferred" cases in App. A5, Figs 8-19 are satisfactory. The M increasing scenario shows an appreciably reduced retrospective pattern compared to the M = 0.2 case (App. A5, Fig. 19 compared to Fig. 13), and further is preferred in AIC terms (App. A5, Table 5). Accordingly it would seem that more weight should be placed on the results provided by the M increasing scenario.

# Conclusions

Key conclusions from these results are:

- Assessments should start from as early a year as possible to maximise the contrast in data required to provide BRP estimates with better precision.
- Internal over external estimation of stock-recruitment functions is preferred to best take the variance-covariance of spawning biomass and recruitment estimates into account. The Ricker form for this relationship is AIC preferred to the Beverton-Holt form.
- Across a wide range of sensitivity tests (including treatment of the stock-recruitment relationship), the 2011 spawning biomass is robustly estimated at about 14 thousand tons with specific estimates ranging from about 12.5 to 16 thousand tons.
- Given a start to the assessments in the 1960s or earlier, with internal estimation of a Ricker stock-recruitment function, most estimates of the spawning biomass which provides MSY are around 25 thousand tons for the M = 0.2 scenario, and around 13 thousand tons for the M increasing scenario; the corresponding estimates of MSY itself are about 13 and 6 thousand tons respectively.
- The AIC selection criterion and a reduced retrospective pattern suggest that greater weight should be accorded to results for the M increasing compared to the M = 0.2 scenario.

# Acknowledgements

We thank Michael Palmer and Tim Miller for provision of the data and/or parameter estimates upon which the analyses reported in this paper are based.

# References

- Butterworth DS and Rademeyer RA. 2012 Applications of Statistical Catch-at-Age Assessment Methodology to Gulf of Maine cod, October 2012.Document presented to SAW/SARC 55 Working Group on Gulf of Maine and Georges Bank cod Modeling Meeting, 15-19 October, 2012. 40pp.
- Miller TJ, Das, C, Politis PJ, Miller AS, Lucey SM, Legault CM, Brown RW and Rago PJ. 2010. Estimation of *Albatross IV* to *Henry B. Bigelow* Calibration Factors. U.S. Depart. of Commerce, Northeast Fisheries Science Center Ref. Doc. 10-05; 233 pp

### Appendix A5. Tables

**App. A5, Table 1**: Estimates of abundance, MSY-related biological reference points (BRPs), and related quantities for the Gulf of Maine cod for a comparative exercise across four assessments factors: start date, internal or external estimation of the stock-recruitment relationship, and the time dependence of natural mortality M (see text for further details). Values in round parentheses are Hessian based CV's, while maximum gradient refers to the quantity reported with the ADMB estimation results. Negative log-likelihood values shown in square parentheses denote non-comparability with values given in adjacent columns. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment. Recruitment  $N_{y_{1,0}}$  is in millions. Refer to Appendix B for definitions of some of the symbols used.

|                                     |          |                    |        |                    | :       | Start in y         | 1=1963   |                    |        |                    |         |                    |           |                    |        |                    |         | Start in y         | 1=1982   |                    |        |                    |         |                    |
|-------------------------------------|----------|--------------------|--------|--------------------|---------|--------------------|----------|--------------------|--------|--------------------|---------|--------------------|-----------|--------------------|--------|--------------------|---------|--------------------|----------|--------------------|--------|--------------------|---------|--------------------|
|                                     |          |                    | M =    | 0.2                |         |                    |          |                    | M incr | easing             |         |                    |           |                    | M =    | 0.2                |         |                    |          |                    | M incr | easing             |         |                    |
|                                     | Ricker i | nternal            | BH int | ernal              | No      | SR                 | Ricker i | nternal            | BH in  | ternal             | No      | SR                 | Ricker in | nternal            | BH int | ernal              | No      | SR                 | Ricker i | nternal            | BH int | ernal              | No      | SR                 |
| -InL: overall                       | -2765    |                    | -2763  |                    | -[2797] |                    | -2774    |                    | -2769  |                    | -[2801] |                    | -2128     |                    | -2128  |                    | -[2145] |                    | -2137    |                    | -2137  |                    | -[2151] |                    |
| -InL: survey                        | -24.2    |                    | -24.0  |                    | -25.4   |                    | -30.2    |                    | -30.6  |                    | -31.4   |                    | -15.5     |                    | -15.5  |                    | -17.0   |                    | -24.1    |                    | -24.3  |                    | -25.5   |                    |
| -InL: comCAA                        | -787.0   |                    | -786.9 |                    | -785.6  |                    | -783.9   |                    | -785.6 |                    | -782.4  |                    | -793.8    |                    | -793.8 |                    | -792.3  |                    | -791.1   |                    | -791.2 |                    | -790.1  |                    |
| -InL: survCAA                       | -1819    |                    | -1819  |                    | -1821   |                    | -1819    |                    | -1818  |                    | -1821   |                    | -1329     |                    | -1329  |                    | -1330   |                    | -1329    |                    | -1329  |                    | -1330   |                    |
| -InL: survCAL                       | -160.5   |                    | -160.4 |                    | -161.0  |                    | -161.0   |                    | -160.8 |                    | -161.5  |                    |           |                    | -      |                    | 0.0     |                    |          |                    |        |                    | 0.0     |                    |
| -InL: RecRes                        | 29.3     |                    | 31.9   |                    | [0.0]   |                    | 24.4     |                    | 28.6   |                    | [0.0]   |                    | 15.2      |                    | 15.2   |                    | [0.0]   |                    | 13.1     |                    | 13.1   |                    | [0.0]   |                    |
| -InL: Catch                         | 3.1      |                    | 3.0    |                    | 2.1     |                    | 3.2      |                    | 3.8    |                    | 2.5     |                    | 1.4       |                    | 1.4    |                    | 1.2     |                    | 1.1      |                    | 1.1    |                    | 1.1     |                    |
| -InL: calibration                   | -6.7     |                    | -6.7   |                    | -6.7    |                    | -6.7     |                    | -6.7   |                    | -6.7    |                    | -6.7      |                    | -6.7   |                    | -6.7    |                    | -6.7     |                    | -6.7   |                    | -6.7    |                    |
| Maximum gradient                    | 0.000    |                    | 0.000  |                    | 0.000   |                    | 0.000    |                    | 0.000  |                    | 0.000   |                    | 2.600*    |                    | 2.589* |                    | 1.073*  |                    | 0.000    |                    | 0.000  |                    | 0.000   |                    |
| N <sub>y1,0</sub>                   | 15.10    | (0.14)             | 15.88  | (0.14)             | 15.18   | (0.14)             | 15.10    | (0.14)             | 15.91  | (0.14)             | 15.51   | (0.14)             | 13.30     | (0.07)             | 13.30  | (0.07)             | 13.27   | (0.07)             | 13.52    | (0.07)             | 13.52  | (0.07)             | 13.50   | (0.07)             |
| φ                                   | 0.09     | (1.06)             | 0.19   | (0.58)             | 0.16    | (0.64)             | 0.08     | (0.86)             | 0.16   | (0.62)             | 0.16    | (0.63)             | 121       |                    |        |                    |         |                    |          |                    |        |                    |         |                    |
| B 50 2011                           | 14.51    | (0.16)             | 14.26  | (0.16)             | 13.13   | (0.17)             | 13.57    | (0.14)             | 13.18  | (0.14)             | 12.57   | (0.15)             | 13.51     | (0.16)             | 13.52  | (0.16)             | 12.59   | (0.17)             | 13.54    | (0.14)             | 13.40  | (0.14)             | 12.67   | (0.15)             |
| B <sup>\$p</sup> 1982               | 22.83    | (0.05)             | 22.93  | (0.05)             | 22.53   | (0.05)             | 22.27    | (0.05)             | 22.51  | (0.05)             | 22.15   | (0.05)             | 26.37     | (0.04)             | 26.36  | (0.04)             | 26.27   | (0.04)             | 26.08    | (0.04)             | 26.10  | (0.04)             | 26.09   | (0.04)             |
| B <sup>sp</sup> v1                  | 43.41    | (0.28)             | 29.78  | (0.34)             | 33.38   | (0.31)             | 42.90    | (0.22)             | 32.49  | (0.31)             | 32.76   | (0.31)             | 26.37     | (0.04)             | 26.36  | (0.04)             | 26.27   | (0.04)             | 26.08    | (0.04)             | 26.10  | (0.04)             | 26.09   | (0.04)             |
| (C) (C)                             | q        | $\sigma_{\rm Add}$ | q      | $\sigma_{\rm Add}$ | q       | $\sigma_{\rm Add}$ | q        | $\sigma_{\rm Add}$ | q      | $\sigma_{\rm Add}$ | 9       | $\sigma_{\rm Add}$ | q         | $\sigma_{\rm Add}$ | q      | $\sigma_{\rm Add}$ | 9       | $\sigma_{\rm Add}$ | q        | $\sigma_{\rm Add}$ | 9      | $\sigma_{\rm Add}$ | 9       | $\sigma_{\rm Add}$ |
| NEFSC spring                        | 0.84     | 0.16               | 0.84   | 0.16               | 0.84    | 0.16               | 0.79     | 0.11               | 0.79   | 0.11               | 0.78    | 0.11               | 0.96      | 0.18               | 0.96   | 0.18               | 0.96    | 0.18               | 0.83     | 0.12               | 0.83   | 0.12               | 0.83    | 0.11               |
| NEFSC fall                          | 0.67     | 0.10               | 0.68   | 0.10               | 0.68    | 0.10               | 0.64     | 0.12               | 0.64   | 0.12               | 0.64    | 0.12               | 0.54      | 0.06               | 0.54   | 0.06               | 0.54    | 0.05               | 0.47     | 0.06               | 0.47   | 0.06               | 0.47    | 0.05               |
| MADMF spring                        | 0.22     | 0.30               | 0.22   | 0.30               | 0.22    | 0.30               | 0.15     | 0.24               | 0.15   | 0.24               | 0.15    | 0.24               | 0.22      | 0.30               | 0.22   | 0.30               | 0.23    | 0.30               | 0.15     | 0.24               | 0.15   | 0.24               | 0.15    | 0.24               |
| κ                                   | 70.79    | (0.13)             | 245.16 | (0.26)             |         |                    | 31.22    | (0.08)             | 36.39  | (0.09)             |         |                    | 157.95    | (1.35)             | 625.38 | (1.47)             |         |                    | 31.26    | (0.26)             | 43.49  | (0.35)             |         |                    |
| h                                   | 2.44     | (0.14)             | 0.88   | (0.05)             |         |                    | 1.00     | (0.16)             | 0.98+  | (0.00)             |         |                    | 1.79      | (0.25)             | 0.80   | (0.08)             |         |                    | 0.94     | (0.29)             | 0.82   | (0.39)             |         |                    |
| MSY                                 | 13.48    | (0.10)             | 15.27  | (0.22)             |         |                    | 6.31     | (0.16)             | 5.83   | (0.09)             |         |                    | 23.77     | (1.17)             | 36.66  | (1.40)             |         |                    | 5.88     | (0.17)             | 5.76   | (0.23)             |         |                    |
| F MSY                               | 0.59     |                    | 0.27   |                    |         |                    | 0.67     |                    | 0.95   |                    |         |                    | 0.42      |                    | 0.22   |                    |         |                    | 0.60     |                    | 0.86   |                    |         |                    |
| B SP MSY                            | 23.88    | (0.10)             | 57.05  | (0.23)             |         |                    | 11.54    | (0.16)             | 8.27   | (0.10)             |         |                    | 58.07     | (1.17)             | 168.72 | (1.40)             |         |                    | 11.80    | (0.17)             | 8.79   | (0.23)             |         |                    |
| B <sup>sp</sup> MSY/K <sup>sp</sup> | 0.34     | (0.11)             | 0.23   | (0.06)             |         |                    | 0.37     | (0.17)             | 0.23   | (0.03)             |         |                    | 0.37      | (0.20)             | 0.27   | (0.08)             |         |                    | 0.38     | (0.32)             | 0.20   | (0.50)             |         |                    |
| B 50 2011/B 50 MSY                  | 0.61     | (0.10)             | 0.25   | (0.23)             |         |                    | 1.18     | (0.16)             | 1.59   | (0.10)             |         |                    | 0.23      | (1.17)             | 0.08   | (1.40)             |         |                    | 1.15     | (0.17)             | 1.53   | (0.23)             |         |                    |

\* This applies to the gradient for the age 4 parameter for selectivity in the first 1982-1988 block. All other estimated parameters have gradient  $<10^{-3}$ .

+ Estimate on bound of h=0.98 imposed on Beverton-Holt stock-recruitment curve fits.

|                                                                 |              | Start in      | 1963                     |               | Start in 1982 |               |                          |               |  |  |  |  |  |
|-----------------------------------------------------------------|--------------|---------------|--------------------------|---------------|---------------|---------------|--------------------------|---------------|--|--|--|--|--|
|                                                                 | M            | =0.2          | M inc                    | reasing       | M             | =0.2          | M increasing             |               |  |  |  |  |  |
|                                                                 | Ricker       | Beverton-Holt | Ricker                   | Beverton-Holt | Ricker        | Beverton-Holt | Ricker                   | Beverton-Holt |  |  |  |  |  |
| -InL                                                            | 8.7          | 11.4          | 1.5                      | 6.1           | 2.8           | 2.7           | -1.9                     | -1.8          |  |  |  |  |  |
| h                                                               | 2.65 (0.14)  | 0.91 (0.05)   | 1.14 (0.16)              | 1.00 (0.00)   | 2.16 (0.24)   | 0.86 (0.08)   | 1.18 (0.29)              | 1.00 (0.00)   |  |  |  |  |  |
| K <sup>sp</sup>                                                 | 66.41 (0.13) | 220.04 (0.22) | 29.83 (0.06)             | 36.86 (0.09)  | 89.51 (0.65)  | 324.35 (0.76) | 27.22 (0.17)             | 39.44 (0.11)  |  |  |  |  |  |
| F <sub>MSY</sub>                                                | 0.87         | 0.38          | 1.11                     | 5.00*         | 0.67          | 0.31          | 1.20                     | 5.00*         |  |  |  |  |  |
| MSYL <sup>sp</sup>                                              | 0.33 (0.11)  | 0.22 (0.05)   | 0.36 (0.16)              | 0.11 (0.00)   | 0.35 (0.18)   | 0.26 (0.07)   | 0.36 (0.29)              | 0.11 (0.00)   |  |  |  |  |  |
| B <sup>sp</sup> <sub>MSY</sub>                                  | 21.94 (0.09) | 49.41 (0.18)  | 10.88 (0.15)             | 3.87 (0.09)   | 31.57 (0.50)  | 83.96 (0.69)  | 9.86 (0.18)              | 4.15 (0.11)   |  |  |  |  |  |
| MSY                                                             | 13.55 (0.09) | 14.32 (0.18)  | 7.01 <sup>(</sup> (0.15) | 6.59 (0.09)   | 15.62 (0.50)  | 20.36 (0.69)  | 6.65 <sup>(</sup> (0.18) | 7.05 (0.11)   |  |  |  |  |  |
| <b>B</b> <sup>sp</sup> <sub>2011</sub>                          | 13.11 (0.17) | 13.11 (0.17)  | 12.57 (0.15)             | 12.57 (0.15)  | 12.59 (0.17)  | 12.59 (0.17)  | 12.67 (0.17)             | 12.67 (0.15)  |  |  |  |  |  |
| B <sup>sp</sup> <sub>2011</sub> /B <sup>sp</sup> <sub>MSY</sub> | 0.60 (0.09)  | 0.27 (0.18)   | 1.16 (0.15)              | 3.25 (0.09)   | 0.40 (0.50)   | 0.15 (0.69)   | 1.29 (0.18)              | 3.05 (0.11)   |  |  |  |  |  |
| B <sup>sp</sup> 2011/K <sup>sp</sup>                            | 0.20 (0.13)  | 0.06 (0.22)   | 0.42 (0.06)              | 0.34 (0.09)   | 0.14 (0.65)   | 0.04 (0.76)   | 0.47 (0.17)              | 0.32 (0.11)   |  |  |  |  |  |

App. A5, Table 2: An extension of Table 1 which provides BRP values for external estimation of the stock-recruitment functions.

\* Estimate on upper bound of F=5.00 imposed on the search for  $F_{MSY}$ , which may occur in the limit of h=1 for the Beverton-Holt form. (Note that unlike for the internal estimation where a bound of h=0.98 is imposed, the bound imposed here is h=1.)

**App. A5, Table 3**: Estimates of abundance, MSY-related BRPs, and related quantities for the Gulf of Maine cod for different sensitivities about the Reference Case (start in 1963 with a Ricker stock-recruitment curve estimated internally) with M = 0.2, which is shown in **bold**. Values in round parentheses are Hessian based CV's, while maximum gradient refers to the quantity reported with the ADMB estimation results. Negative log-likelihood overall values shown in square parentheses denote non-comparability with values of all likelihood components given in adjacent columns. Mass units are '000 tons. *y*1 refers to the start year for the assessment. Recruitment  $N_{y1,0}$  is in millions. Refer to Appendix B for definitions of some of the symbols used.

|                                                                 | Different start year |                    |         |                    |         |                    |         |                    | Adjusted log- Fit to biomass Domed N<br>normal CAA instead of survey<br>error numbers selectiv |                    | NEFSC<br>vey<br>tivity | SC Alternative pre-1982 commercial selectivities |         |                    |        | Bige<br>inte<br>calibr | Bigelow<br>internal No CAL day<br>calibration |                    | L data |                    |        |         |              |                    |        |                   |         |                    |
|-----------------------------------------------------------------|----------------------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------------------------------------------|---------|--------------------|--------|------------------------|-----------------------------------------------|--------------------|--------|--------------------|--------|---------|--------------|--------------------|--------|-------------------|---------|--------------------|
|                                                                 |                      |                    | Referen | nce Case           | r.      |                    |         |                    |                                                                                                |                    |                        |                                                  |         |                    |        |                        |                                               |                    |        |                    | Same a | s 82-88 | Shifte<br>le | d 2yrs<br>eft      |        |                   |         |                    |
| Start year y1=                                                  | 1                    | 934                | 19      | 63                 | 19      | 64                 | 19      | 65                 | 19                                                                                             | 67                 | 19                     | 70                                               | 19      | 82                 | 19     | 63                     | 19                                            | 63                 | 19     | 63                 | 19     | 63      | 19           | 63                 | 19     | 63                | 19      | 63                 |
| -InL: overall                                                   | -[2762]              |                    | -2765   |                    | -[2748] |                    | -[2732] |                    | -[2697]                                                                                        |                    | -[2610]                |                                                  | -[2128] |                    | -[298] |                        | -[2777]                                       |                    | -2781  |                    | -2768  |         | -2761        |                    | -2766  |                   | -[2605] |                    |
| -InL: survey                                                    | -24.5                |                    | -24.2   |                    | -25.4   |                    | -25.1   |                    | -23.2                                                                                          |                    | -19,4                  |                                                  | -15.5   |                    | -24.2  |                        | -37.5                                         |                    | -25.3  |                    | -24.7  |         | -23.8        |                    | -25.3  |                   | -24.1   |                    |
| -InL: comCAA                                                    | -787.0               |                    | -787.0  |                    | -787.0  |                    | -786.8  |                    | -786.6                                                                                         |                    | -787.2                 |                                                  | -793.8  |                    | -177.8 |                        | -786.3                                        |                    | -786.7 |                    | -790.6 |         | -788.6       |                    | -787.0 |                   | -787.2  |                    |
| -InL: survCAA                                                   | -1819                |                    | -1819   |                    | -1819   |                    | -1820   |                    | -1820                                                                                          |                    | -1820                  |                                                  | -1329   |                    | -134   |                        | -1818                                         |                    | -1828  |                    | -1817  |         | -1815        |                    | -1821  |                   | -1819   |                    |
| -InL: survCAL                                                   | -160.0               |                    | -160.5  |                    | -141.6  |                    | -126.1  |                    | -89.3                                                                                          |                    | •                      |                                                  | 27      |                    | 16.6   |                        | -160.3                                        |                    | -162.1 |                    | -160.6 |         | -160.2       |                    | -160.6 |                   | 0.0     |                    |
| -InL: RecRes                                                    | [31.9]               |                    | 29.3    |                    | [29.1]  |                    | [29.7]  |                    | [26.4]                                                                                         |                    | [21.3]                 |                                                  | [15.2]  |                    | [25.0] |                        | [29.9]                                        |                    | 26.0   |                    | 27.9   |         | 30.1         |                    | 29.6   |                   | [28.7]  |                    |
| -InL: Catch                                                     | 3.2                  |                    | 3.1     |                    | 3.0     |                    | 2.9     |                    | 2.4                                                                                            |                    | 1.9                    |                                                  | 1.4     |                    | 2.9    |                        | 2.5                                           |                    | 2.5    |                    | 3.1    |         | 3.3          |                    | 3.2    |                   | 3.1     |                    |
| -InL: calibration                                               | -6.7                 |                    | -6.7    |                    | -6.7    |                    | -6.7    |                    | -6.7                                                                                           |                    | -6.7                   |                                                  | -6.7    |                    | -6.7   |                        | -6.7                                          |                    | -6.7   |                    | -6.7   |         | -6.7         |                    | -5.4   |                   | -6.7    |                    |
| Maximum gradient                                                | 0.000                |                    | 0.000   |                    | 0.000   |                    | 0.000   |                    | 0.000                                                                                          |                    | 0.000                  |                                                  | 2.600*  |                    | 0.000  |                        | 0.000                                         |                    | 0.000  |                    | 0.000  |         | 30.774       |                    | 18.6   |                   | 0.000   |                    |
| N <sub>y1,0</sub>                                               | 9.52                 | (76.22)            | 15.10   | (0.14)             | 8.56    | (0.17)             | 4.65    | (0.20)             | 3.25                                                                                           | (0.21)             | 4.84                   | (0.19)                                           | 13.30   | (0.07)             | 16.02  | (0.11)                 | 15.41                                         | (0.14)             | 16.29  | (0.14)             | 14.08  | (0.14)  | 15.41        | (0.15)             | 15.09  | (0.14)            | 15.17   | (0.16)             |
| ø                                                               | 0.25                 | (152.54)           | 0.09    | (1.06)             | 0.04    | (2.05)             | 0.14    | (0.78)             | 0.16                                                                                           | (0.73)             |                        |                                                  |         |                    | 0.21   | (0.35)                 | 0.09                                          | (0.91)             | 0.01   | (0.08)             | 0.09   | (0.97)  | 0.08         | (1.08)             | 0.09   | (1.05)            | 0.01    | (0.02)             |
| B 2011                                                          | 14.25                | (0.16)             | 14.51   | (0.16)             | 14.42   | (0.16)             | 14.33   | (0.16)             | 14.35                                                                                          | (0.16)             | 14.22                  | (0.16)                                           | 13.51   | (0.16)             | 16.04  | (0.17)                 | 13.59                                         | (0.15)             | 15.30  | (0.17)             | 14.30  | (0.16)  | 14.39        | (0.16)             | 14.67  | (0.16)            | 14.50   | (0.16)             |
| B 50 1982                                                       | 22.92                | (0.05)             | 22.83   | (0.05)             | 22.84   | (0.05)             | 22.96   | (0.05)             | 22.99                                                                                          | (0.05)             | 22.94                  | (0.05)                                           | 26.37   | (0.04)             | 26.19  | (0.05)                 | 22.94                                         | (0.05)             | 28.63  | (0.09)             | 22.37  | (0.05)  | 23.29        | (0.05)             | 22.81  | (0.05)            | 22.94   | (0.05)             |
| B <sup>sp</sup> v1                                              | 41.17                | (140.75)           | 43.41   | (0.28)             | 46.74   | (0.24)             | 34.80   | (0.27)             | 38.66                                                                                          | (0.13)             | 34.58                  | (0.10)                                           | 26.37   | (0.04)             | 28.24  | (0.23)                 | 39.48                                         | (0.23)             | 102.12 | (0.17)             | 44.22  | (0.26)  | 41.24        | (0.32)             | 43.30  | (0.28)            | 51.87   | (0.13)             |
| 10000                                                           | 9                    | $\sigma_{\rm Add}$ | 9       | $\sigma_{\rm Add}$ | q       | $\sigma_{\rm Add}$ | 9       | $\sigma_{\rm Add}$ | q                                                                                              | $\sigma_{\rm Add}$ | 9                      | $\sigma_{\rm Add}$                               | 9       | $\sigma_{\rm Add}$ | 9      | $\sigma_{\rm Add}$     | 9                                             | $\sigma_{\rm Add}$ | 9      | $\sigma_{\rm Add}$ | 9      | TAdd    | 9            | $\sigma_{\rm Add}$ | 9      | $\sigma_{ m Add}$ | q       | $\sigma_{\rm Add}$ |
| NEFSC spring                                                    | 0.84                 | 0.16               | 0.84    | 0.16               | 0.84    | 0.16               | 0.84    | 0.16               | 0.84                                                                                           | 0.16               | 0.84                   | 0.17                                             | 0.96    | 0.18               | 0.89   | 0.16                   | 0.83                                          | 0.15               | 0.86   | 0.16               | 0.84   | 0.16    | 0.85         | 0.16               | 0.84   | 0.16              | 0.84    | 0.16               |
| NEFSC fall                                                      | 0.67                 | 0.10               | 0.67    | 0.10               | 0.66    | 0.09               | 0.65    | 0.09               | 0.64                                                                                           | 0.10               | 0.64                   | 0.11                                             | 0.54    | 0.06               | 0.79   | 0.11                   | 0.66                                          | 0.07               | 0.69   | 0.09               | 0.66   | 0.10    | 0.68         | 0.10               | 0.67   | 0.10              | 0.66    | 0.10               |
| MADMF spring                                                    | 0.22                 | 0.30               | 0.22    | 0.30               | 0.22    | 0.30               | 0.22    | 0.30               | 0.22                                                                                           | 0.30               | 0.22                   | 0.30                                             | 0.22    | 0.30               | 0.20   | 0.29                   | 0.19                                          | 0.18               | 0.21   | 0.30               | 0.22   | 0.30    | 0.22         | 0.30               | 0.22   | 0.30              | 0.22    | 0.30               |
| K                                                               | 74.78                | (0.19)             | 70.79   | (0.13)             | 70.11   | (0.14)             | 75.18   | (0.19)             | 94.80                                                                                          | (0.27)             | 383.89                 | (1.81)                                           | 157.95  | (1.35)             | 95.45  | (0.29)                 | 71.39                                         | (0.15)             | 97.48  | (0.12)             | 66.28  | (0.12)  | 75.81        | (0.16)             | 70.73  | (0.14)            | 73.03   | (0.13)             |
| h                                                               | 2.24                 | (0.15)             | 2.44    | (0.14)             | 2.46    | (0.14)             | 2.32    | (0.16)             | 2.11                                                                                           | (0.16)             | 1.65                   | (0.18)                                           | 1.79    | (0.25)             | 1.99   | (0.18)                 | 2.39                                          | (0.15)             | 2.03   | (0.12)             | 2.45   | (0.14)  | 2.41         | (0.14)             | 2.43   | (0.14)            | 2.40    | (0.13)             |
| MSY                                                             | 13.34                | (0.12)             | 13.48   | (0.10)             | 13.44   | (0.10)             | 13.75   | (0.12)             | 16.09                                                                                          | (0.19)             | 53.41                  | (1.69)                                           | 23.77   | (1.17)             | 15.26  | (0.18)                 | 13.39                                         | (0.10)             | 15.69  | (0.10)             | 12.69  | (0.09)  | 14.35        | (0.10)             | 13.46  | (0.10)            | 13.76   | (0.10)             |
| FMSY                                                            | 0.53                 |                    | 0.59    |                    | 0.59    |                    | 0.56    |                    | 0.50                                                                                           |                    | 0.38                   |                                                  | 0.42    |                    | 0.48   |                        | 0.58                                          |                    | 0.53   |                    | 0.60   |         | 0.57         |                    | 0.59   |                   | 0.58    |                    |
| B MSY                                                           | 25.73                | (0.12)             | 23.88   | (0.10)             | 23.59   | (0.10)             | 25.61   | (0.12)             | 32.96                                                                                          | (0.19)             | 140.96                 | (1.69)                                           | 58.07   | (1.17)             | 32.92  | (0.19)                 | 24.14                                         | (0.10)             | 32.85  | (0.12)             | 22.41  | (0.10)  | 25.88        | (0.11)             | 23.87  | (0.10)            | 24.70   | (0.10)             |
| B <sup>sp</sup> MSY/K <sup>sp</sup>                             | 0.34                 | (0.12)             | 0.34    | (0.11)             | 0.34    | (0.11)             | 0.34    | (0.13)             | 0.35                                                                                           | (0.13)             | 0.37                   | (0.15)                                           | 0.37    | (0.20)             | 0.34   | (0.15)                 | 0.34                                          | (0.12)             | 0.34   | (0.11)             | 0.34   | (0.11)  | 0.34         | (0.12)             | 0.34   | (0.11)            | 0.34    | (0.11)             |
| B <sup>sp</sup> <sub>2011</sub> /B <sup>sp</sup> <sub>MSY</sub> | 0.55                 | (0.12)             | 0.61    | (0.10)             | 0.61    | (0.10)             | 0.56    | (0.12)             | 0.44                                                                                           | (0.19)             | 0.10                   | (1.69)                                           | 0.23    | (1.17)             | 0.49   | (0.19)                 | 0.56                                          | (0.10)             | 0.47   | (0.12)             | 0.64   | (0.10)  | 0.56         | (0.11)             | 0.61   | (0.10)            | 0.59    | (0.10)             |

**App. A5, Table 4**: Estimates of abundance, MSY-related BRPs, and related quantities for the Gulf of Maine cod for different sensitivities about the Reference Case (start in 1963 with a Ricker stock-recruitment curve estimated internally) with M increasing from 0.2 until 1988 to 0.4 in 2003 and constant at 0.4 thereafter. This case is shown in **bold.** Values in round parentheses are Hessian based CV's, while maximum gradient refers to the quantity reported with the ADMB estimation results. Negative log-likelihood overall values shown in square parentheses denote non-comparability with values given for all likelihood components in adjacent columns. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment. Recruitment  $N_{y_{1,0}}$  is in millions. Refer to Appendix B for definition of some of the symbols used.

|                                                 | Different start year |                   |         |                    |         |                   |         |                    |         |                   |         |                   |         |                    | Adjust<br>norm<br>er | ed log-<br>al CAA<br>ror |
|-------------------------------------------------|----------------------|-------------------|---------|--------------------|---------|-------------------|---------|--------------------|---------|-------------------|---------|-------------------|---------|--------------------|----------------------|--------------------------|
| Start year y1=                                  | 1934                 |                   | 1963    |                    | 1964    |                   | 1965    |                    | 1967    |                   | 1970    |                   | 1982    |                    | 19                   | 63                       |
| -InL: overall                                   | -[2772]              |                   | -[2774] |                    | -[2757] |                   | -[2740] |                    | -[2705] |                   | -[2615] |                   | -[2137] |                    | -[311]               |                          |
| -InL: survey                                    | -30.1                |                   | -30.2   |                    | -31.4   |                   | -31.1   |                    | -29.9   |                   | -26.4   |                   | -24.1   |                    | -29.3                |                          |
| -InL: comCAA                                    | -785.1               |                   | -783.9  |                    | -785.9  |                   | -785.8  |                    | -784.5  |                   | -785.8  |                   | -791.1  |                    | -176.2               |                          |
| -InL: survCAA                                   | -1818                |                   | -1819   |                    | -1818   |                   | -1818   |                    | -1820   |                   | -1819   |                   | -1329   |                    | -139                 |                          |
| -InL: survCAL                                   | -160.9               |                   | -161.0  |                    | -142.1  |                   | -126.1  |                    | -89.3   |                   | 0.0     |                   | 0.0     |                    | 16.0                 |                          |
| -InL: RecRes                                    | [25.8]               |                   | [24.4]  |                    | [23.8]  |                   | [24.4]  |                    | [22.7]  |                   | [20.1]  |                   | [13.1]  |                    | [21.0]               |                          |
| -InL: Catch                                     | 3.4                  |                   | 3.2     |                    | 3.1     |                   | 3.1     |                    | 2.7     |                   | 2.0     |                   | 1.1     |                    | 3.5                  |                          |
| -InL: calibration                               | -6.7                 |                   | -6.7    |                    | -6.7    |                   | -6.7    |                    | -6.7    |                   | -6.7    |                   | -6.7    |                    | -6.7                 |                          |
| Maximum gradient                                | 0.000                |                   | 0.000   |                    | 0.000   |                   | 0.000   |                    | 0.000   |                   | 0.000   |                   | 0.000   |                    | 0.000                |                          |
| N <sub>y1.0</sub>                               | 10.74                | (1.98)            | 15.10   | (0.14)             | 8.70    | (0.17)            | 4.79    | (0.20)             | 3.56    | (0.21)            | 5.23    | (0.19)            | 13.52   | (0.07)             | 15.93                | (0.11)                   |
| φ                                               | 0.33                 | (2.15)            | 0.08    | (0.86)             | 0.03    | (2.09)            | 0.08    | (1.02)             | 0.13    | (0.84)            | -       |                   | -       |                    | 0.18                 | (0.40)                   |
| B <sup>sp</sup> 2011                            | 13.64                | (0.15)            | 13.57   | (0.14)             | 13.54   | (0.14)            | 13.55   | (0.14)             | 13.57   | (0.14)            | 13.58   | (0.15)            | 13.54   | (0.14)             | 15.07                | (0.15)                   |
| B <sup>sp</sup> 1982                            | 22.17                | (0.05)            | 22.27   | (0.05)             | 22.38   | (0.05)            | 22.46   | (0.05)             | 22.33   | (0.05)            | 22.54   | (0.05)            | 26.08   | (0.04)             | 25.71                | (0.05)                   |
| B <sup>sp</sup> y1                              | 25.81                | (2.11)            | 42.90   | (0.22)             | 46.72   | (0.19)            | 38.85   | (0.21)             | 38.64   | (0.13)            | 33.05   | (0.10)            | 26.08   | (0.04)             | 32.43                | (0.20)                   |
|                                                 | 9                    | $\sigma_{ m Add}$ | 9       | $\sigma_{\rm Add}$ | 9       | $\sigma_{ m Add}$ | 9       | $\sigma_{\rm Add}$ | 9       | $\sigma_{ m Add}$ | 9       | $\sigma_{ m Add}$ | 9       | $\sigma_{\rm Add}$ | 9                    | $\sigma_{\rm Add}$       |
| NEFSC spring                                    | 0.80                 | 0.11              | 0.79    | 0.11               | 0.79    | 0.11              | 0.79    | 0.11               | 0.79    | 0.11              | 0.78    | 0.11              | 0.83    | 0.12               | 0.78                 | 0.11                     |
| NEFSC fall                                      | 0.64                 | 0.12              | 0.64    | 0.12               | 0.63    | 0.11              | 0.62    | 0.11               | 0.61    | 0.11              | 0.59    | 0.12              | 0.47    | 0.06               | 0.70                 | 0.13                     |
| MADMF spring                                    | 0.15                 | 0.24              | 0.15    | 0.24               | 0.15    | 0.24              | 0.15    | 0.24               | 0.15    | 0.24              | 0.15    | 0.24              | 0.15    | 0.24               | 0.13                 | 0.24                     |
| ĸ                                               | 31.64                | (0.08)            | 31.22   | (0.08)             | 31.26   | (0.08)            | 31.03   | (0.08)             | 33.59   | (0.11)            | 44.77   | (0.27)            | 31.26   | (0.26)             | 32.72                | (0.09)                   |
| h                                               | 1.02                 | (0.16)            | 1.00    | (0.16)             | 1.01    | (0.16)            | 1.01    | (0.17)             | 0.91    | (0.18)            | 0.72    | (0.21)            | 0.94    | (0.29)             | 0.95                 | (0.20)                   |
| MSY                                             | 6.50                 | (0.15)            | 6.31    | (0.16)             | 6.37    | (0.15)            | 6.32    | (0.16)             | 6.16    | (0.15)            | 6.27    | (0.16)            | 5.88    | (0.17)             | 6.24                 | (0.18)                   |
| FMSY                                            | 0.69                 |                   | 0.67    |                    | 0.68    |                   | 0.68    |                    | 0.58    |                   | 0.39    |                   | 0.60    |                    | 0.57                 |                          |
| B <sup>sp</sup> MSY                             | 11.66                | (0.15)            | 11.54   | (0.16)             | 11.54   | (0.16)            | 11.46   | (0.16)             | 12.72   | (0.16)            | 17.95   | (0.16)            | 11.80   | (0.17)             | 12.22                | (0.18)                   |
| B <sup>sp</sup> <sub>MSY</sub> /K <sup>sp</sup> | 0.37                 | (0.18)            | 0.37    | (0.17)             | 0.37    | (0.17)            | 0.37    | (0.18)             | 0.38    | (0.20)            | 0.40    | (0.25)            | 0.38    | (0.32)             | 0.37                 | (0.22)                   |
| B <sup>sp</sup> 2011/B <sup>sp</sup> MSY        | 1.17                 | (0.15)            | 1.18    | (0.16)             | 1.17    | (0.16)            | 1.18    | (0.16)             | 1.07    | (0.16)            | 0.76    | (0.16)            | 1.15    | (0.17)             | 1.23                 | (0.18)                   |

**App. A5, Table 5**: Estimates of abundance, MSY-related BRPs, and related quantities for the Gulf of Maine cod for the preferred cases for the two different *M* scenarios. Values in round parentheses are Hessian based CV's, while maximum gradient refers to the quantity reported with the ADMB estimation results. Mass units are '000 tons.  $y_1$  refers to the start year for the assessment. Recruitment  $N_{y_1,0}$  is in millions. Refer to Appendix B for definitions of some of the symbols used.

|                                                                 | м      | =0.2              | M increasing |                    |  |  |  |
|-----------------------------------------------------------------|--------|-------------------|--------------|--------------------|--|--|--|
| Start year y1=                                                  | 1      | 934               | 1934         |                    |  |  |  |
| -InL: overall                                                   | -2764  |                   | -2773        |                    |  |  |  |
| -InL: survey                                                    | -25.4  |                   | -30.8        |                    |  |  |  |
| -InL: comCAA                                                    | -787.0 |                   | -785.2       |                    |  |  |  |
| -InL: survCAA                                                   | -1821  |                   | -1820        |                    |  |  |  |
| -InL: survCAL                                                   | -160.1 |                   | -161.0       |                    |  |  |  |
| -InL: RecRes                                                    | 32.1   |                   | 26.0         |                    |  |  |  |
| -InL: Catch                                                     | 3.2    |                   |              |                    |  |  |  |
| -InL: calibration                                               | -5.4   |                   | -5.6         |                    |  |  |  |
| Maximum gradient                                                | 18.5*  |                   | 15.5         |                    |  |  |  |
| N <sub>y1,0</sub>                                               | 11.21  | (175.51)          | 10.78        | (1.97)             |  |  |  |
| $\phi$                                                          | 0.32   | (231.12)          | 0.33         | (2.14)             |  |  |  |
| <b>B</b> <sup>sp</sup> <sub>2011</sub>                          | 14.49  | (0.05)            | 13.79        | (0.05)             |  |  |  |
| B <sup>sp</sup> 1982                                            | 22.90  | (0.16)            | 22.15        | (0.15)             |  |  |  |
| B <sup>sp</sup> y1                                              | 32.69  | (222.39)          | 25.73        | (2.10)             |  |  |  |
|                                                                 | q      | $\sigma_{ m Add}$ | q            | $\sigma_{\rm Add}$ |  |  |  |
| NEFSC spring                                                    | 0.84   | 0.16              | 0.80         | 0.11               |  |  |  |
| NEFSC fall                                                      | 0.67   | 0.10              | 0.65         | 0.12               |  |  |  |
| MADMF spring                                                    | 0.22   | 0.30              | 0.15         | 0.24               |  |  |  |
| K                                                               | 74.70  | (0.19)            | 31.58        | (0.08)             |  |  |  |
| h                                                               | 2.24   | (0.15)            | 1.02         | (0.16)             |  |  |  |
| MSY                                                             | 13.33  | (0.12)            | 6.49         | (0.15)             |  |  |  |
| F <sub>MSY</sub>                                                | 0.53   |                   | 0.69         |                    |  |  |  |
| B <sup>sp</sup> <sub>MSY</sub>                                  | 25.70  | (0.12)            | 11.64        | (0.15)             |  |  |  |
| B <sup>sp</sup> <sub>MSY</sub> /K <sup>sp</sup>                 | 0.34   | (0.12)            | 0.37         | (0.18)             |  |  |  |
| B <sup>sp</sup> <sub>2011</sub> /B <sup>sp</sup> <sub>MSY</sub> | 0.56   | (0.12)            | 1.18         | (0.15)             |  |  |  |

\* This applies to the gradient for the third calibration parameter F2. All other estimated parameters have gradient  $<10^{-5}$ .

# **Appendix A5. Figures**



App. A5, Fig. 1: Spawning biomass and recruitment trajectories for the Ricker internal case with M = 0.2 and different starting years. The time series of catches is also shown (including the 32% increase pre-1982 to take account of discards).



App. A5, Fig. 2: Spawning biomass and recruitment trajectories for the Ricker internal case with M = 0.2, start in 1934 (top row) and start in 1963 (bottom row) with  $\pm 2$  se's shown to reflect approximate 95% CIs.



App. A5, Fig. 3: Spawning biomass and recruitment trajectories for various sensitivities about the Reference Case (RC - Ricker internal start in 1963) for M = 0.2.



**App. A5,** Fig. 4: Pre-1982 commercial selectivities for the RC for M = 0.2 and the two sensitivities relating to the pre-1982 commercial selectivity, and then for the NEFSC survey selectivities for the RC (flat) and the domed selectivity sensitivity.



App. A5, Fig. 5: Spawning biomass and recruitment trajectories for the Reference Case with M = 0.2 and the corresponding case with M increasing.



**App. A5,** Fig. 6: Stock-recruitment curve and "observed" recruitment for the Ricker and Beverton-Holt relationships estimated internally for the RC choice of a 1963 start year. The dashed lines show the corresponding estimated curves for external estimation.



App. A5, Fig. 7: Stock-recruit relationship for the Reference Case with M = 0.2 and the cases with different start year. To improve discrimination, the very imprecisely estimated 1970 curve which goes to much higher levels than these others is omitted.



App. A5, Fig. 8. Spawning biomass and recruitment trajectories (with  $\pm 2$  se's to reflect approximate 95% CIs) for the "preferred" run, M = 0.2.



**App. A5,** Fig. 9. Survey and commercial selectivities estimated for the "preferred" run, M = 0.2.



App. A5, Fig. 10: Fits to the abundance indices (top row) and to the survey and commercial catch-at-age data for the "preferred" run, M = 0.2. The second row plots compare the observed and predicted CAA as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A5, Fig. 11: Fits to the survey catch-at-length data for the "preferred" run, M = 0.2. The first row plots compare the observed and predicted CAL as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



**App. A5, Fig. 12**: Comparison of *Bigelow-Albatross* calibration function estimated within the assessment ("preferred" run, M = 0.2) and calibration function given.


App. A5, Fig. 13: Retrospective analysis for the "preferred" run, M = 0.2.



**App. A5, Fig. 14**. Spawning biomass and recruitment trajectories (with  $\pm 2$  se's to reflect approximate 95% CIs) for the "preferred" run, *M* increasing.



**App. A5, Fig. 15**. Survey and commercial selectivities estimated for the "preferred" run, *M* increasing. Note that for the Massachusetts survey as the age 4 selectivity is estimated to be greater than that for age 3, the selectivities for ages 5 and 6 are set equal to those for age 4 rather than continuing the trend from age 3 to age 4.



**App. A5, Fig. 16**: Fits to the abundance indices (top row) and to the survey and commercial catch-at-age data for the "preferred" run, *M* increasing. The second row plots compare the observed and predicted CAA as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



App. A5, Fig. 17: Fits to the survey catch-at-length data for the "preferred" run, M increasing. The first row plots compare the observed and predicted CAL as averaged over all years for which data are available, while the third row plots show the standardised residuals, with the size (area) of the bubbles being proportional to the magnitude of the corresponding standardised residuals. For positive residuals, the bubbles are grey, whereas for negative residuals, the bubbles are white.



**App. A5, Fig. 18**: Comparison of *Bigelow-Albatross* calibration function estimated within the assessment ("preferred" run, *M* increasing) and calibration function given.



App. A5, Fig. 19: Retrospective analysis for "preferred" run, *M* increasing.



App. A5, Fig. 20: Stock-recruitment curves and "observed" recruitment (pre-1963 data are shown as open circles) for the "preferred" runs M = 0.2 (left-hand plot) and M increasing (right-hand plot).

#### Appendix A5 (Apendices A and B within App. A5)

**APPENDIX A – Data** 

Note that the tables following, and the analyses reported in the main text, now exclude any 2012 data.

App. A5 (Append. A), Table A1: Total catch (incl. USA, DWF and recreational landings, and discards) (thousand metric tons) of Atlantic cod from the Gulf of Maine (NAFO Division 5Y), 1964-2012 (Michael Palmer, pers. commn). The revised discard mortality assumptions have been applied. Note that pre-1982 catches have been increased by 32% in the Base Case to allow for levels of discards suggested by recent analyses by the NEFSC.

| Year | Total catch |
|------|-------------|------|-------------|------|-------------|------|-------------|
| 1934 | 11.619      | 1954 | 3.411       | 1974 | 7.550       | 1994 | 9.060       |
| 1935 | 9.679       | 1955 | 3.171       | 1975 | 8.788       | 1995 | 7.566       |
| 1936 | 7.442       | 1956 | 2.693       | 1976 | 9.894       | 1996 | 7.757       |
| 1937 | 7.432       | 1957 | 2.562       | 1977 | 11.993      | 1997 | 5.814       |
| 1938 | 7.547       | 1958 | 4.670       | 1978 | 11.890      | 1998 | 4.578       |
| 1939 | 5.504       | 1959 | 3.795       | 1979 | 10.972      | 1999 | 3.078       |
| 1940 | 5.836       | 1960 | 3.448       | 1980 | 12.515      | 2000 | 5.823       |
| 1941 | 6.124       | 1961 | 3.216       | 1981 | 16.512      | 2001 | 8.055       |
| 1942 | 6.679       | 1962 | 2.989       | 1982 | 17.096      | 2002 | 6.509       |
| 1943 | 9.397       | 1963 | 2.595       | 1983 | 16.487      | 2003 | 6.497       |
| 1944 | 10.516      | 1964 | 3.242       | 1984 | 12.868      | 2004 | 5.766       |
| 1945 | 14.532      | 1965 | 3.759       | 1985 | 14.391      | 2005 | 5.441       |
| 1946 | 9.248       | 1966 | 4.225       | 1986 | 12.572      | 2006 | 4.268       |
| 1947 | 6.916       | 1967 | 5.824       | 1987 | 12.005      | 2007 | 5.527       |
| 1948 | 7.462       | 1968 | 6.137       | 1988 | 10.333      | 2008 | 7.375       |
| 1949 | 7.033       | 1969 | 8.155       | 1989 | 13.371      | 2009 | 8.355       |
| 1950 | 5.062       | 1970 | 7.961       | 1990 | 19.314      | 2010 | 7.670       |
| 1951 | 3.567       | 1971 | 7.475       | 1991 | 20.978      | 2011 | 6.830       |
| 1952 | 3.011       | 1972 | 6.927       | 1992 | 12.347      |      |             |
| 1953 | 3.121       | 1973 | 6.138       | 1993 | 9.960       |      |             |

App. A5 (Append. A), Table A2: Mean weight-at-age (kg) at the beginning of the year for the Gulf of Maine cod stock. Values derived from aggregated commercial landings and discard mean weight-at-age data (mid-year) using procedures described by Rivard (1980) (Michael Palmer, pers. commn) and applying the revised mortality assumptions. Pre-1982, the 1982-1991 average mean weight-at-age is assumed.

|      | 0      | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9+     |
|------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| 1982 | 0.0024 | 0.241 | 0.594 | 1.165 | 2.127 | 4.635 | 7.622 | 9.289 | 9.695  | 15.664 |
| 1983 | 0.0077 | 0.050 | 0.501 | 1.114 | 1.894 | 3.136 | 5.539 | 6.549 | 9.962  | 13.325 |
| 1984 | 0.0001 | 0.075 | 0.372 | 1.019 | 2.021 | 2.952 | 4.593 | 7.118 | 7.845  | 14.828 |
| 1985 | 0.0146 | 0.014 | 0.403 | 0.910 | 2.013 | 3.532 | 4.608 | 6.863 | 9.700  | 13.676 |
| 1986 | 0.0009 | 0.104 | 0.316 | 1.077 | 1.917 | 3.670 | 5.504 | 6.908 | 9.315  | 14.646 |
| 1987 | 0.0007 | 0.028 | 0.406 | 0.777 | 2.273 | 3.574 | 5.889 | 8.079 | 9.487  | 14.582 |
| 1988 | 0.0003 | 0.022 | 0.293 | 0.980 | 1.709 | 4.010 | 4.927 | 6.705 | 10.069 | 12.993 |
| 1989 | 0.0223 | 0.027 | 0.292 | 0.887 | 2.179 | 3.172 | 5.578 | 6.945 | 8.799  | 20.913 |
| 1990 | 0.0063 | 0.095 | 0.431 | 0.937 | 1.742 | 3.627 | 5.750 | 8.043 | 10.440 | 18.718 |
| 1991 | 0.0069 | 0.071 | 0.450 | 1.083 | 1.689 | 2.846 | 5.654 | 8.972 | 11.518 | 14.060 |
| 1992 | 0.0116 | 0.028 | 0.476 | 1.215 | 2.026 | 2.564 | 4.629 | 8.832 | 10.453 | 14.483 |
| 1993 | 0.0116 | 0.046 | 0.191 | 1.254 | 1.702 | 3.449 | 4.083 | 7.388 | 12.219 | 15.708 |
| 1994 | 0.0095 | 0.038 | 0.236 | 1.003 | 2.244 | 2.571 | 5.294 | 6.601 | 11.095 | 11.846 |
| 1995 | 0.0122 | 0.051 | 0.275 | 0.946 | 2.021 | 3.934 | 4.722 | 8.526 | 10.045 | 22.443 |
| 1996 | 0.0223 | 0.060 | 0.356 | 1.462 | 1.784 | 2.971 | 6.185 | 8.967 | 12.844 | 16.357 |
| 1997 | 0.0049 | 0.049 | 0.391 | 1.466 | 2.407 | 2.571 | 3.973 | 8.245 | 11.940 | 16.938 |
| 1998 | 0.0015 | 0.059 | 0.256 | 1.445 | 2.245 | 3.423 | 3.558 | 5.739 | 10.442 | 16.676 |
| 1999 | 0.0224 | 0.044 | 0.343 | 1.196 | 2.237 | 3.139 | 4.752 | 5.301 | 8.351  | 12.279 |
| 2000 | 0.0092 | 0.120 | 0.461 | 1.063 | 2.257 | 3.422 | 4.773 | 5.508 | 7.882  | 12.661 |
| 2001 | 0.0229 | 0.097 | 0.456 | 1.305 | 2.420 | 3.851 | 5.091 | 6.513 | 6.912  | 9.538  |
| 2002 | 0.0115 | 0.089 | 0.465 | 1.050 | 2.249 | 3.247 | 5.296 | 6.514 | 7.924  | 12.152 |
| 2003 | 0.0217 | 0.089 | 0.346 | 1.053 | 1.742 | 2.977 | 4.118 | 6.837 | 8.011  | 12.023 |
| 2004 | 0.0105 | 0.066 | 0.351 | 0.971 | 2.110 | 2.620 | 4.199 | 5.908 | 8.627  | 13.288 |
| 2005 | 0.0082 | 0.060 | 0.248 | 0.821 | 1.654 | 3.338 | 3.841 | 5.758 | 7.593  | 12.546 |
| 2006 | 0.0428 | 0.089 | 0.295 | 0.808 | 1.890 | 2.467 | 4.076 | 4.912 | 6.744  | 12.137 |
| 2007 | 0.0086 | 0.124 | 0.450 | 0.925 | 1.771 | 3.005 | 3.723 | 5.020 | 6.329  | 12.394 |
| 2008 | 0.0464 | 0.085 | 0.420 | 1.117 | 1.888 | 2.892 | 3.630 | 5.147 | 6.803  | 12.040 |
| 2009 | 0.0137 | 0.171 | 0.480 | 1.248 | 2.283 | 2.908 | 3.658 | 4.735 | 6.735  | 12.878 |
| 2010 | 0.0061 | 0.100 | 0.589 | 1.168 | 2.328 | 3.198 | 3.685 | 4.778 | 7.153  | 11.612 |
| 2011 | 0.0836 | 0.087 | 0.492 | 1.353 | 1.972 | 3.262 | 4.114 | 4.788 | 5.751  | 12.995 |

App. A5 (Append. A), Table A3: Mean weight-at-age (kg) of landings for the Gulf of Maine cod stock applying the revised mortality assumptions (Michael Palmer, pers. commn). Pre-1982, the 1982-1991 average mean weight-at-age is assumed.

|          | 0      | 1      | 2      | 3      | 4     | 5      | 6     | 7      | 8      | 9+     |
|----------|--------|--------|--------|--------|-------|--------|-------|--------|--------|--------|
| 1982     | 0.012  | 0.356  | 0.858  | 1.514  | 2.606 | 5.067  | 7.065 | 9.620  | 9.771  | 15.664 |
| 1983     | 0.024  | 0.224  | 0.768  | 1.542  | 2.418 | 3.808  | 6.055 | 6.071  | 10.317 | 13.325 |
| 1984     | 0.001  | 0.234  | 0.653  | 1.478  | 2.678 | 3.609  | 5.540 | 8.368  | 10.138 | 14.828 |
| 1985     | 0.039  | 0.206  | 0.733  | 1.404  | 2.819 | 4.658  | 5.884 | 8.502  | 11.244 | 13.676 |
| 1986     | 0.005  | 0.277  | 0.501  | 1.698  | 2.774 | 4.778  | 6.504 | 8.109  | 10.206 | 14.646 |
| 1987     | 0.004  | 0.154  | 0.642  | 1.323  | 3.090 | 4.668  | 7.259 | 10.036 | 11.099 | 14.582 |
| 1988     | 0.003  | 0.122  | 0.577  | 1.666  | 2.360 | 5.205  | 5.200 | 6.193  | 10.103 | 12.993 |
| 1989     | 0.046  | 0.236  | 0.752  | 1.518  | 2.959 | 4.282  | 5.980 | 9.276  | 12.519 | 20.913 |
| 1990     | 0.021  | 0.193  | 0.811  | 1.349  | 2.141 | 4.474  | 7.721 | 10.820 | 11.750 | 18.718 |
| 1991     | 0.014  | 0.236  | 1.113  | 1.601  | 2.281 | 3.894  | 7.144 | 10.429 | 12.261 | 14.031 |
| 1992     | 0.023  | 0.055  | 1.033  | 1.530  | 2.747 | 2.976  | 5.587 | 10.921 | 10.483 | 14.483 |
| 1993     | 0.021  | 0.081  | 0.690  | 1.748  | 2.150 | 4.420  | 5.670 | 9.817  | 13.673 | 15.701 |
| 1994     | 0.022  | 0.058  | 0.730  | 1.712  | 3.085 | 3.251  | 6.335 | 7.684  | 12.542 | 11.846 |
| 1995     | 0.027  | 0.103  | 1.288  | 1.591  | 2.649 | 5.090  | 6.865 | 11.466 | 13.128 | 22.443 |
| 1996     | 0.033  | 0.100  | 1.293  | 2.096  | 2.260 | 3.462  | 7.558 | 11.728 | 14.455 | 16.269 |
| 1997     | 0.017  | 0.064  | 1.351  | 2.128  | 3.022 | 3.074  | 4.699 | 9.000  | 12.156 | 16.938 |
| 1998     | 0.008  | 0.202  | 1.071  | 1.931  | 2.633 | 3.972  | 4.255 | 7.122  | 12.118 | 16.676 |
| 1999     | 0.052  | 0.222  | 0.635  | 1.723  | 2.777 | 3.892  | 5.670 | 6.704  | 9.811  | 12.279 |
| 2000     | 0.030  | 0.282  | 1.081  | 2.150  | 3.316 | 4.325  | 5.898 | 5.352  | 9.331  | 12.680 |
| 2001     | 0.045  | 0.316  | 0.890  | 2.176  | 3.144 | 4.666  | 6.140 | 7.273  | 9.072  | 9.559  |
| 2002     | 0.032  | 0.185  | 0.795  | 1.797  | 2.906 | 3.792  | 6.132 | 6.969  | 8.808  | 12.205 |
| 2003     | 0.038  | 0.202  | 0.809  | 1.843  | 2.378 | 3.654  | 5.112 | 7.649  | 9.191  | 12.058 |
| 2004     | 0.025  | 0.111  | 0.483  | 1.606  | 2.965 | 3.547  | 5.350 | 7.220  | 9.764  | 13.303 |
| 2005     | 0.027  | 0.126  | 0.558  | 1.625  | 2.401 | 4.233  | 4.502 | 6.349  | 8.002  | 12.549 |
| 2006     | 0.071  | 0.289  | 0.648  | 1.493  | 2.932 | 3.357  | 4.463 | 5.562  | 7.430  | 12.146 |
| 2007     | 0.025  | 0.220  | 0.744  | 1.731  | 2.922 | 3.735  | 4.771 | 6.167  | 7.302  | 12.394 |
| 2008     | 0.085  | 0.247  | 0.862  | 2.179  | 2.818 | 3.530  | 3.988 | 5.819  | 7.528  | 12.044 |
| 2009     | 0.032  | 0.337  | 0.911  | 2.153  | 3.126 | 3.575  | 4.368 | 5.959  | 8.000  | 12.887 |
| 2010     | 0.023  | 0.264  | 1.200  | 1.995  | 3.203 | 3.914  | 4.447 | 5.708  | 8.730  | 11.612 |
| <br>2011 | 0.0856 | 0.3289 | 0.9331 | 2.0561 | 2.874 | 3.8696 | 4.839 | 5.7166 | 5.9528 | 12.984 |

App. A5 (Append. A), Table A4: Total (commercial and recreational landings and discards) catches-at-age for the Gulf of Maine cod stock, applying the revised mortality assumptions (Michael Palmer, pers. commn).

|      | 1      | 2       | 3       | 4       | 5       | 6      | 7      | 8     | 9+    |
|------|--------|---------|---------|---------|---------|--------|--------|-------|-------|
| 1982 | 448849 | 2926542 | 2287192 | 1430682 | 748755  | 65880  | 94051  | 72553 | 90055 |
| 1983 | 597496 | 2462037 | 2913215 | 1201593 | 704010  | 452680 | 50022  | 62542 | 56198 |
| 1984 | 370324 | 2129556 | 1675931 | 1643588 | 437453  | 219625 | 105649 | 9495  | 53395 |
| 1985 | 505660 | 1944327 | 2405137 | 1151815 | 738096  | 161362 | 107192 | 48359 | 33213 |
| 1986 | 760701 | 1747046 | 2747811 | 991982  | 279282  | 202725 | 48016  | 38188 | 47527 |
| 1987 | 281794 | 2018317 | 1568334 | 1574499 | 345353  | 89415  | 81032  | 14459 | 37549 |
| 1988 | 415081 | 1542790 | 2086633 | 1156925 | 447729  | 67430  | 25560  | 26247 | 9267  |
| 1989 | 166436 | 1247203 | 2385088 | 1651856 | 521108  | 87147  | 70289  | 9369  | 19564 |
| 1990 | 65527  | 812544  | 5547767 | 2717623 | 541353  | 189069 | 29703  | 36417 | 43315 |
| 1991 | 121627 | 499588  | 942731  | 5561272 | 1037852 | 150670 | 55540  | 25983 | 15805 |
| 1992 | 370302 | 830147  | 867564  | 502084  | 2189957 | 226167 | 80181  | 6044  | 5530  |
| 1993 | 105929 | 512307  | 2149041 | 944709  | 103328  | 497117 | 41561  | 11264 | 0     |
| 1994 | 123996 | 201923  | 1525603 | 1294203 | 266291  | 66224  | 74158  | 28714 | 7870  |
| 1995 | 78932  | 319462  | 1321833 | 1260435 | 221653  | 29931  | 6521   | 18184 | 2808  |
| 1996 | 37536  | 111569  | 627693  | 2003886 | 405881  | 36651  | 4039   | 491   | 1623  |
| 1997 | 69144  | 137484  | 519557  | 467768  | 869161  | 72472  | 5523   | 2272  | 1029  |
| 1998 | 5941   | 171062  | 492301  | 628941  | 152820  | 205873 | 28696  | 5168  | 2257  |
| 1999 | 73948  | 90853   | 347840  | 336596  | 172344  | 53699  | 59469  | 12388 | 1067  |
| 2000 | 24758  | 485043  | 556537  | 813684  | 176640  | 85157  | 12485  | 10521 | 0     |
| 2001 | 584    | 393951  | 1163770 | 684449  | 385530  | 106600 | 57232  | 8262  | 11577 |
| 2002 | 16831  | 41591   | 374949  | 912638  | 323797  | 163476 | 66392  | 28087 | 20263 |
| 2003 | 44899  | 125587  | 167812  | 582079  | 706098  | 186022 | 75694  | 29224 | 26844 |
| 2004 | 149420 | 105917  | 609344  | 259720  | 407447  | 251632 | 68378  | 33017 | 27442 |
| 2005 | 23545  | 180064  | 159581  | 945815  | 89223   | 246596 | 109148 | 28457 | 31674 |
| 2006 | 19249  | 59082   | 426566  | 290132  | 461742  | 30341  | 79655  | 39016 | 27343 |
| 2007 | 12171  | 108471  | 299416  | 976424  | 137404  | 230163 | 7947   | 19244 | 21999 |
| 2008 | 12156  | 130508  | 598424  | 707392  | 780450  | 86355  | 110576 | 4041  | 16558 |
| 2009 | 10651  | 101492  | 622453  | 1093273 | 477852  | 304754 | 20896  | 30506 | 9646  |
| 2010 | 8159   | 83580   | 394486  | 888549  | 668256  | 164291 | 71683  | 11213 | 7611  |
| 2011 | 8683   | 60526   | 322164  | 589583  | 573856  | 339910 | 34926  | 38408 | 9433  |

App. A5 (Append. A), Table A5: Standardized stratified mean numbers per tow at age and standardized mean numbers and mean weight (kg) per tow for ages 1+ of Atlantic cod in NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine, 1968-2011 (Michael Palmer, pers. commn).

|      |       |       |       |       |       |       |       |       |       | Stratified |         | Stratified |         |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|---------|------------|---------|
|      |       |       |       |       |       |       |       |       |       | mean       |         | mean       |         |
|      |       |       |       |       |       |       |       |       |       | numbers/   |         | wt/tow     |         |
|      | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9+    | tow        | CV      | (kg)       | CV      |
| 1968 |       |       |       |       |       |       |       |       |       | 5.329*     | (0.127) | 17.480*    | (0.153) |
| 1969 |       |       |       |       |       |       |       |       |       | 3.215*     | (0.328) | 13.100*    | (0.329) |
| 1970 | 0.159 | 0.124 | 0.053 | 0.098 | 0.290 | 0.475 | 0.589 | 0.073 | 0.330 | 2.191      | (0.214) | 11.089     | (0.237) |
| 1971 | 0.069 | 0.109 | 0.099 | 0.280 | 0.086 | 0.096 | 0.280 | 0.207 | 0.204 | 1.429      | (0.190) | 7.004      | (0.211) |
| 1972 | 0.300 | 0.153 | 0.499 | 0.208 | 0.205 | 0.052 | 0.083 | 0.119 | 0.386 | 2.004      | (0.208) | 8.031      | (0.233) |
| 1973 | 0.053 | 4.273 | 0.917 | 0.614 | 0.384 | 0.144 | 0.106 | 0.186 | 0.848 | 7.525      | (0.328) | 18.807     | (0.415) |
| 1974 | 0.311 | 0.081 | 1.534 | 0.177 | 0.231 | 0.082 | 0.000 | 0.064 | 0.258 | 2.738      | (0.188) | 7.417      | (0.199) |
| 1975 | 0.094 | 0.707 | 0.095 | 1.139 | 0.246 | 0.073 | 0.000 | 0.006 | 0.140 | 2.500      | (0.222) | 6.039      | (0.249) |
| 1976 | 0.052 | 0.253 | 1.114 | 0.150 | 0.870 | 0.131 | 0.056 | 0.038 | 0.117 | 2.782      | (0.181) | 7.555      | (0.166) |
| 1977 | 0.068 | 0.264 | 0.460 | 2.015 | 0.139 | 0.775 | 0.000 | 0.114 | 0.038 | 3.872      | (0.269) | 8.541      | (0.208) |
| 1978 | 0.070 | 0.083 | 0.297 | 0.383 | 0.764 | 0.084 | 0.226 | 0.013 | 0.131 | 2.050      | (0.191) | 7.697      | (0.207) |
| 1979 | 0.426 | 1.407 | 0.186 | 0.470 | 0.301 | 0.549 | 0.094 | 0.104 | 0.064 | 3.599      | (0.234) | 7.555      | (0.176) |
| 1980 | 0.037 | 0.500 | 0.436 | 0.123 | 0.294 | 0.226 | 0.337 | 0.000 | 0.132 | 2.084      | (0.171) | 6.231      | (0.182) |
| 1981 | 1.091 | 0.619 | 0.850 | 1.335 | 0.318 | 0.304 | 0.080 | 0.144 | 0.091 | 4.832      | (0.194) | 10.651     | (0.205) |
| 1982 | 0.357 | 1.040 | 0.498 | 0.737 | 0.848 | 0.083 | 0.135 | 0.000 | 0.050 | 3.749      | (0.219) | 8.616      | (0.223) |
| 1983 | 0.610 | 0.968 | 1.042 | 0.453 | 0.336 | 0.250 | 0.060 | 0.000 | 0.181 | 3.900      | (0.263) | 10.962     | (0.225) |
| 1984 | 0.151 | 1.309 | 0.987 | 0.853 | 0.229 | 0.047 | 0.090 | 0.000 | 0.000 | 3.667      | (0.443) | 6.143      | (0.324) |
| 1985 | 0.029 | 0.238 | 0.676 | 0.612 | 0.707 | 0.094 | 0.109 | 0.026 | 0.026 | 2.517      | (0.202) | 7.645      | (0.223) |
| 1986 | 0.537 | 0.259 | 0.767 | 0.218 | 0.075 | 0.046 | 0.038 | 0.000 | 0.018 | 1.957      | (0.314) | 3.476      | (0.197) |
| 1987 | 0.030 | 0.471 | 0.191 | 0.222 | 0.075 | 0.000 | 0.068 | 0.011 | 0.015 | 1.082      | (0.257) | 1.976      | (0.314) |
| 1988 | 0.719 | 0.926 | 0.791 | 0.283 | 0.205 | 0.099 | 0.036 | 0.020 | 0.020 | 3.099      | (0.211) | 3.603      | (0.281) |
| 1989 | 0.025 | 0.609 | 0.712 | 0.630 | 0.069 | 0.068 | 0.000 | 0.000 | 0.000 | 2.112      | (0.184) | 2.424      | (0.207) |
| 1990 | 0.009 | 0.233 | 1.325 | 0.669 | 0.076 | 0.032 | 0.018 | 0.000 | 0.000 | 2.362      | (0.249) | 3.077      | (0.280) |
| 1991 | 0.028 | 0.077 | 0.233 | 1.750 | 0.247 | 0.041 | 0.018 | 0.000 | 0.000 | 2.393      | (0.251) | 2.891      | (0.240) |
| 1992 | 0.050 | 0.247 | 0.223 | 0.248 | 1.368 | 0.213 | 0.073 | 0.000 | 0.012 | 2.435      | (0.317) | 8.627      | (0.374) |
| 1993 | 0.201 | 0.507 | 0.804 | 0.364 | 0.084 | 0.446 | 0.055 | 0.023 | 0.023 | 2.507      | (0.223) | 5.875      | (0.347) |
| 1994 | 0.015 | 0.316 | 0.407 | 0.201 | 0.083 | 0.053 | 0.142 | 0.009 | 0.045 | 1.271      | (0.223) | 2.428      | (0.216) |
| 1995 | 0.037 | 0.187 | 1.165 | 0.321 | 0.147 | 0.034 | 0.000 | 0.011 | 0.028 | 1.930      | (0.273) | 2.432      | (0.257) |
| 1996 | 0.057 | 0.022 | 0.586 | 1.355 | 0.385 | 0.060 | 0.000 | 0.000 | 0.000 | 2.465      | (0.240) | 5.427      | (0.275) |
| 1997 | 0.159 | 0.139 | 0.390 | 0.271 | 0.874 | 0.244 | 0.115 | 0.000 | 0.000 | 2.192      | (0.168) | 5.615      | (0.192) |
| 1998 | 0.018 | 0.228 | 0.359 | 0.513 | 0.143 | 0.408 | 0.021 | 0.020 | 0.000 | 1.711      | (0.344) | 4.180      | (0.324) |
| 1999 | 0.166 | 0.342 | 0.726 | 0.351 | 0.305 | 0.134 | 0.266 | 0.000 | 0.011 | 2.301      | (0.242) | 5.090      | (0.320) |
| 2000 | 1.173 | 0.737 | 0.438 | 0.485 | 0.099 | 0.092 | 0.011 | 0.022 | 0.000 | 3.057      | (0.221) | 3.211      | (0.155) |
| 2001 | 0.029 | 0.355 | 0.683 | 0.510 | 0.342 | 0.065 | 0.097 | 0.055 | 0.011 | 2.147      | (0.311) | 6.215      | (0.327) |
| 2002 | 0.340 | 0.045 | 0.548 | 1.584 | 0.606 | 0.342 | 0.185 | 0.057 | 0.017 | 3.724      | (0.203) | 10.934     | (0.215) |
| 2003 | 0.075 | 0.825 | 0.059 | 0.718 | 1.072 | 0.387 | 0.340 | 0.081 | 0.122 | 3.677      | (0.223) | 9.494      | (0.368) |
| 2004 | 0.136 | 0.045 | 0.230 | 0.116 | 0.208 | 0.213 | 0.011 | 0.011 | 0.010 | 0.981      | (0.256) | 2.412      | (0.293) |
| 2005 | 0.029 | 0.739 | 0.081 | 0.623 | 0.011 | 0.138 | 0.128 | 0.015 | 0.000 | 1.764      | (0.241) | 2.701      | (0.248) |
| 2006 | 0.184 | 0.237 | 0.434 | 0.049 | 0.197 | 0.023 | 0.126 | 0.069 | 0.015 | 1.334      | (0.203) | 2.702      | (0.249) |
| 2007 | 0.100 | 3.422 | 3.077 | 4.446 | 0.437 | 0.796 | 0.075 | 0.041 | 0.000 | 12.393     | (0.665) | 15.811     | (0.540) |
| 2008 | 0.079 | 1.165 | 3.930 | 1.582 | 1.099 | 0.053 | 0.082 | 0.000 | 0.000 | 7.990      | (0.716) | 10.824     | (0.609) |
| 2009 | 0.063 | 0.279 | 1.050 | 1.135 | 0.600 | 0.438 | 0.008 | 0.022 | 0.004 | 3.599      | (0.531) | 7.161      | (0.491) |
| 2010 | 0.059 | 0.279 | 0.335 | 0.197 | 0.229 | 0.113 | 0.043 | 0.016 | 0.025 | 1.296      | (0.243) | 3.336      | (0.264) |
| 2011 | 0.005 | 0.024 | 0.140 | 0.383 | 0.189 | 0.086 | 0.033 | 0.035 | 0.000 | 0.894      | (0.279) | 2.133      | (0.201) |
|      |       |       |       |       |       |       |       |       |       |            |         |            |         |

\* Aggregate index for ages 0+ as numbers-at-age and biomasses-at-age are not available pre-1970.

|                              |          |          |         |        |         |          |         |         |           | Stratified    |          | Stratified |         |
|------------------------------|----------|----------|---------|--------|---------|----------|---------|---------|-----------|---------------|----------|------------|---------|
|                              |          |          |         |        |         |          |         |         |           | mean          |          | mean       |         |
|                              |          |          |         |        |         |          |         |         |           | numbers/      |          | wt/tow     |         |
|                              | 1        | 2        | 3       | 4      | 5       | 6        | 7       | 8       | 9+        | tow           | CV       | (kg)       | CV      |
| 1963                         |          |          |         |        |         |          |         |         |           | 5.914*        | (0.250)  | 17.950*    | (0.391) |
| 1964                         |          |          |         |        |         |          |         |         |           | 4.015*        | (0.412)  | 22.799*    | (0.496) |
| 1965                         |          |          |         |        |         |          |         |         |           | 4.500*        | (0.274)  | 12.089*    | (0.273) |
| 1966                         |          |          |         |        |         |          |         |         |           | 3.720*        | (0.217)  | 12.838*    | (0.227) |
| 1967                         |          |          |         |        |         |          |         |         |           | 2.602*        | (0.223)  | 9.313*     | (0.219) |
| 1968                         |          |          |         |        |         |          |         |         |           | 4.374*        | (0.181)  | 19.437*    | (0.198) |
| 1969                         |          |          |         |        |         |          |         |         |           | 2.758*        | (0.152)  | 15.154*    | (0.217) |
| 1970                         | 0.938    | 0.254    | 0.520   | 0.336  | 0.487   | 0.424    | 0.836   | 0.130   | 0.237     | 4.162         | (0.318)  | 16.437     | (0.248) |
| 1971                         | 0.207    | 0.224    | 0.190   | 0.607  | 0.444   | 0.509    | 0.222   | 0.280   | 0.345     | 3.027         | (0.205)  | 16.196     | (0.307) |
| 1972                         | 5.663    | 1.118    | 1.595   | 0.181  | 0.072   | 0.122    | 0.031   | 0.121   | 0.367     | 9.269         | (0.535)  | 12.988     | (0.199) |
| 1973                         | 0.327    | 2.146    | 0.179   | 0.540  | 0.191   | 0.055    | 0.018   | 0.039   | 0.320     | 3.814         | (0.151)  | 8.758      | (0.267) |
| 1974                         | 1.131    | 0.267    | 1.922   | 0.125  | 0.276   | 0.000    | 0.052   | 0.036   | 0.255     | 4.063         | (0.260)  | 8.959      | (0.201) |
| 1975                         | 0.223    | 3.028    | 0.139   | 2.354  | 0.250   | 0.105    | 0.020   | 0.000   | 0.018     | 6.137         | (0.226)  | 8.619      | (0.153) |
| 1976                         | 0.209    | 0.216    | 0.578   | 0.104  | 0.835   | 0.044    | 0.099   | 0.000   | 0.063     | 2.148         | (0.197)  | 6.740      | (0.214) |
| 1977                         | 0.046    | 0.446    | 0.456   | 1.151  | 0.133   | 0.604    | 0.024   | 0.083   | 0.130     | 3.073         | (0.124)  | 10.199     | (0.126) |
| 1978                         | 1.411    | 0.359    | 1.141   | 0.661  | 1.450   | 0.101    | 0.269   | 0.012   | 0.129     | 5.531         | (0.188)  | 12.895     | (0.151) |
| 1979                         | 0.364    | 0.617    | 0.131   | 0.696  | 0.319   | 0.754    | 0.056   | 0.135   | 0.071     | 3.142         | (0.112)  | 13.927     | (0.128) |
| 1980                         | 1.319    | 2.558    | 1.664   | 0.518  | 0.236   | 0.402    | 0.192   | 0.022   | 0.097     | 7.007         | (0.261)  | 14.202     | (0.153) |
| 1981                         | 0.581    | 0.399    | 0.469   | 0.509  | 0.092   | 0.081    | 0.081   | 0.099   | 0.028     | 2,339         | (0.224)  | 7.533      | (0.233) |
| 1982                         | 0.835    | 3.264    | 2.476   | 0.971  | 0.222   | 0.000    | 0.000   | 0.000   | 0.000     | 7,769         | (0.636)  | 15.919     | (0.670) |
| 1983                         | 0.305    | 0.905    | 0.757   | 0.267  | 0.250   | 0.219    | 0.000   | 0.000   | 0.083     | 2.786         | (0.170)  | 8.416      | (0.188) |
| 1984                         | 0.513    | 0.418    | 0.586   | 0.384  | 0.196   | 0.194    | 0.062   | 0.000   | 0.096     | 2.449         | (0.220)  | 8.735      | (0.334) |
| 1985                         | 0.445    | 0.917    | 0.627   | 0.201  | 0.246   | 0.064    | 0.000   | 0.034   | 0.070     | 2.604         | (0.176)  | 8.261      | (0.354) |
| 1986                         | 0.394    | 0.404    | 0.626   | 0.368  | 0.073   | 0.041    | 0.000   | 0.000   | 0.045     | 1.950         | (0.230)  | 4.715      | (0.228) |
| 1987                         | 0.570    | 1.388    | 0.586   | 0.198  | 0.125   | 0.000    | 0.000   | 0.000   | 0.000     | 2.868         | (0.308)  | 3,393      | (0.234) |
| 1988                         | 1.889    | 2.366    | 1.069   | 0.367  | 0.146   | 0.000    | 0.044   | 0.000   | 0.022     | 5,903         | (0.349)  | 6,616      | (0.232) |
| 1989                         | 0 145    | 2 468    | 1 458   | 0 283  | 0 138   | 0.053    | 0.000   | 0.009   | 0.000     | 4 553         | (0.223)  | 4 535      | (0.181) |
| 1990                         | 0.057    | 0.218    | 1 788   | 0.611  | 0.255   | 0.048    | 0.010   | 0.000   | 0.000     | 2 986         | (0.190)  | 4 912      | (0.204) |
| 1991                         | 0 144    | 0.151    | 0.230   | 0.621  | 0.075   | 0.000    | 0.023   | 0.000   | 0.000     | 1 243         | (0.267)  | 2 782      | (0.204) |
| 1992                         | 0.289    | 0.131    | 0.144   | 0.041  | 0.327   | 0.126    | 0.020   | 0.000   | 0.000     | 1 375         | (0.207)  | 2.782      | (0.243) |
| 1002                         | 0.209    | 0.440    | 0.261   | 0.041  | 0.327   | 0.120    | 0.000   | 0.000   | 0.000     | 1 201         | (0.213)  | 1 002      | (0.243) |
| 100/                         | 0.210    | 0.373    | 0.301   | 0.017  | 0.000   | 0.038    | 0.000   | 0.000   | 0.000     | 2.009         | (0.233)  | 2 726      | (0.203) |
| 1005                         | 0.104    | 0.909    | 1 226   | 0.095  | 0.051   | 0.000    | 0.045   | 0.000   | 0.000     | 2.098         | (0.303)  | 2.750      | (0.292) |
| 1995                         | 0.008    | 0.308    | 0.221   | 0.504  | 0.062   | 0.011    | 0.000   | 0.000   | 0.000     | 2.000         | (0.301)  | 3.004      | (0.323) |
| 1990                         | 0.122    | 0.379    | 0.251   | 0.510  | 0.050   | 0.000    | 0.000   | 0.000   | 0.000     | 1.299         | (0.234)  | 2.551      | (0.249) |
| 1008                         | 0.297    | 0.091    | 0.105   | 0.100  | 0.151   | 0.000    | 0.000   | 0.000   | 0.000     | 0.872         | (0.299)  | 1.672      | (0.307) |
| 1998                         | 0.085    | 0.342    | 0.110   | 0.165  | 0.041   | 0.031    | 0.000   | 0.000   | 0.000     | 0.793         | (0.340)  | 1.499      | (0.287) |
| 1999                         | 0.432    | 0.375    | 0.590   | 0.244  | 0.122   | 0.019    | 0.000   | 0.000   | 0.000     | 1.782         | (0.181)  | 3.504      | (0.193) |
| 2000                         | 0.540    | 0.981    | 0.399   | 0.492  | 0.140   | 0.010    | 0.000   | 0.034   | 0.000     | 2.596         | (0.306)  | 4.652      | (0.332) |
| 2001                         | 0.000    | 0.1/1    | 0.720   | 0.478  | 0.356   | 0.124    | 0.092   | 0.000   | 0.023     | 1.963         | (0.271)  | 7.323      | (0.279) |
| 2002                         | 0.269    | 0.104    | 0.333   | 2.683  | 1.070   | 0.750    | 0.077   | 0.043   | 0.000     | 5.328         | (0.578)  | 24.659     | (0.686) |
| 2003                         | 0.461    | 0.186    | 0.216   | 0.518  | 0.451   | 0.071    | 0.062   | 0.000   | 0.022     | 1.988         | (0.307)  | 5.974      | (0.251) |
| 2004                         | 0.661    | 0.1/2    | 0.577   | 0.254  | 0.250   | 0.149    | 0.057   | 0.023   | 0.021     | 2.165         | (0.327)  | 4.903      | (0.214) |
| 2005                         | 0.153    | 0.378    | 0.078   | 0.456  | 0.023   | 0.090    | 0.082   | 0.023   | 0.021     | 1.304         | (0.065)  | 2.896      | (0.228) |
| 2006                         | 1.241    | 0.599    | 1.007   | 0.252  | 0.293   | 0.037    | 0.053   | 0.036   | 0.014     | 3.531         | (0.301)  | 4.229      | (0.188) |
| 2007                         | 0.136    | 0.863    | 0.395   | 0.496  | 0.023   | 0.067    | 0.000   | 0.000   | 0.000     | 1.981         | (0.368)  | 2.714      | (0.277) |
| 2008                         | 0.650    | 1.227    | 1.060   | 0.189  | 0.139   | 0.000    | 0.000   | 0.000   | 0.031     | 3.295         | (0.389)  | 5.292      | (0.285) |
| 2009                         | 0.660    | 2.096    | 0.314   | 0.277  | 0.045   | 0.035    | 0.000   | 0.000   | 0.000     | 3.427         | (0.535)  | 5.844      | (0.429) |
| 2010                         | 0.094    | 0.132    | 0.290   | 0.288  | 0.092   | 0.023    | 0.013   | 0.000   | 0.006     | 0.940         | (0.233)  | 2.571      | (0.304) |
| 2011                         | 0.060    | 0.091    | 0.210   | 0.304  | 0.175   | 0.078    | 0.005   | 0.031   | 0.000     | 0.954         | (0.304)  | 2.647      | (0.336) |
| <ul> <li>* Aggreg</li> </ul> | gate ind | ex for a | ages 0+ | as nun | ibers-a | t-age ar | nd bion | asses-a | at-age an | re not availa | ble pre- | 1970.      |         |

App. A5 (Append. A), Table A6: Standardized stratified mean numbers per tow at age and standardized mean numbers and mean weight (kg) per tow for ages 1+ of Atlantic cod in NEFSC offshore autumn research vessel bottom trawl surveys in the Gulf of Maine, 1963-2011 (Michael Palmer, pers. commn).

App. A5 (Append. A), Table A7: Stratified mean numbers at age per tow and mean number and mean weight (kg) for ages 1 to 6 of Atlantic cod in State of Massachusetts inshore spring bottom trawl surveys in territorial waters adjacent to the Gulf of Maine (Mass. Regions 4-5), 1982-2011 (Michael Palmer, pers. commn).

|      |        |        |        |       |       |       | Stratified |         | Stratified |         |
|------|--------|--------|--------|-------|-------|-------|------------|---------|------------|---------|
|      |        |        |        |       |       |       | mean       |         | mean       |         |
|      |        |        |        |       |       |       | numbers    |         | wt/tow     |         |
|      | 1      | 2      | 3      | 4     | 5     | 6     | /tow       | CV      | (kg)       | CV      |
| 1982 | 13.218 | 6.649  | 2.921  | 1.024 | 0.216 | 0.049 | 24.078     | (0.221) | 9.783      | (0.175) |
| 1983 | 30.253 | 17.570 | 4.710  | 0.347 | 1.121 | 0.075 | 54.076     | (0.166) | 15.639     | (0.153) |
| 1984 | 1.898  | 5.090  | 2.101  | 0.751 | 0.147 | 0.086 | 10.073     | (0.289) | 7.042      | (0.259) |
| 1985 | 1.670  | 2.695  | 2.024  | 0.498 | 0.000 | 0.000 | 6.886      | (0.206) | 4.535      | (0.194) |
| 1986 | 18.031 | 3.376  | 0.903  | 0.582 | 0.100 | 0.023 | 23.014     | (0.552) | 4.778      | (0.354) |
| 1987 | 8.622  | 5.376  | 2.045  | 0.168 | 0.147 | 0.053 | 16.411     | (0.221) | 6.305      | (0.271) |
| 1988 | 10.409 | 6.750  | 1.927  | 1.211 | 0.016 | 0.033 | 20.347     | (0.206) | 7.389      | (0.237) |
| 1989 | 21.463 | 22.947 | 6.868  | 0.513 | 0.108 | 0.048 | 51.946     | (0.268) | 15.801     | (0.342) |
| 1990 | 4.972  | 5.938  | 14.182 | 2.149 | 0.155 | 0.083 | 27.479     | (0.288) | 15.612     | (0.341) |
| 1991 | 5.331  | 2.295  | 1.801  | 3.669 | 0.249 | 0.000 | 13.344     | (0.219) | 8.123      | (0.122) |
| 1992 | 4.379  | 5.699  | 3.444  | 0.484 | 1.301 | 0.066 | 15.374     | (0.287) | 8.417      | (0.321) |
| 1993 | 2.842  | 6.100  | 2.509  | 0.879 | 0.166 | 0.074 | 12.569     | (0.340) | 5.666      | (0.270) |
| 1994 | 5.406  | 3.883  | 1.703  | 0.608 | 0.131 | 0.000 | 11.731     | (0.227) | 3.908      | (0.241) |
| 1995 | 5.985  | 2.420  | 2.408  | 0.525 | 0.028 | 0.000 | 11.366     | (0.262) | 3.695      | (0.225) |
| 1996 | 0.777  | 0.497  | 0.955  | 1.590 | 0.299 | 0.000 | 4.119      | (0.218) | 3.086      | (0.305) |
| 1997 | 2.910  | 1.035  | 0.920  | 0.190 | 0.383 | 0.018 | 5.456      | (0.240) | 2.281      | (0.250) |
| 1998 | 1.487  | 0.924  | 0.779  | 0.637 | 0.034 | 0.211 | 4.072      | (0.261) | 3.098      | (0.468) |
| 1999 | 11.832 | 2.407  | 2.275  | 0.735 | 0.630 | 0.036 | 17.914     | (0.369) | 7.219      | (0.261) |
| 2000 | 35.360 | 6.995  | 2.371  | 2.316 | 0.784 | 0.663 | 48.488     | (0.391) | 16.294     | (0.459) |
| 2001 | 0.084  | 4.998  | 4.710  | 3.448 | 1.961 | 0.323 | 15.524     | (0.435) | 24.860     | (0.536) |
| 2002 | 19.340 | 0.220  | 1.379  | 1.145 | 0.561 | 0.318 | 22.964     | (0.096) | 6.924      | (0.390) |
| 2003 | 17.109 | 5.496  | 0.439  | 1.938 | 0.937 | 0.221 | 26.139     | (0.507) | 8.674      | (0.219) |
| 2004 | 8.927  | 1.882  | 2.627  | 0.361 | 1.083 | 0.455 | 15.335     | (0.459) | 7.044      | (0.278) |
| 2005 | 5.524  | 4.141  | 0.795  | 1.955 | 0.263 | 0.663 | 13.342     | (0.223) | 7.798      | (0.197) |
| 2006 | 9.992  | 7.139  | 3.930  | 0.525 | 1.532 | 0.109 | 23.227     | (0.337) | 7.001      | (0.181) |
| 2007 | 3.776  | 3.078  | 2.303  | 2.163 | 0.343 | 0.519 | 12.181     | (0.274) | 7.937      | (0.251) |
| 2008 | 7.275  | 10.336 | 3.242  | 2.287 | 1.695 | 0.155 | 24.991     | (0.204) | 10.673     | (0.215) |
| 2009 | 8.907  | 2.350  | 1.654  | 1.045 | 0.348 | 0.112 | 14.417     | (0.352) | 3.839      | (0.187) |
| 2010 | 2.415  | 1.393  | 1.423  | 0.819 | 0.678 | 0.129 | 6.858      | (0.234) | 4.953      | (0.456) |
| 2011 | 0.326  | 1.001  | 0.621  | 0.933 | 0.558 | 0.139 | 3.579      | (0.534) | 4.027      | (0.424) |

App. A5 (Append. A), Table A8: Percentage of mature females for each age for the Gulf of Maine cod stock (Michael Palmer, pers. commn).

| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9+    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.092 | 0.287 | 0.613 | 0.862 | 0.961 | 0.990 | 0.997 | 0.999 | 1.000 |

App. A5 (Append. A), Table A9: Length frequency distributions for NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

|        | NEFS   | C spring s | urvey  | NEF    | SC call sur | rvey    |
|--------|--------|------------|--------|--------|-------------|---------|
| Year   | 2009   | 2010       | 2011   | 2009   | 2010        | 2011    |
| -25cm  | 0.5634 | 0.4138     | 0.0286 | 0.3967 | 0.0605      | 0.2489  |
| 26cm   | 0.0496 | 0.0189     | 0.0000 | 0.1330 | 0.0283      | 0.0850  |
| 27cm   | 0.0425 | 0.0756     | 0.0000 | 0.1731 | 0.0142      | 0.0283  |
| 28cm   | 0.0638 | 0.1501     | 0.0000 | 0.1251 | 0.0000      | 0.0142  |
| 29cm   | 0.0553 | 0.0945     | 0.0000 | 0.1330 | 0.0283      | 0.0000  |
| 30cm   | 0.0283 | 0.1134     | 0.0000 | 0.2330 | 0.0367      | 0.0142  |
| 32cm   | 0.0142 | 0.0945     | 0.0488 | 0.4412 | 0.1134      | 0.0130  |
| 33cm   | 0.0213 | 0.0935     | 0.0113 | 0.5951 | 0.0425      | 0.0142  |
| 34cm   | 0.0958 | 0.1572     | 0.0000 | 0.9068 | 0.0567      | 0.0506  |
| 35cm   | 0.0743 | 0.1407     | 0.0227 | 0.7147 | 0.0142      | 0.0283  |
| 36cm   | 0.0887 | 0.1029     | 0.0000 | 0.6659 | 0.0394      | 0.0142  |
| 37cm   | 0.0695 | 0.0853     | 0.0340 | 0.5014 | 0.0278      | 0.0000  |
| 38cm   | 0.1204 | 0.0945     | 0.0113 | 0.6155 | 0.0425      | 0.0000  |
| 39cm   | 0.1/48 | 0.0567     | 0.0000 | 0.3400 | 0.0142      | 0.0543  |
| 40cm   | 0.1539 | 0.0283     | 0.0431 | 0.2310 | 0.0242      | 0.0265  |
| 42cm   | 0.1771 | 0.0276     | 0.0599 | 0.3103 | 0.0850      | 0.0380  |
| 43cm   | 0.1565 | 0.0378     | 0.0793 | 0.2834 | 0.0425      | 0.0401  |
| 44cm   | 0.2125 | 0.0378     | 0.0907 | 0.3400 | 0.0283      | 0.0222  |
| 45cm   | 0.2287 | 0.0378     | 0.0340 | 0.3280 | 0.0384      | 0.0640  |
| 46cm   | 0.2196 | 0.0283     | 0.0214 | 0.2776 | 0.0283      | 0.0567  |
| 47cm   | 0.1913 | 0.0189     | 0.0340 | 0.1901 | 0.0242      | 0.0000  |
| 48cm   | 0.2371 | 0.0095     | 0.0340 | 0.2692 | 0.0425      | 0.0364  |
| 49cm   | 0.2017 | 0.0283     | 0.0214 | 0.2125 | 0.0343      | 0.0623  |
| 50cm   | 0.2240 | 0.0647     | 0.0793 | 0.1700 | 0.0283      | 0.0647  |
| 52cm   | 0.3077 | 0.0953     | 0.0768 | 0.1199 | 0.0778      | 0.0383  |
| 53cm   | 0.2122 | 0.0000     | 0.0680 | 0.0992 | 0.0142      | 0.0425  |
| 54cm   | 0.2517 | 0.1236     | 0.0826 | 0.0809 | 0.0425      | 0.0506  |
| 55cm   | 0.3245 | 0.0322     | 0.0340 | 0.0708 | 0.0384      | 0.0330  |
| 56cm   | 0.1946 | 0.0646     | 0.0700 | 0.0000 | 0.0425      | 0.0599  |
| 57cm   | 0.2046 | 0.0276     | 0.0441 | 0.0492 | 0.0567      | 0.0000  |
| 58cm   | 0.2358 | 0.0370     | 0.0582 | 0.0384 | 0.0242      | 0.0000  |
| 59cm   | 0.2347 | 0.0455     | 0.0000 | 0.0686 | 0.0257      | 0.0161  |
| 61cm   | 0.2537 | 0.0444     | 0.0227 | 0.0425 | 0.0142      | 0.0588  |
| 62cm   | 0.1164 | 0.0081     | 0.0214 | 0.0307 | 0.0401      | 0.0383  |
| 63cm   | 0.2003 | 0.0180     | 0.0113 | 0.0142 | 0.0236      | 0.0222  |
| 64cm   | 0.1725 | 0.0227     | 0.0214 | 0.0874 | 0.0142      | 0.1130  |
| 65cm   | 0.0341 | 0.0000     | 0.0302 | 0.0142 | 0.0336      | 0.0222  |
| 66cm   | 0.0611 | 0.0189     | 0.0467 | 0.0667 | 0.0401      | 0.0303  |
| 67cm   | 0.0850 | 0.0544     | 0.0101 | 0.0201 | 0.0242      | 0.0303  |
| 68cm   | 0.0414 | 0.0276     | 0.0227 | 0.0196 | 0.0848      | 0.0401  |
| 70cm   | 0.0570 | 0.0000     | 0.0372 | 0.0142 | 0.0000      | 0.0481  |
| 71cm   | 0.0387 | 0.0161     | 0.0101 | 0.0142 | 0.0353      | 0.0283  |
| 72cm   | 0.0287 | 0.0719     | 0.0322 | 0.0696 | 0.0236      | 0.0259  |
| 73cm   | 0.0259 | 0.0322     | 0.0349 | 0.0350 | 0.0310      | 0.0420  |
| 74cm   | 0.0128 | 0.0423     | 0.0113 | 0.0108 | 0.0142      | 0.0081  |
| 75cm   | 0.0199 | 0.0000     | 0.0101 | 0.0101 | 0.0360      | 0.0081  |
| 76cm   | 0.0704 | 0.0081     | 0.0000 | 0.0283 | 0.0840      | 0.0222  |
| 7/cm   | 0.0058 | 0.0161     | 0.0000 | 0.0142 | 0.0000      | 0.0222  |
| 79cm   | 0.0059 | 0.0562     | 0.0227 | 0.0283 | 0.0201      | 0.0109  |
| 80cm   | 0.0270 | 0.0181     | 0.0101 | 0.0000 | 0.0101      | 0.0000  |
| 81cm   | 0.0270 | 0.0343     | 0.0000 | 0.0000 | 0.0000      | 0.0540  |
| 82cm   | 0.0000 | 0.0000     | 0.0101 | 0.0101 | 0.0000      | 0.0222  |
| 83cm   | 0.0283 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0161  |
| 84cm   | 0.0115 | 0.0489     | 0.0000 | 0.0000 | 0.0454      | 0.0000  |
| 85cm   | 0.0115 | 0.0081     | 0.0259 | 0.0000 | 0.0236      | 0.0081  |
| 86cm   | 0.0071 | 0.0262     | 0.0101 | 0.0000 | 0.0101      | 0.0000  |
| 8/cm   | 0.0186 | 0.0081     | 0.0000 | 0.0000 | 0.0000      | 0.0000  |
| 89cm   | 0.0058 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0000  |
| 90cm   | 0.0071 | 0.0081     | 0.0113 | 0.0101 | 0.0000      | 0.0000  |
| 91cm   | 0.0000 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0000  |
| 92cm   | 0.0058 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0142  |
| 93cm   | 0.0000 | 0.0000     | 0.0000 | 0.0101 | 0.0000      | 0.0081  |
| 94cm   | 0.0058 | 0.0081     | 0.0340 | 0.0000 | 0.0000      | 0.0000  |
| 95cm   | 0.0058 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0081  |
| 96cm   | 0.0128 | 0.0000     | 0.0000 | 0.0000 | 0.0000      | 0.0000  |
| 9/cm   | 0.0000 | 0.0000     | 0.0000 | 0.0142 | 0.0000      | 0.0000  |
| 99cm   | 0.0000 | 0.0175     | 0.0000 | 0.0000 | 0.0000      | 0.00001 |
| 100cm+ | 0.0115 | 0.0403     | 0.0214 | 0.0000 | 0.0101      | 0.0081  |

App. A5 (Append. A), Table A10a: Age-length keys for NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

|        | NEF | SC | Sprin | ig. 20 | 009 |   | 1 | Age |   |   |    |     | NEF | SC | Sprin | g, 20 | 010 |   |   | Age |   |   |    |     |
|--------|-----|----|-------|--------|-----|---|---|-----|---|---|----|-----|-----|----|-------|-------|-----|---|---|-----|---|---|----|-----|
| Length | 0   | 1  | 2     | 3      | 4   | 5 | 6 | 7   | 8 | 9 | 10 | 11+ | 0   | 1  | 2     | 3     | 4   | 5 | 6 | 7   | 8 | 9 | 10 | 11+ |
| \$25   | 0   | 39 | 24    | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 28 | 11    | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 26     | 0   | 0  | -     | 0      | 0   | 0 | 0 | 0   | ő | 0 | 0  | ő   | 0   | -0 | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | ő   |
| 20     | 0   | 0  | -     |        | 0   | 0 | 0 | 0   | 0 | 0 | 0  | Ň   | 0   | 0  | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 27     | 0   | 0  | 4     | 1      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 28     | 0   | 0  | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 29     | 0   | 0  | 7     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 30     | 0   | 0  | 2     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 31     | 0   | 0  | 6     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 6     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 22     |     | 0  | 0     |        | 0   | ~ | ~ | ~   | ~ | 0 | ~  | Ň   | 0   | ~  | -     | -     | ~   | 0 | ~ | ~   | ~ | ~ | ~  | č   |
| 32     | 0   | 0  | 0     | 1      | 0   | 0 | 0 | 0   | 0 | 0 | 0  |     | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 33     | 0   | 0  | 3     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 34     | 0   | 0  | 1     | 5      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 35     | 0   | 0  | 4     | 3      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 36     | 0   | 0  | 4     | 1      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 27     | 0   | 0  | 1     | 1      | 0   | ~ | 0 | ~   | 0 | 0 | 0  | Ň   | 0   | 0  |       | 1     | ~   | 0 | 0 | 0   | ~ | ~ | 0  | ~   |
| 31     | 0   | 0  | -     | 4      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 38     | 0   | 0  | 2     | 4      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 39     | 0   | 0  | 1     | 2      | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 40     | 0   | 0  | 2     | 6      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 41     | 0   | 0  | 2     | 2      | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 3     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 40     | 0   | 0  |       |        | 0   |   | 0 | 0   | 0 | 0 | ~  | ő   | 0   |    |       | 2     | 0   | 0 | 0 | 0   | 0 | ~ | 0  | 0   |
| 42     | 0   | 0  | 1     | 1      | 0   | 0 | U | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 4     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 43     | 0   | 0  | 2     | 5      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 44     | 0   | 0  | 1     | 5      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 3     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 45     | 0   | 0  | 1     | 6      | 4   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 46     | 0   | 0  | 0     | 3      | 2   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 1   | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 47     | 0   | 0  | 0     | -      | -   | 0 | 0 | 0   | 0 | 0 | 0  | Ň   | 0   | 0  | 0     | -     | -   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 4/     | 0   | U  | 0     | 4      | 4   |   | U | 0   | 0 | 0 | 0  | V   | 0   | U  | 0     | 4     | 4   | 0 | 0 | 0   | U | 0 | 0  | 0   |
| 48     | 0   | 0  | 0     | 2      | 4   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 3   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 49     | 0   | 0  | 0     | 3      | 4   | 1 | 2 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 50     | 0   | 0  | 0     | 2      | 5   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 3   | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 51     | 0   | 0  | 1     | 2      | 2   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 52     | 0   | 0  | 0     | 4      | 4   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 4     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 52     | 0   | 0  | 0     | 2      |     |   | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | -   | 6 | 0 | 0   | 0 | 0 | 0  | 0   |
| 55     | 0   | 0  | 0     | 3      | 4   | 4 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 54     | 0   | 0  | 0     | 2      | 2   | 2 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 7     | 1   | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 55     | 0   | 0  | 0     | 5      | 1   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 56     | 0   | 0  | 0     | 1      | 2   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 2   | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 57     | 0   | 0  | 0     | 2      | 3   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 2   | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 58     | 0   | 0  | 0     | 0      | 5   | 3 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 50     |     | 0  | 0     |        | 2   |   | - | 0   | 0 | 0 | 0  | Ň   | 0   | 0  | 0     | 2     | 0   |   | - | 0   | 0 | ~ | 0  | 0   |
| 39     | 0   | 0  | 0     | 1      | 2   | 1 | 5 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 4     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 60     | 0   | 0  | 0     | 1      | 3   | 1 | 2 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 1   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 61     | 0   | 0  | 0     | 4      | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 62     | 0   | 0  | 0     | 1      | 1   | 3 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 63     | 0   | 0  | 0     | 0      | 3   | 3 | 4 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 64     | 0   | 0  | 0     | 1      | 5   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 65     | 0   | 0  | 0     | 0      | 1   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     |     | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 65     | 0   | 0  | 0     | 0      | 1   | 0 | 1 | 0   | 0 | 0 | 0  | 2   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 66     | 0   | 0  | 0     | 1      | 1   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 67     | 0   | 0  | 0     | 1      | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 68     | 0   | 0  | 0     | 0      | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 69     | 0   | 0  | 0     | 0      | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 70     | 0   | 0  | 0     | 0      | 3   | 1 | 2 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 2 | 1 | 1   | 0 | 0 | 0  | 0   |
| 70     |     | 0  | 0     | 0      | 0   | - | - | 0   | 0 | 0 | 0  | Ň   | 0   | 0  | 0     | 0     | -   | - |   |     | 0 | 0 | 0  | 0   |
| /1     | 0   | 0  | 0     | 0      | 0   | - | 4 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 4   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 72     | 0   | 0  | 0     | 0      | 2   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 73     | 0   | 0  | 0     | 0      | 1   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 74     | 0   | 0  | 0     | 0      | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 75     | 0   | 0  | 0     | 0      | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 76     | 0   | 0  | 0     | 0      | 2   | 2 | 1 | 0   | 0 | 0 | 0  | ň   | 0   | 0  | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 70     | 0   | 0  |       |        | -   |   |   | 0   | 0 | 0 | 0  | Ň   | 0   | 0  | 0     | 0     |     | - | 0 | 0   | 0 | ~ | 0  | 0   |
| 11     | 0   | 0  | 0     | 0      | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 78     | 0   | 0  | 0     | 0      | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 79     | 0   | 0  | 0     | 0      | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 2 | 1 | 0   | 0 | 0 | 0  | 0   |
| 80     | 0   | 0  | 0     | 0      | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 81     | 0   | 0  | 0     | 0      | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 1   | 0 | 0 | 0  | 0   |
| 82     | 0   | 0  | 0     | 0      | 0   | 0 |   | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 02     | 0   | 0  | 0     | U      | U   | 0 | U | 0   | U | 0 | 0  | 0   | 0   | 0  | 0     | 0     | U   | U | 0 | 0   | 0 | 0 | U  | 0   |
| 83     | 0   | 0  | 0     | 0      | 0   | 2 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 84     | 0   | 0  | 0     | 0      | 0   | 0 | 2 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 2 | 0 | 1   | 0 | 0 | 0  | 0   |
| 85     | 0   | 0  | 0     | 0      | 0   | 1 | 0 | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 1 | 0  | 0   |
| 86     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 1   | 0 | 0 | 0  | 0   |
| 87     | 0   | 0  | 0     | 0      | 0   | 0 | 2 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 00     | 0   | 0  | 0     | 0      | 0   | 0 | - | 0   | 0 | 0 | 0  | ×.  | 0   | 0  | 0     | 0     | 0   | 0 |   | 0   | 0 | 0 | 0  | 0   |
| 88     | 0   | 0  | 0     | 0      | 0   | 0 | 1 | 0   | U | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 89     | 0   | 0  | 0     | 0      | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   |
| 90     | 0   | 0  | 0     | 0      | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   |
| 91     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 92     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 07     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 25     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   |   | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 2 | 0 | 0  | 0   |
| 94     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0   |
| 95     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 96     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 2 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 97     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 98     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   |
| 99     | 0   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0   |
| >100   | -   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 1 | 0 | 1  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 1 | 1  | 5   |
| -100   | U   | 0  | 0     | 0      | 0   | 0 | 0 | 0   | 1 | 0 | 1  | U   | U   | 0  | 0     | 0     | U   | 0 | U | 1   | U | 1 | 1  | 4   |
|        |     |    |       |        |     |   |   |     |   |   |    |     |     |    |       |       |     |   |   |     |   |   |    |     |

|        | NEF | SC S | Sprin | g, 20 | 011 |   |   | Age |   |   |    |     | NEF | SC | Sprin | g, 20 | 012 | _ |   | Age |   |   |    |     |
|--------|-----|------|-------|-------|-----|---|---|-----|---|---|----|-----|-----|----|-------|-------|-----|---|---|-----|---|---|----|-----|
| Length | 0   | 1    | 2     | 3     | 4   | 5 | 6 | 7   | 8 | 9 | 10 | 11+ | 0   | 1  | 2     | 3     | 4   | 5 | 6 | 7   | 8 | 9 | 10 | 11- |
| ≤25    | 0   | 2    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 1   | 38 | 3     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 26     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 1  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 27     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 28     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 29     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 30     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 31     | 0   | 0    | 2     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 32     | 0   | 0    | 0     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 35     | 0   | 0    | 1     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 5     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  |     |
| 25     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 4     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | -   |
| 36     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0  |     |
| 37     | ő   | 0    | 0     | 2     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  |     |
| 38     | 0   | 0    | 0     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 1   |
| 39     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 3     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 6   |
| 40     | 0   | 0    | 1     | 2     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 5     | 6     | 0   | 0 | 0 | õ   | 0 | 0 | 0  | C   |
| 41     | 0   | 0    | 0     | 1     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 5     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 42     | 0   | 0    | 1     | 1     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 3     | 7     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
| 43     | 0   | 0    | 0     | 2     | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 7     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 44     | 0   | 0    | 0     | 0     | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 2     | 9     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | C   |
| 45     | 0   | 0    | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 1     | 5     | 2   | 2 | 0 | 0   | 0 | 0 | 0  | 0   |
| 46     | 0   | 0    | 0     | 0     | 2   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 47     | 0   | 0    | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 4   | 1 | 0 | 0   | 0 | 0 | 0  | (   |
| 48     | 0   | 0    | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 5     | 2   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 49     | 0   | 0    | 0     | 1     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 5     | 4   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 50     | 0   | 0    | 0     | 1     | 3   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 4     | 1   | 3 | 0 | 0   | 0 | 0 | 0  | (   |
| 51     | 0   | 0    | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 3   | 1 | 0 | 0   | 0 | 0 | 0  | (   |
| 52     | 0   | 0    | 0     | 0     | 3   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 7   | 4 | 1 | 0   | 0 | 0 | 0  | (   |
| 53     | 0   | 0    | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 5   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 54     | 0   | 0    | 0     | 2     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 3     | 2   | 3 | 0 | 0   | 0 | 0 | 0  | (   |
| 55     | 0   | 0    | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 6   | 1 | 0 | 0   | 0 | 0 | 0  | (   |
| 56     | 0   | 0    | 0     | 1     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 5     | 4   | 5 | 2 | 0   | 0 | 0 | 0  | (   |
| 57     | 0   | 0    | 0     | 0     | 3   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 3   | 1 | 1 | 0   | 0 | 0 | 0  | (   |
| 58     | 0   | 0    | 0     | 2     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 6   | 3 | 1 | 0   | 0 | 0 | 0  | 0   |
| 59     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 4   | 0 | 1 | 2   | 0 | 0 | 0  | 0   |
| 60     | 0   | 0    | 0     | 0     | 0   | 2 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 2     | 2   | 2 | 1 | 0   | 0 | 0 | 0  | 0   |
| 61     | 0   | 0    | 0     | 0     | 3   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 1     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | C   |
| 62     | 0   | 0    | 0     | 0     | 0   | 1 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 6   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 63     | 0   | 0    | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 3 | 1 | 1   | 0 | 0 | 0  | 0   |
| 64     | 0   | 0    | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 3   | 2 | 1 | 0   | 0 | 0 | 0  | 0   |
| 65     | 0   | 0    | 0     | 0     | 0   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 2 | 2 | 0   | 0 | 0 | 0  | 0   |
| 66     | 0   | 0    | 0     | 0     | 1   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 2 | 0   | 0 | 0 | 0  | 0   |
| 67     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 3   | 4 | 0 | 0   | 0 | 0 | 0  | 0   |
| 68     | 0   | 0    | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 3 | 0 | 0   | 0 | 0 | 0  | 0   |
| 69     | 0   | 0    | 0     | 0     | 1   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 2   | 1 | 0 | 0   | 0 | 0 | 0  | 0   |
| 70     | 0   | 0    | 0     | 0     | 1   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 1   | 1 | 0 | 1   | 0 | 0 | 0  | 0   |
| /1     | 0   | 0    | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  |     |
| 72     | 0   | 0    | 0     | 0     | 0   | 2 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0  |     |
| 75     | 0   | 0    | 0     | 0     | 4   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | -   |
| 75     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | -   |
| 76     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 1   |
| 77     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | -   |
| 78     | 0   | 0    | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | -   |
| 79     | 0   | 0    | 0     | 0     | 0   | 1 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 1   |
| 80     | 0   | 0    | 0     | 0     | 0   | 1 | ò | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 1   |
| 81     | 0   | õ    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | õ   | 0   | 0  | 0     | ő     | 0   | 0 | 0 | 0   | 0 | ĩ | 0  | 1   |
| 82     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 1   |
| 83     | 0   | õ    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | Ő   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | õ | 0  | i   |
| 84     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 1   |
| 85     | 0   | 0    | 0     | 0     | 0   | 1 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 86     | 0   | 0    | 0     | 0     | 0   | 0 | 1 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 1   |
| 87     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 88     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | (   |
| 89     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 90     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 91     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 92     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 1   | 0 | 0 | 0  | (   |
| 93     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 94     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  |     |
| 95     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 3 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 96     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | (   |
| 97     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | C   |
| 98     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 1 | 0 | 0  | (   |
| 99     | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | 0   |
|        | 0   | 0    | 0     | 0     | 0   | 0 | 0 | 1   | 1 | 0 | 0  | 0   | 0   | 0  | 0     | 0     | 0   | 0 | 0 | 0   | 0 | 0 | 0  | C   |

App. A5 (Append. A), Table A10b: Age-length keys for NEFSC offshore spring research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

App. A5 (Append. A), Table A11: Age-length keys for NEFSC offshore autumn research vessel bottom trawl surveys in the Gulf of Maine conducted by the *Bigelow* (Michael Palmer, pers. commn).

|        | NEF | SC | Autu | mn, : | 2009 | К., .<br>С |   | Age | 28 |   |       | NEF | SC . | Autu | mn, | 2010 |   |   | Age | 2001 | 25 | 0.003 | 1  | NEFS | CA | utur | nn, | 2011 | 1122 | 4 | Age |   | 10.5 |       |   |
|--------|-----|----|------|-------|------|------------|---|-----|----|---|-------|-----|------|------|-----|------|---|---|-----|------|----|-------|----|------|----|------|-----|------|------|---|-----|---|------|-------|---|
| Length | 0   | 1  | 2    | 3     | 4    | 5          | 6 | 7   | 8  | 9 | 10 11 | 0   | 1    | 2    | 3   | 4    | 5 | 6 | 7   | 8    | 9  | 10 11 | 1+ | 0    | 1  | 2    | 3   | 4    | 5    | 6 | 7   | 8 | 9    | 10 11 | + |
| \$25   | 9   | 11 | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   |     | 1    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 15   | 4  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 27     | 0   | 4  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 1    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 1  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | õ     | 0 |
| 28     | 0   | 3  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 29     | 0   | 4  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 2    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 30     | 0   | 3  | 1    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 3    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 1  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 31     | 0   | 1  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 5    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 1  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 32     | 0   | 4  | 1    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 5    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 2  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 33     | 0   | 1  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 2    | 2    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 1  | 2    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 35     | 0   | 2  | 4    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 1    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 1   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 36     | 0   | 0  | 1    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 2    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 37     | 0   | 0  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 1    | 1    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 38     | 0   | 2  | 5    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 2    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 39     | 0   | 1  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 1    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 2    | 1   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 40     | 0   | 1  | 5    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   |     | 0    | 2    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 42     | 0   | 0  | 5    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 1    | 2   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 1  | 0    | 1   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 43     | 0   | 0  | 4    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 2    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 1   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 44     | 0   | 0  | 1    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 2   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 2   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 45     | 0   | 0  | 3    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 2   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 2    | 3   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 46     | 0   | 0  | 7    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 3    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 47     | 0   | 0  | 3    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 48     | 0   | 0  | 2    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 3   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 1    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 50     | 0   | 0  | 2    | 1     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 2   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 3   | 0    | 1    | 0 | 0   | 0 | 0    | 0     | 0 |
| 51     | 0   | 0  | 3    | 0     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 1   | 1    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 52     | 0   | 0  | 3    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 3   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 1   | 3    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 53     | 0   | 0  | 0    | 1     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 1   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 2    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 54     | 0   | 0  | 2    | 1     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 2   | 1    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 2    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 50     | 0   | 0  | 2    | 1     | 2    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 2   | 1    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 5    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 57     | 0   | 0  | 1    | 1     | 2    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 1    | 0   | 1    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 58     | 0   | 0  | 1    | 0     | 2    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 0   | 1    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 2    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 59     | 0   | 0  | 0    | 4     | 2    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 1    | 1   | 2    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 2    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 60     | 0   | 0  | 0    | 3     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 1   | 0    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 3    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 61     | 0   | 0  | 0    | 2     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 1   | 1    | 0 | 1 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 1    | 2   | 2    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 62     | 0   | 0  | 0    | 2     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 2    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 2   | 2    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 64     | 0   | 0  | 1    | 0     | 3    | 0          | 0 | 0   | 0  | 0 | 0 0   |     | 0    | 0    | 0   | 1    | 0 | 1 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 4   | 6    | 1    | 0 | 0   | 0 | 0    | 0     | 0 |
| 65     | 0   | 0  | 0    | 0     | 0    | 0          | 1 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 2   | 0    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 1    | 0    | 1 | 0   | 0 | 0    | õ     | 0 |
| 66     | 0   | 0  | 0    | 2     | 2    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 3   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 2    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 67     | 0   | 0  | 0    | 0     | 1    | 1          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 1   | 3    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 1    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 68     | 0   | 0  | 0    | 0     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 3    | 0 | 0 | 1   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 1    | 0    | 0 | 0   | 1 | 0    | 0     | 0 |
| 69     | 0   | 0  | 0    | 0     | 0    | 1          | 0 | 0   | 0  | 0 | 0 0   |     | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 1   | 0    | 2    | 0 | 0   | 0 | 0    | 0     | 0 |
| 71     | 0   | 0  | 0    | 1     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 1   | 0    | î | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 1    | 1    | 0 | 0   | 0 | 0    | 0     | 0 |
| 72     | 0   | 0  | 0    | 2     | 2    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 1    | 0 | 0   | 0 | 0    | 0     | 0 |
| 73     | 0   | 0  | 0    | 0     | 2    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 2    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 2    | 1 | 0   | 0 | 0    | 0     | 0 |
| 74     | 0   | 0  | 0    | 0     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 1    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 75     | 0   | 0  | 0    | 0     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 2    | 0 | 1 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 1    | 0 | 0   | 0 | 0    | 0     | 0 |
| 76     | 0   | 0  | 0    | 0     | 0    | 0          | 2 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 4    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 2    | 0 | 0   | 0 | 0    | 0     | 0 |
| 78     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 1    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 79     | 0   | 0  | 0    | 0     | 2    | 0          | 0 | 0   | 0  | 0 | 0     | 0   | 0    | 0    | 0   | 2    | 0 | 0 | ő   | ő    | 0  | ŏ     | ő  | 0    | 0  | õ    | 0   | ő    | 1    | 0 | 0   | 0 | 0    | ŏ     | 0 |
| 80     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 1    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 81     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 1 | 1 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 4    | 0 | 0   | 0 | 0    | 0     | 0 |
| 82     | 0   | 0  | 0    | 0     | 1    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 1    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 1    | 1 | 0   | 0 | 0    | 0     | 0 |
| 83     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 1    | 1 | 0   | 0 | 0    | 0     | 0 |
| 84     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 1    | 2 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 85     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 0    | 0 | 1 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 87     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 88     | 0   | 0  | 0    | 0     | 0    | 1          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 1 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 1 | 0    | 0     | 0 |
| 89     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 90     | 0   | 0  | 0    | 0     | 0    | 1          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 91     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 92     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 93     | 0   | 0  | 0    | 0     | 0    | 1          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 1 | 0    | 0     | 0 |
| 95     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0     | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 1   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 1 | 0   | 0 | 0    | 0     | 0 |
| 96     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0     | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | õ    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 97     | 0   | 0  | 0    | 0     | 0    | 1          | 0 | 0   | 0  | 0 | 0 0   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| 98     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 1   | 0 | 0    | 0     | 0 |
| 99     | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0   | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 0  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 0 | 0    | 0     | 0 |
| >100   | 0   | 0  | 0    | 0     | 0    | 0          | 0 | 0   | 0  | 0 | 0 (   | 0 0 | 0    | 0    | 0   | 0    | 0 | 0 | 0   | 0    | 0  | 0     | 1  | 0    | 0  | 0    | 0   | 0    | 0    | 0 | 0   | 1 | 0    | 0     | 0 |

App. A5 (Append. A), Table A12a: Mean weight-at-age (kg) from NEFSC offshore spring surveys. Pre-1970, the 1970-1979 average mean weight-at-age is assumed (Michael Palmer, pers. commn). Note that for some years certain values at older ages have been determined by interpolation techniques as there were no data available.

|      | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      | 9+     |
|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| 1970 | 0.043 | 0.297 | 0.641 | 1.562 | 2.468 | 4.789 | 5.327  | 8.547  | 12.439 |
| 1971 | 0.201 | 0.507 | 1.340 | 2.225 | 4.484 | 3.570 | 6.379  | 8.557  | 9.301  |
| 1972 | 0.046 | 0.355 | 1.659 | 2.512 | 3.596 | 5.453 | 6.227  | 7.706  | 10.783 |
| 1973 | 0.043 | 0.180 | 0.972 | 2.898 | 3.730 | 4.518 | 7.229  | 6.216  | 13.401 |
| 1974 | 0.035 | 0.188 | 0.688 | 2.706 | 5.668 | 8.000 | 6.874  | 7.300  | 13.269 |
| 1975 | 0.030 | 0.255 | 1.027 | 1.898 | 3.883 | 7.050 | 6.874  | 8.413  | 14.817 |
| 1976 | 0.101 | 0.239 | 0.713 | 1.692 | 3.136 | 5.546 | 10.777 | 11.463 | 16.635 |
| 1977 | 0.112 | 0.328 | 0.780 | 1.058 | 2.315 | 4.787 | 6.874  | 9.953  | 21.006 |
| 1978 | 0.131 | 0.469 | 1.139 | 1.813 | 3.137 | 5.737 | 7.694  | 10.633 | 14.303 |
| 1979 | 0.078 | 0.404 | 1.367 | 1.972 | 3.056 | 4.093 | 7.685  | 7.159  | 17.912 |
| 1980 | 0.047 | 0.351 | 1.291 | 2.143 | 3.461 | 3.881 | 5.574  | 8.513  | 11.037 |
| 1981 | 0.125 | 0.460 | 1.103 | 2.477 | 4.056 | 6.138 | 7.568  | 8.456  | 11.041 |
| 1982 | 0.106 | 0.438 | 1.350 | 2.579 | 4.139 | 4.072 | 8.031  | 8.513  | 12.301 |
| 1983 | 0.094 | 0.463 | 1.475 | 2.513 | 5.110 | 6.693 | 11.352 | 8.513  | 20.470 |
| 1984 | 0.071 | 0.574 | 1.431 | 2.551 | 4.940 | 4.324 | 5.035  | 8.513  | 14.596 |
| 1985 | 0.045 | 0.426 | 1.329 | 2.707 | 4.293 | 5.492 | 6.065  | 13.198 | 16.558 |
| 1986 | 0.086 | 0.485 | 1.564 | 2.955 | 3.554 | 7.734 | 12.633 | 8.513  | 20.134 |
| 1987 | 0.065 | 0.348 | 0.729 | 2.585 | 3.058 | 5.084 | 6.378  | 5.420  | 25.016 |
| 1988 | 0.049 | 0.175 | 1.039 | 1.724 | 5.060 | 5.545 | 4.947  | 9.493  | 7.202  |
| 1989 | 0.043 | 0.182 | 0.728 | 1.828 | 2.631 | 6.784 | 6.874  | 8.513  | 14.596 |
| 1990 | 0.076 | 0.243 | 0.786 | 2.029 | 3.447 | 6.554 | 8.200  | 8.513  | 14.596 |
| 1991 | 0.078 | 0.197 | 0.875 | 1.190 | 1.524 | 2.557 | 6.008  | 8.513  | 14.596 |
| 1992 | 0.061 | 0.453 | 1.012 | 2.871 | 4.178 | 5.644 | 6.721  | 8.513  | 13.953 |
| 1993 | 0.057 | 0.323 | 1.368 | 1.963 | 3.809 | 5.255 | 10.622 | 11.372 | 16.642 |
| 1994 | 0.033 | 0.192 | 0.856 | 2.318 | 2.519 | 2.861 | 5.654  | 6.582  | 7.255  |
| 1995 | 0.111 | 0.240 | 0.681 | 1.277 | 2.825 | 3.956 | 6.874  | 2.828  | 20.994 |
| 1996 | 0.076 | 0.318 | 1.799 | 2.068 | 3.296 | 4.847 | 6.874  | 8.513  | 14.596 |
| 1997 | 0.064 | 0.445 | 1.416 | 2.658 | 2.954 | 3.745 | 6.749  | 8.513  | 14.596 |
| 1998 | 0.057 | 0.448 | 1.188 | 2.033 | 3.216 | 4.537 | 6.502  | 8.004  | 14.596 |
| 1999 | 0.088 | 0.335 | 0.994 | 1.949 | 3.123 | 5.723 | 5.574  | 8.513  | 31.105 |
| 2000 | 0.079 | 0.436 | 1.037 | 2.482 | 4.127 | 5.327 | 4.540  | 8.612  | 14.596 |
| 2001 | 0.119 | 0.474 | 1.107 | 2.738 | 4.242 | 8.950 | 9.035  | 14.481 | 16.784 |
| 2002 | 0.069 | 0.318 | 1.170 | 2.718 | 3.240 | 6.032 | 6.014  | 13.284 | 3.580  |
| 2003 | 0.123 | 0.198 | 0.820 | 1.588 | 2.661 | 3.991 | 5.783  | 6.627  | 10.133 |
| 2004 | 0.044 | 0.349 | 0.849 | 2.536 | 3.662 | 4.388 | 3.764  | 3.764  | 11.576 |
| 2005 | 0.031 | 0.211 | 1.031 | 1.739 | 2.628 | 3.979 | 5.597  | 5.494  | 14.596 |
| 2006 | 0.070 | 0.262 | 0.790 | 1.862 | 3.102 | 6.050 | 5.442  | 8.729  | 9.927  |
| 2007 | 0.092 | 0.388 | 0.876 | 1.649 | 3.059 | 3.244 | 4.130  | 5.428  | 14.596 |
| 2008 | 0.049 | 0.400 | 1.053 | 1.655 | 2.489 | 5.609 | 6.928  | 8.513  | 14.596 |
| 2009 | 0.031 | 0.523 | 1.441 | 2.067 | 2.601 | 2.876 | 8.067  | 9.930  | 12.919 |
| 2010 | 0.076 | 0.356 | 1.203 | 2.805 | 3.849 | 4.602 | 7.314  | 10.712 | 15.374 |
| 2011 | 0.064 | 0.453 | 1.177 | 1.717 | 2.706 | 3.509 | 5.906  | 8.521  | 14.596 |

App. A5 (Append. A), Table A12b: Mean weight-at-age (kg) from NEFSC offshore autumn surveys. Pre-1970, the 1970-1979 average mean weight-at-age is assumed (Michael Palmer, pers. commn). Note that for some years certain values at older ages have been determined by interpolation techniques as there were no data available.

|      | 1     | 2     | 3     | 4     | 5      | 6      | 7      | 8      | 9+     |
|------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| 1970 | 0.199 | 0.598 | 1.407 | 3.840 | 3.016  | 6.197  | 6.925  | 8.647  | 12.980 |
| 1971 | 0.241 | 1.201 | 1.688 | 2.916 | 4.818  | 5.392  | 6.853  | 9.008  | 14.100 |
| 1972 | 0.136 | 0.744 | 2.240 | 3.570 | 3.680  | 6.655  | 6.631  | 12.278 | 12.002 |
| 1973 | 0.111 | 0.458 | 2.093 | 4.229 | 4.814  | 5.814  | 9.916  | 6.042  | 10.734 |
| 1974 | 0.076 | 0.497 | 1.308 | 2.759 | 6.452  | 6.293  | 8.010  | 12.857 | 12.664 |
| 1975 | 0.249 | 0.439 | 1.041 | 2.290 | 2.775  | 5.598  | 8.472  | 12.044 | 14.086 |
| 1976 | 0.348 | 0.843 | 1.173 | 1.481 | 3.869  | 7.508  | 9.737  | 12.044 | 17.898 |
| 1977 | 0.201 | 0.531 | 1.238 | 1.843 | 3.809  | 5.940  | 7.696  | 11.211 | 15.843 |
| 1978 | 0.202 | 0.734 | 1.367 | 2.270 | 3.099  | 4.060  | 7.607  | 12.247 | 17.003 |
| 1979 | 0.385 | 0.878 | 2.644 | 3.347 | 5.462  | 6.791  | 10.187 | 11.930 | 21.717 |
| 1980 | 0.324 | 0.718 | 1.899 | 3.071 | 6.694  | 5.996  | 6.408  | 15.249 | 16.793 |
| 1981 | 0.232 | 1.102 | 2.116 | 4.419 | 5.583  | 8.130  | 8.390  | 12.349 | 22.998 |
| 1982 | 0.493 | 1.408 | 2.488 | 3.320 | 6.889  | 6.293  | 8.131  | 12.044 | 16.731 |
| 1983 | 0.236 | 1.082 | 1.732 | 3.583 | 4.878  | 9.825  | 8.131  | 12.044 | 20.891 |
| 1984 | 0.287 | 1.008 | 2.295 | 3.699 | 6.565  | 7.550  | 11.342 | 12.044 | 20.333 |
| 1985 | 0.208 | 1.054 | 2.503 | 3.879 | 7.494  | 10.403 | 8.131  | 20.320 | 23.705 |
| 1986 | 0.347 | 0.703 | 2.497 | 3.339 | 7.927  | 8.012  | 8.131  | 12.044 | 13.192 |
| 1987 | 0.151 | 0.648 | 1.502 | 3.596 | 6.505  | 6.293  | 8.131  | 12.044 | 16.731 |
| 1988 | 0.175 | 0.670 | 1.854 | 3.195 | 6.010  | 6.293  | 8.841  | 12.044 | 12.403 |
| 1989 | 0.276 | 0.410 | 1.176 | 2.727 | 4.911  | 3.877  | 8.131  | 13.292 | 16.731 |
| 1990 | 0.225 | 0.430 | 0.961 | 2.562 | 4.837  | 4.926  | 5.448  | 12.044 | 16.731 |
| 1991 | 0.172 | 0.715 | 1.703 | 2.566 | 5.374  | 6.293  | 11.513 | 12.044 | 16.731 |
| 1992 | 0.213 | 0.892 | 1.236 | 2.689 | 3.365  | 4.757  | 8.131  | 12.044 | 16.731 |
| 1993 | 0.122 | 0.512 | 1.529 | 3.547 | 5.284  | 1.778  | 8.131  | 12.044 | 16.731 |
| 1994 | 0.289 | 0.530 | 1.503 | 3.483 | 6.476  | 6.293  | 7.058  | 12.044 | 16.731 |
| 1995 | 0.125 | 0.876 | 1.597 | 2.612 | 7.143  | 4.318  | 8.131  | 12.044 | 16.731 |
| 1996 | 0.283 | 0.723 | 2.194 | 2.414 | 5.779  | 6.293  | 8.131  | 12.044 | 16.731 |
| 1997 | 0.151 | 0.903 | 1.761 | 4.593 | 4.518  | 6.293  | 8.131  | 12.044 | 16.731 |
| 1998 | 0.192 | 0.754 | 1.869 | 3.286 | 4.530  | 7.387  | 8.131  | 12.044 | 16.731 |
| 1999 | 0.302 | 1.013 | 2.100 | 3.862 | 5.499  | 7.563  | 8.131  | 12.044 | 16.731 |
| 2000 | 0.220 | 0.866 | 1.941 | 3.699 | 3.558  | 9.768  | 8.131  | 14.548 | 16.731 |
| 2001 | 0.239 | 0.755 | 1.819 | 2.721 | 6.266  | 9.096  | 10.713 | 12.044 | 11.023 |
| 2002 | 0.140 | 0.975 | 2.192 | 4.091 | 5.288  | 7.722  | 8.395  | 16.787 | 16.731 |
| 2003 | 0.373 | 0.654 | 2.304 | 2.708 | 5.232  | 6.267  | 8.633  | 12.044 | 19.375 |
| 2004 | 0.125 | 0.627 | 1.694 | 3.452 | 4.499  | 4.471  | 8.560  | 8.478  | 18.167 |
| 2005 | 0.109 | 0.453 | 1.599 | 2.162 | 5.916  | 3.464  | 6.592  | 10.172 | 17.780 |
| 2006 | 0.207 | 0.480 | 1.024 | 1.715 | 3.489  | 5.965  | 5.126  | 14.241 | 14.759 |
| 2007 | 0.166 | 0.528 | 1.018 | 2.639 | 4.276  | 6.346  | 8.131  | 12.044 | 16.731 |
| 2008 | 0.317 | 1.015 | 1.986 | 2.486 | 5.421  | 6.293  | 8.131  | 12.044 | 16.613 |
| 2009 | 0.555 | 1.174 | 3.366 | 4.503 | 10.575 | 6.618  | 8.131  | 12.044 | 16.731 |
| 2010 | 0.335 | 1.170 | 1.774 | 3.904 | 4.784  | 4.548  | 3.461  | 12.044 | 24.490 |
| 2011 | 0.286 | 0.942 | 1.775 | 2.323 | 4.581  | 4.931  | 10.775 | 7.135  | 16.731 |

App. A5 (Append. A), Table A12c: Mean weight-at-age (kg) from State of Massachusetts inshore spring surveys(Michael Palmer, pers. commn). Note that for some years certain values at older ages have been determined by interpolation techniques as there were no data available.

|      | 1     | 2     | 3     | 4     | 5     | 6      | 7     | 8      | 9+     |
|------|-------|-------|-------|-------|-------|--------|-------|--------|--------|
| 1982 | 0.116 | 0.453 | 1.106 | 2.031 | 5.606 | 5.073  | 6.778 | 10.426 | 10.361 |
| 1983 | 0.083 | 0.388 | 1.020 | 1.634 | 2.381 | 10.539 | 4.511 | 15.422 | 10.361 |
| 1984 | 0.104 | 0.415 | 1.295 | 1.884 | 3.717 | 2.893  | 4.519 | 7.652  | 10.361 |
| 1985 | 0.128 | 0.517 | 0.999 | 2.252 | 2.829 | 4.556  | 4.519 | 7.652  | 10.361 |
| 1986 | 0.170 | 0.453 | 1.592 | 2.271 | 3.638 | 5.563  | 4.519 | 7.652  | 10.361 |
| 1987 | 0.057 | 0.564 | 0.791 | 3.213 | 3.963 | 10.103 | 4.519 | 7.652  | 15.241 |
| 1988 | 0.030 | 0.335 | 1.216 | 2.041 | 6.171 | 6.392  | 4.519 | 7.652  | 10.361 |
| 1989 | 0.072 | 0.340 | 0.946 | 1.660 | 3.709 | 5.363  | 4.519 | 7.652  | 10.361 |
| 1990 | 0.053 | 0.409 | 0.654 | 1.317 | 3.311 | 6.779  | 4.519 | 7.652  | 10.361 |
| 1991 | 0.114 | 0.331 | 1.118 | 1.282 | 2.609 | 4.556  | 4.519 | 7.652  | 10.361 |
| 1992 | 0.049 | 0.447 | 0.753 | 1.410 | 1.716 | 5.513  | 3.018 | 7.652  | 10.361 |
| 1993 | 0.037 | 0.355 | 0.764 | 1.033 | 2.839 | 2.829  | 4.519 | 7.652  | 10.361 |
| 1994 | 0.079 | 0.279 | 0.842 | 1.685 | 2.791 | 4.556  | 4.519 | 7.652  | 10.361 |
| 1995 | 0.048 | 0.395 | 0.809 | 1.374 | 2.555 | 4.556  | 4.519 | 7.652  | 10.361 |
| 1996 | 0.081 | 0.426 | 0.806 | 1.010 | 1.664 | 4.556  | 4.519 | 7.652  | 10.361 |
| 1997 | 0.073 | 0.555 | 0.925 | 1.702 | 1.328 | 1.252  | 4.519 | 7.652  | 10.361 |
| 1998 | 0.063 | 0.390 | 1.085 | 1.756 | 2.496 | 3.266  | 2.431 | 7.652  | 10.361 |
| 1999 | 0.094 | 0.484 | 1.134 | 2.070 | 2.904 | 3.383  | 4.140 | 3.869  | 10.361 |
| 2000 | 0.094 | 0.466 | 1.366 | 2.031 | 2.802 | 4.363  | 5.546 | 9.013  | 10.361 |
| 2001 | 0.042 | 0.470 | 1.571 | 2.346 | 2.738 | 5.127  | 3.672 | 6.875  | 10.361 |
| 2002 | 0.039 | 0.230 | 0.945 | 1.947 | 3.012 | 5.184  | 5.928 | 7.440  | 11.027 |
| 2003 | 0.067 | 0.216 | 0.486 | 1.883 | 3.100 | 3.253  | 5.414 | 6.562  | 8.618  |
| 2004 | 0.039 | 0.383 | 0.810 | 1.760 | 2.143 | 2.730  | 3.770 | 8.342  | 12.697 |
| 2005 | 0.035 | 0.177 | 1.011 | 1.659 | 3.125 | 3.309  | 5.233 | 5.913  | 4.846  |
| 2006 | 0.048 | 0.116 | 0.568 | 1.136 | 2.048 | 1.930  | 4.783 | 7.652  | 9.447  |
| 2007 | 0.056 | 0.172 | 0.675 | 1.414 | 2.317 | 3.860  | 3.768 | 3.446  | 10.361 |
| 2008 | 0.064 | 0.277 | 0.747 | 1.375 | 1.013 | 3.419  | 5.194 | 7.652  | 10.361 |
| 2009 | 0.048 | 0.199 | 0.872 | 1.044 | 1.357 | 3.248  | 4.519 | 7.652  | 10.361 |
| 2010 | 0.060 | 0.230 | 0.647 | 1.634 | 2.482 | 5.356  | 4.519 | 7.652  | 10.652 |
| 2011 | 0.046 | 0.291 | 0.869 | 1.459 | 2.494 | 3.178  | 3.605 | 6.869  | 10.361 |

# (Appendix B within Appendix A5) Appendix B - The Statistical Catch-at-Age Model

The text following sets out the equations and other general specifications of the SCAA followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is then applied to minimize the total negative log-likelihood function to estimate parameter values (the package AD Model Builder<sup>TM</sup>, Otter Research, Ltd is used for this purpose).

For the convenience of readers, details which are changed or newly added relative to the specifications used for the analyses reported in Butterworth and Rademeyer (2012) are shown highlighted. Note that summations over ages now all exclude age a=0.

# **B.1.** Population dynamics

# B.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$N_{y+1,0} = R_{y+1}$$
(B1)

$$N_{y+1,a+1} = N_{y,a} e^{-Z_{y,a}} \qquad \text{for } 0 \le a \le M - 2 \tag{B2}$$

$$N_{y+1,m} = N_{y,m-1}e^{-Z_{y,m-1}} + N_{y,m}e^{-Z_{y,m}}$$
(B3)

where

 $N_{y,a}$  is the number of fish of age *a* at the start of year *y*,

 $R_y$  is the recruitment (number of 0-year-old fish) at the start of year y,

*m* is the maximum age considered (taken to be a plus-group).

 $Z_{ya} = F_y S_{ya} + M_a$  is the total mortality in year y on fish of age a, where

 $M_a$  denotes the natural mortality rate for fish of age *a*,

 $F_{y}$  is the fishing mortality of a fully selected age class in year y, and

 $S_{y,a}$  is the commercial selectivity at age *a* for year *y*.

# B.1.2. Recruitment

The number of recruits (i.e. new 0-year old) at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by either a modified Ricker or a standard or adjusted Beverton-Holt stock-recruitment relationship, allowing for annual fluctuation about the deterministic relationship.

For the modified Ricker:

$$R_{y} = \alpha B_{y}^{\rm sp} \exp\left[-\beta \left(B_{y}^{\rm sp}\right)^{\gamma}\right] e^{(\varsigma_{y} - (\sigma_{\rm R})^{2}/2)}$$
(B4)

for the (standard) Beverton-Holt:

$$R_{y} = \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} e^{(\varsigma_{y} - (\sigma_{R})^{2}/2)}$$
(B5)

and for the adjusted Beverton-Holt:

$$R_{y} = \begin{cases} \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}} & \text{if } B_{y}^{sp} \le B * \\ \frac{\alpha B *}{\beta + B *} \exp\left(-\left(\frac{B_{y}^{sp} - B *}{\sigma_{N}}\right)^{2}\right) & \text{if } B_{y}^{sp} > B * \end{cases}$$
(B6)

where

1

 $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $B^*$  and  $\sigma_N$  are spawning biomass-recruitment relationship parameters,

- $\varsigma_y$  reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation R (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.
- $B_{y}^{sp}$  is the spawning biomass at the start of year y, computed as:

$$B_{y}^{\rm sp} = \sum_{a=1}^{m} f_{a} W_{y,a}^{\rm strt} N_{y,a} e^{-Z_{y,a}/4}$$
(B7)

because spawning for the cod stock under consideration is taken to occur three months after the start of the year and some mortality has therefore occurred,

where

 $w_{v,a}^{\text{strt}}$  is the mass of fish of age *a* during spawning, and

 $f_a$  is the proportion of fish of age *a* that are mature.

Section B.2.6 details the procedure adopted when recruitment is not assumed to be related to spawning biomass, at least internal to the assessment.

#### B.1.3. Total catch and catches-at-age

The total catch by mass in year *y* is given by:

$$C_{y} = \sum_{a=1}^{m} w_{y,a}^{\text{mid}} C_{y,a} = \sum_{a=1}^{m} w_{y,a}^{\text{mid}} N_{y,a} S_{y,a} F_{y} \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(B8)

where

 $w_{y,a}^{\text{mid}}$  denotes the mass of fish of age *a* landed in year *y*,

 $C_{y,a}$  is the catch-at-age, i.e. the number of fish of age *a*, caught in year *y*,

The model estimate of survey index is computed as:

$$B_{y}^{\text{surv}} = \sum_{a=1}^{m} w_{y,a}^{\text{surv}} S_{a}^{\text{surv}} N_{y,a} e^{-Z_{y,a} T^{\text{surv}/12}}$$
(B9)

for biomass indices and

$$N_{y}^{\text{surv}} = \sum_{a=1}^{m} S_{a}^{\text{surv}} N_{y,a} e^{-Z_{y,a} T^{suv} / 12}$$

for numbers indices

#### where

 $S_a^{surv}$  is the survey selectivity for age *a*, which is taken to be year-independent.

 $T^{surv}$  is the season in which the survey is taking place ( $T^{surv}=1$  for spring surveys and  $T^{surv}=3$  for fall surveys), and

 $w_{ya}^{surv}$  denotes the mass of fish of age *a* from survey surv year *y* (Table A12).

For the Massachusetts spring survey, the summation is taken from age 1 to age 6.

#### B.1.4. Initial conditions

For the first year ( $y_0$ ) considered in the model, the numbers-at-age are estimated directly for ages 0 to  $a^{est}$ , with a parameter  $\phi$  mimicking recent average fishing mortality for ages above  $a^{est}$ , i.e.

$$N_{y_0,a} = N_{\text{start},a} \qquad \qquad \text{for } 0 \le a \le a^{est} \tag{B11}$$

and

$$N_{\text{start},a} = N_{\text{start},a-1} e^{-M_{a-1}} (1 - \phi S_{a-1}) \qquad \text{for } a^{est} < a \le m - 1 \tag{B12}$$

$$N_{\text{start},m} = N_{\text{start},m-1} e^{-M_{m-1}} (1 - \phi S_{m-1}) / (1 - e^{-M_m} (1 - \phi S_m))$$
(B13)

#### B.2. The (penalised) likelihood function

The model can be fit to (a subset of) CPUE and survey abundance indices, and commercial and survey catch-at-age and catch-at-length data to estimate model parameters (which may include residuals about the stock-recruitment function, facilitated through the incorporation of a penalty function described below). Contributions by each of these to the negative of the (penalised) log-likelihood ( $-\ell nL$ ) are as follows. Details related to fitting to CPUE series are not included below,

(B10)

as such series are not considered in the analyses of this paper.

#### B2.1. Survey abundance data

The likelihood is calculated assuming that a survey biomass index is lognormally distributed about its expected value:

$$I_{y}^{surv} = \hat{I}_{y}^{surv} \exp\left(\varepsilon_{y}^{surv}\right) \quad \text{or} \quad \varepsilon_{y}^{surv} = \ell n \left(I_{y}^{surv}\right) - \ell n \left(\hat{I}_{y}^{surv}\right) \tag{B14}$$

where

 $I_{y}^{surv}$  is the survey biomass index for survey surv in year y,

 $\hat{I}_{v}^{surv} = \hat{q}^{surv} \hat{B}_{v}^{surv}$  is the corresponding model estimate, where

 $\hat{q}^{surv}$  is the constant of proportionality (catchability) for the survey biomass series *surv*, and  $\varepsilon_{v}^{surv}$  from  $N(0, (\sigma_{v}^{surv})^{2})$ .

The contribution of the survey biomass data to the negative of the log-likelihood function (after removal of constants) is then given by:

$$-\ln L^{\text{survey}} = \sum_{surv} \sum_{y} \left\{ \ln \left( \sqrt{\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2}} \right) + \left(\varepsilon_{y}^{surv}\right)^{2} / \left[ 2 \left(\left(\sigma_{y}^{surv}\right)^{2} + \left(\sigma_{Add}^{surv}\right)^{2} \right) \right] \right\}$$
(B15)

where

- $\sigma_y^{surv}$  is the standard deviation of the residuals for the logarithm of index *i* in year *y* (which is input), and
- $\sigma_{Add}^{surv}$  is the square root of the additional variance for survey biomass series *surv*, which is estimated in the model fitting procedure, with an upper bound of 0.5.

The catchability coefficient  $q^{surv}$  for survey biomass index *surv* is estimated by its maximum likelihood value:

$$\ell n \hat{q}^{surv} = 1/n_{surv} \sum_{y} \left( \ln I_{y}^{surv} - \ln \hat{B}_{y}^{surv} \right)$$
(B16)

#### B.2.3. Commercial catches-at-age

The contribution of the catch-at-age data to the negative of the log-likelihood function under the assumption of an "adjusted" lognormal error distribution is given by:

$$- \ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_{a}^{com} / \sqrt{p_{y,a}} \right) + p_{y,a} \left( \ln p_{y,a} - \ln \hat{p}_{y,a} \right)^{2} / 2 \left( \sigma_{a}^{com} \right)^{2} \right]$$
(B17)

where

 $p_{y,a} = C_{y,a} / \sum_{a'} C_{y,a'}$  is the observed proportion of fish caught in year y that are of age a,  $\hat{p}_{y,a} = \hat{C}_{y,a} / \sum_{a'} \hat{C}_{y,a'}$  is the model-predicted proportion of fish caught in year y that are of age a, where

$$\hat{C}_{y,a} = N_{y,a} S_{y,a} F_y \left( 1 - e^{-Z_{y,a}} \right) / Z_{y,a}$$
(B18)

and

 $\sigma_a^{com}$  is the standard deviation associated with the catch-at-age data, which is estimated in the fitting procedure by:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} p_{y,a} (\ln p_{y,a} - \ln \hat{p}_{y,a})^{2} / \sum_{y} 1}$$
(B19)

Commercial catches-at-age are incorporated in the likelihood function using equation (B17), for which the summation over age *a* is taken from age  $a_{minus}$  (considered as a minus group) to  $a_{plus}$  (a plus group).

In application of this approach ages are often aggregated to avoid values of  $p_{y,a}$  or  $\hat{p}_{y,a}$  that are too small in the interests of estimation robustness. In this paper individual ages have been maintained between the selected minus and plus-groups to provide potential discrimination of different shapes for the selectivity functions at older ages in particular. This however does mean that there are certain cells for which  $p_{y,a}$  values are zero. That does not cause any problems

because the limit of  $p_{y,a}(\ln p_{y,a})^2$  as  $p_{y,a} \to 0$  is 0, so these terms can be omitted from the summation in equation B17. One could argue that they should nevertheless be included in the summations in equation B18, but exclusion seems more appropriate as the structural zero contributions then included would seem likely to bias the estimates of  $\hat{\sigma}_a^{com}$  downwards.

In addition to this "adjusted" lognormal error distribution, some computations use an alternative "sqrt(p)" formulation, for which equation B20 is modified to:

$$-\ln L^{\text{CAA}} = \sum_{y} \sum_{a} \left[ \ln \left( \sigma_a^{\text{com}} \right) + \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^2 / 2 \left( \sigma_a^{\text{com}} \right)^2 \right]$$
(B21)

and equation B21 is adjusted similarly:

$$\hat{\sigma}_{a}^{com} = \sqrt{\sum_{y} \left( \sqrt{p_{y,a}} - \sqrt{\hat{p}_{y,a}} \right)^{2} / \sum_{y} 1}$$
(B22)

This formulation mimics a multinomial form for the error distribution by forcing a nearequivalent variance-mean relationship for the error distributions.

### *B.2.4. Survey catches-at-age*

The survey catches-at-age are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, assuming an "adjusted" lognormal error distribution (equation (B19)) where:

 $p_{y,a}^{surv} = C_{y,a}^{surv} / \sum_{a'} C_{y,a'}^{surv}$  is the observed proportion of fish of age *a* in year *y* for survey *surv*,

 $\hat{p}_{y,a}^{surv}$  is the expected proportion of fish of age *a* in year *y* in the survey surv, given by:

$$\hat{p}_{y,a}^{surv} = S_a^{surv} N_{y,a} e^{-Z_{y,a}T^{surv}/12} / \sum_{a'=1}^{m} S_{a'}^{surv} N_{y,a'} e^{-Z_{y,a'}T^{surv}/12}$$
(B23)

For the Massachusetts spring survey, the summation is taken from age 1 to age 6.

# B.2.5. Survey catches-at-length

In some runs, catches-at-length are also incorporated in the likelihood function. These data are incorporated in the similar manner as the catches-at-age. When the model is fit to catches-at-length, the predicted catches-at-age are converted to catches-at-length:

$$\hat{p}_{y,l}^{surv} = \sum_{a} \hat{p}_{y,a}^{surv} A_{a,l}^{strt}$$
(B24)

for the spring survey, and

$$\hat{p}_{y,l}^{surv} = \sum_{a} \hat{p}_{y,a}^{surv} A_{a,l}^{mid}$$
(B25)

for the fall survey,

where  $A_{a,l}^{strt}$  and  $A_{a,l}^{mid}$  are the proportions of fish of age *a* that fall in the length group *l* (i.e.,  $\sum_{l} A_{a,l}^{strt} = 1$  and  $\sum_{l} A_{a,l}^{mid} = 1$  for all ages) at the beginning of the year and at the middle of the year

respectively.

The matrices  $A_{a,l}^{strt}$  and  $A_{a,l}^{mid}$  are calculated under the assumption that length-at-age is normally distributed about a mean given by the von Bertalanffy equation, i.e.:

$$L_a^{strt} \sim N \left[ L_{\infty} \left( 1 - e^{-\kappa (a - t_o)} \right), \left( \theta_a^{strt} \right)^2 \right]$$
(B26)

for the spring survey and

$$L_a^{mid} \sim N \left[ L_{\infty} \left( 1 - e^{-\kappa (a+0.5-t_o)} \right) \left( \theta_a^{mid} \right)^2 \right]$$

# for the fall survey,

where

 $\theta_a^{strt}$  and  $\theta_a^{mid}$  are the standard deviation of begin and mid-year length-at-age *a* respectively, which are modelled to be proportional to the expected length-at-age *a*, i.e.:

(B27)

$$\theta_a^{strt} = \beta \left[ L_{\infty} \left( 1 - e^{-\kappa (a - t_o)} \right) \right]^{\gamma}$$
(B28)
and

$$\theta_a^{mid} = \beta \left[ L_{\infty} \left( 1 - e^{-\kappa (a+0.5-t_o)} \right) \right]^{\gamma}$$
(B29)

with  $\beta$  an estimable parameter and  $\gamma = 0.5$  (a value which was found to lead to reasonable fits to the data).

$$L_{\infty} = 150.93 \, cm$$
,  
 $\kappa = 0.11 \, yr^{-1}$ ,  
 $t_o = 0.13 \, yr$ ,

The following term is then added to the negative log-likelihood:

$$- \ln L^{\text{CAL}} = w_{len} \sum_{surv} \sum_{y} \sum_{l} \left[ \ln \left( \sigma_{\text{len}}^{surv} / \sqrt{p_{y,l}^{surv}} \right) + p_{y,l}^{surv} \left( \ln p_{y,l}^{surv} - \ln \hat{p}_{y,l}^{surv} \right)^2 / 2 \left( \sigma_{\text{len}}^{surv} \right)^2 \right]$$
(B30)

The  $w_{len}$  weighting factor may be set to a value less than 1 to downweight the contribution of the catch-at-length data (which tend to be positively correlated between adjacent length groups because the length distributions for adjacent ages overlap) to the overall negative log-likelihood compared to that of the CPUE data. The value used for  $w_{len}$  is 0.1, being roughly equivalent to the ratio of the number to length groups to the number of age groups considered. Instances of observed proportions of zero are dealt with in the same manner as for catches-at-age, as is the alternative "sqrt(p)" error distribution formulation.

#### B.2.6. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be lognormally distributed and serially correlated. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) log-likelihood function is given by:

$$-\ell n L^{\text{pen}} = \sum_{y=y_1+1}^{y_2} \left[ \varepsilon_y^2 / 2\sigma_R^2 \right]$$
(B31)

where

 $\varepsilon_v$  from  $N(0, (\sigma_R)^2)$ ,

 $\sigma_{R}$  is the standard deviation of the log-residuals, which is input.

Equation B31 is used when the stock-recruitment curve is estimated internally. In some analyses reported in this paper where BRP estimates are based on stock-recruitment curves estimated "externally" using the assessment outputs,, this "stock-recruitment" term is included for the last two years only, simply to stabilise these estimates which are not well determined by the other

data. In these cases, the  $\varepsilon_y$  are calculated as the deviations from the mean log recruitment for the ten preceding years, i.e. recruitment estimates for 2010 and 2011 are shrunk towards the geometric mean recruitment over the preceding decade.

B.2.7. Catches  

$$-\ell n L^{\text{Catch}} = \sum_{y} \left[ \frac{\ell n C_{y} - \ell n \hat{C}_{y}}{2\sigma_{\text{C}}^{2}} \right]$$
(B32)  
where

 $C_{y}$  is the observed catch in year y,

 $\hat{C}_{y}$  is the predicted catch in year y (eqn B8), and

 $\sigma_{\rm c}$  is the CV input: 0.4 for pre-1964 catches, 0.2 for catches between 1964 and 1981 and 0.05 for catches from 1982 onwards.

### B.2.8Incorporation of Bigelow vs Albatross survey calibration

The survey data provided are adjusted for the years 2009 to 2012 which were obtained from *Bigelow* surveys have been adjusted to "*Albatross* equivalents" through use of calibration factors estimated independently from paired tow experiments (Miller *et al.*, 2010). However the survey data before and after the switch of vessels also provide information on the calibration factors because they sample the same cohorts. Incorporation of this information in assessments in this paper has been effected by treating the estimates, with their variance-covariance matrix, as a form of "joint-prior" which is effectively updated in the penalised likelihood estimation when fitting the model. The process is as follows.

First *Bigelow* length frequency distributions are converted to *Albatross* equivalent length frequency distributions:

$$C_{y,l}^{surv,A} = C_{y,l}^{surv,B} / F_l$$
(B33)

where

 $C_{y,l}^{surv,B}$  is the measured catch-at-length for the *Bigelow* in year y for survey surv,

 $C_{y,l}^{surv,A}$  is the inferred catch-at-length for the *Albatross* equivalent in year y for survey surv,

 $F_{l}$  is the length-based calibration factor (*Bigelow/Albatross*),

The Albatross equivalent length distributions are then converted to age distributions:

$$C_{y,a}^{surv,A} = \sum_{l} C_{y,l}^{surv,A} ALK_{y,a,l}^{surv}$$
(B34)

where

 $ALK_{y,a,l}^{surv}$  is the age-length key (proportion of fish of length *l* that have age *a*) in year *y* for survey *surv*.

Indices are then obtained from the *Albatross* equivalent age distributions as follows:

$$I_{y}^{surv,A} = \sum_{a} C_{y,a}^{surv,A} w_{y,a}^{surv}$$
(B35)

for biomass indices and

$$I_{y}^{surv,A} = \sum_{a} C_{y,a}^{surv,A}$$
(B36)

for numbers indices,

where

 $w_{y,a}^{surv}$  is the weight-at-age in year y for survey surv.

The calibration factor has four parameters, three of which are estimable and the other input:  $X_1=20$  cm,  $X_2$ ,  $F_1$  and  $F_2$ 

$$F_{l} = \begin{cases} \frac{(F_{2} - F_{1})}{(X_{2} - X_{1})} l + \frac{(F_{1}X_{2} - F_{2}X_{1})}{(X_{2} - X_{1})} & \text{if } X1 < l < X_{2} \\ F_{2} & \text{if } l \ge X_{2} \end{cases}$$
(B37)

The following contribution is therefore added to the negative log-likelihood in the assessment:

$$-\ln L^{calib} = \frac{1}{2}\ln|\boldsymbol{\Sigma}| + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$
(B38)

where the parameters  $X_2$ ,  $F_1$  and  $F_2$  are components of the vector x,

 $\Sigma$  is the variance covariance matrix as estimated by Miller *et al.* (2010), and

 $\mu$  is a vector which contains the Miller *et al.* (2010) estimates of the parameters.

These estimates and the variance-covariance matrix are given in table B1 below:

Table B1: Estimates and variance-covariance matrix for the calibration parameters (Miller, pers. commn).

| μ             | $ln(F_2)$ | $ln(F_1-F_2)$ | In(X 2-X 1)   |
|---------------|-----------|---------------|---------------|
|               | 0.4713    | 1.4163        | 3.5086        |
| Σ             | $ln(F_2)$ | $ln(F_1-F_2)$ | $ln(X_2-X_1)$ |
| $ln(F_2)$     | 0.006674  | -0.002515     | -0.002559     |
| $ln(F_1-F_2)$ | -0.002515 | 0.051592      | -0.007601     |
| $ln(X_2-X_1)$ | -0.002559 | -0.007601     | 0.006757      |

# **B.3.** Estimation of precision

Where quoted, CV's or 95% probability interval estimates are based on the Hessian.

### **B.4.** Model parameters

B.4.1. Fishing selectivity-at-age:

For the NEFSC offshore surveys, the fishing selectivities are estimated separately for ages 1 to age 6 and are flat thereafter. For the Massachusetts inshore spring survey, the selectivities are estimated separately for ages 1 to 4. The estimated proportional decrease from ages 3 to 4 is assumed to continue multiplicatively to age 6; this decrease parameter is bounded by 0, i.e. no increase is permitted. For all three surveys, age 0 is not considered.

The commercial fishing selectivity,  $S_a$ , is estimated separately for ages  $a_{minus}$  to  $a_{plus}$  (1 to 9) It is taken to differ over four periods: a) pre-1982, b) 1982-1988, c)1989-2004, and d) 2005-present. The selectivities are estimated directly for the last three periods. For the pre-1982 period, the selectivity is taken as that for the 1989-1988 block, but shifted one year to the left. For the implementations in this paper, given that there were difficulties with imprecise estimates at larger ages for period d) given its shortness, a common selectivity at age was estimated across all periods for ages 7 and above.

| B.4.2. | Other | parameters |  |
|--------|-------|------------|--|
|--------|-------|------------|--|

| Model plus group            |                     |                        |                  |
|-----------------------------|---------------------|------------------------|------------------|
| m                           | 9                   |                        |                  |
| Commercial CAA              |                     |                        |                  |
| $a_{\min s}^*$              | 1                   |                        |                  |
| $a_{ m plus}$               | 9                   |                        |                  |
| Survey CAA                  | NEFSC spr           | NEFSC fall             | MASS spr         |
| $a_{\min s}^*$              | 1                   | 1                      | 1                |
| $a_{ m plus}$               | 9                   | 9                      | 4                |
| Natural mortality:          |                     |                        |                  |
|                             | Age                 |                        |                  |
| M                           | independent:        |                        |                  |
|                             | i) 0.2 for all      |                        |                  |
|                             | years               |                        |                  |
|                             | ii) 0.2 until 1988, | threafter a linear inc | crease to 0.4 in |
|                             | 2003 and constan    | t at 0.4 thereafter    |                  |
| Proportion mature-at-age:   |                     |                        |                  |
| $f_a$                       | input, see Table    | e A8                   |                  |
| Weight-at-age:              |                     |                        |                  |
| $W_{y,a}^{strt}$            | input, see Table    | e A2                   |                  |
| $W_{y,a}^{mid}$             | input, see Table    | e A3                   |                  |
| $W_{y,a}^{surv}$            | input, see Table    | e A12                  |                  |
| Stock recruit residuals std |                     |                        |                  |
| dev: $\sigma_R$             | 0.6                 |                        |                  |
| Initial conditions :        |                     |                        |                  |
|                             | estimated direc     | tly for ages 0 to xx c | lepending on AIC |
| $N_{y0,a}$                  | criterion           |                        |                  |
| φ                           | estimated           |                        |                  |

\* Strictly not a minus group anymore since the catches at age zero are ignored.

# **B.5.Biological Reference Points (BRPs)**

It is possible to estimate BRPs internally within the assessment by fitting the stock-recruitment relationship directly within the assessment itself.

For some results reported here, however, the stock-recruitment relationships are fitted to the estimates of recruitment and spawning biomass provided by the various assessments to provide a basis to estimate BRPs. The rationale for estimation external to the assessment itself is to avoid assumptions about the form of the relationship influencing the assessment results. These fits are

achieved by minimising the following negative log-likelihood, where the  $e^{-\frac{\pi}{2}}$  term is added for consistency with equation B4, i.e. the stock-recruitment curves estimated are mean-unbiased rather than median unbiased:

$$-\ln L = \sum_{y=y1}^{2009} \left[ \frac{\left( \ln(N_{y,0}) - \ln\left(\hat{N}_{y,0}e^{-\frac{\sigma_R^2}{2}}\right) \right)^2}{2((\sigma_R)^2 + (CV_y)^2)} \right]$$
(B39)

where

 $N_{y,0}$  is the "observed" (assessment estimated) recruitment in year y,

 $\hat{N}_{y,0}$  is the stock-recruitment model predicted recruitment in year y,

 $\sigma_R$  is the standard deviation of the log-residuals which is input (and set here to 0.6), and

 $CV_y$  is the Hessian-based CV for the "observed" recruitment in year y.

Note that the differential precision of the assessment estimates of recruitment is taken into account, and that the summation ends at 2009 because little by way of direct observation is as yet available to inform estimates of recruitment for 2010 and 2011.

### Appendix A.6. Additional ASAP sensitivity runs

This appendix (tables and figures in next section) provides results from sensitivity runs that were conducted on the SAW 55 ASAP reference model (SAW55\_BASE) except where noted. These sensitivity runs fell into two categories: 1) determining whether an alternate model formulation offered improved fit to the data; and 2) evaluating the sensitivity of the model with respect to a range of assumptions.

# A.6.1. Survey calibration coefficients

A number of operational changes have been made to the NEFSC spring and fall surveys during over the assessment times series including a changes in vessel (Delaware/Albatross historically and introduction of the Bigelow in 2009), trawl doors (during 1984-85) and trawl net (Yankee 36/41 in spring survey). The changes are summarized in Table A.52. Trends in the calibrated and uncalibrated surveys indices were very similar and with the exception of the fall 2009 abundance index (Fig. A.95). Overall, the effects of the Bigelow calibration were less than the historical door/vessel calibration effects. The SAW 55 WG recommended that the adjusted series of each NEFSC survey time series be used during SAW 55; however, the WG recommended that sensitivity analyses be undertaken during the modeling to explore the impact of uncertainty in the calibration coefficients.

Results of the sensitivity of the SAW55\_BASE model to the upper and lower 95% confidence intervals of the calibration factors are provided in Table A.6.1 and Figure A.6.1. The main effect of the calibration coefficients was an increase in the uncertainty in recent biomass rather than adding bias. The 2011 spawning stock estimate ranged from 9,804 mt (upper 95% CI) to 15,098 mt (lower 95% CI) with the calibrated estimate of 11,974 mt (SAW55\_BASE). Over the majority of the time series the effects of the calibration coefficients were minimal.

# A.6.2. Use of survey numbers vs. biomass indices

Analyses were undertaken to compare the use of either survey aggregate abundance (numbers/tow) or biomass (weight/tow) in the model fitting. The abundance indices at age are presented in Tables A.57, A.59, and A.63 for the NEFSC spring, NEFSC fall, and MADMF spring survey respectively. Biomass indices at age are presented in Tables A.58, A.60, and A.64 for the NEFSC spring, NEFSC fall, and MADMF spring survey respectively. To correctly convert indices-at-age to numbers (which are the units that the ASAP model is tuning to) the model requires input of survey weights-at-age (e.g., Fig. A.11 and A.12). The survey weight-at-age matrices contained several holes for age/year combinations, particularly among the older ages. The missing values were imputed using a time series average weight-at-age. The ASAP sensitivity was conducted on the ASAP preferred model SAW55\_3BLOCK\_BASE which was tuned to the survey abundance (numbers) indices. A comparable model was constructed using the biomass indices as described above. To provide an equal comparison across models, the biomass model, SAW55\_3BLOCK\_BASE\_BIOMASS was run initially and then the second stage Francis (2011) ESS multipliers were applied. The final biomass-based model is

SAW55\_3BLOCK\_BASE\_BIOMASS\_ADJ. The adjusted biomass model had improved model diagnostics relative to the unadjusted model (Table A.6.2).

The working group discussed the preferred metric to evaluate model preference and agreed that the coefficient of variation (CV) on the terminal (2011) estimate of spawning stock biomass should be used. The two indices provided similar results in terms of biomass trends (Fig. A.6.2) with the terminal (2011) estimates differing by 1,662 mt. The CVs on the 2011 spawning stock biomass were 0.176 for the abundance-based model and 0.181 for the biomass-based model. While the differences were small, the WG concluded to use abundance (numbers) indices for the final ASAP preferred model.

# A.6.3. Survey catchability and an evaluation of biomass scale

The scale of model estimates of biomass can be affected by assumptions of the estimated efficiency of the surveys. Further work on the ASAP model was conducted to 1) evaluate the sensitivity of the SAW55\_BASE model results to alternate assumptions of survey catchability (q), and 2) generate model-independent estimates of total biomass and compare to the model estimates to determine whether the model results are reasonable. The second analyses were originally conducted for the SAW 53 assessment (NEFSC 2012a), however given the nearly identical biomass scales between the SAW 53 and SAW 55 assessment results (Fig. A.138), the analyses remain relevant.

# Model profiling across a range of NEFSC spring survey q values

The sensitivity of the SAW55\_BASE model to alternate assumptions of survey catchability was evaluated by profiling across a range of q values from 0.1 to 1.3 in 0.1 increments. Priors were specified for catchability values by setting the input CV on catchability to 0.1 and setting lambda values at 1 (i.e., the initial q values were given little latitude to deviate from the initial conditions and a penalty was imposed for any deviations).

Results of the sensitivity runs are summarized in Fig. A.6.3. On the basis of the objective function, the model preferred q values in the range of 0.6 to 1.2. There was a general tendency for the model to estimate higher [lower] q values than inputted when the inputted q was below [above] the model preferred value of 0.89. Within the 0.6 to 1.2 range there was little impact in terms of SSB scaling (<8% difference from SAW55\_BASE run). Even when forcing q to a minimum believable range ( $\approx$ 0.4) the SSB scaling differences only amount to <18% difference from the base run q preference of 0.89. The tradeoff in lower q reduces the overall fit in the NEFSC spring survey and by necessity, reduces q on the NEFSC fall survey. Additionally, a lower q requires an approximate 22% decrease in the selectivity on the oldest age in the second fishery selectivity block (i.e., a considerable increase in the doming assumption). The profiling across a range of q values shows strong model preference for the BASE model results, with little impact in terms of SSB within the range of believable alternatives.

### Sensitivity of BASE results and estimates of survey q to area expansion factors

The Gulf of Maine cod stock boundary (Fig. A.1) encompasses a surface area of approximately 54.5 thousand km<sup>2</sup>. The survey strata used in the Gulf of Maine cod stock assessment (Fig. A.85) encompasses 61.4 thousand km<sup>2</sup>; approximately 17.1% larger than the stock area. Included in the survey strata set are three strata (29, 30 and 36) that extend beyond the United States Exclusive Economic Zone (EEZ) into Canadian waters. A sensitivity analyses was conducted to evaluate whether using a survey strata set that included only survey strata contained entirely within the US EEZ would affect model results and estimates of survey *q*.

NEFSC spring and fall survey indices, including indices at age, were recalculated using only strata 26-28 and 37-40 (excluded 29, 30 and 36). The revised survey area has a surface area of 34.2 thousand km<sup>2</sup> (37.2% smaller than the stock area). The recalculated aggregate abundance indices were nearly identical in terms of trends, but tended to be slightly higher (Fig. A.6.4). The rescaling of the survey indices is a product of dropping survey strata that have historically not contained high abundances of cod, thus increasing the stratified mean number/tow without impacting overall survey trends. When converted to area swept indices by accounting for the survey trawl area and revised surface area, the indices tended to be lower than those that included in the full strata set. The raising factor used to convert the mean number per tow to their area-swept equivalents was disproportionately smaller than the increases in the stratified mean number per tow. The revised survey indices were inputted into a revised ASAP model (SAW55\_REV\_SURV\_STRATA).

The SAW55\_REV\_SURV\_STRATA model is nearly identical to the BASE model with respect to the SSB, F and the age 1 recruitment time series (Fig. A.6.5). The slight deviations in the two runs are likely due to the small differences in the survey indices when calculated using the reduced strata set. While there were no major differences in estimates of SSB and F, using the reduced strata sets resulted in q estimates that were much lower relative to the BASE model. The NEFSC spring q went from 0.89 to 0.56, NEFSC fall from 0.53 to 0.41 and the MADMF spring survey went from 0.21 to 0.20 (Fig. A.6.6). Model estimates of q are highly sensitive to the estimated survey area used to expand mean number per tow survey indices to their area-swept equivalents. In addition to the assumptions about total survey area considered here, estimates of q are also likely to be sensitive to assumptions about the total trawl area, effective trawl sweep and the extent of cod herding that occurs in the survey net.

# Model independent estimates of total biomass

All previous analyses have examined the sensitivity of the biomass estimates to different assumptions on model parameters. While these analyses show that the model-based biomass estimates are robust to alternate model configurations, they do not provide a sense for whether the model-based estimates are realistic relative to model-independent estimates of total stock biomass. Several different model-independent approaches are taken below to evaluate whether the ASAP estimates of biomass are realistic.

### Model independent estimates of total biomass from the Bigelow survey years (2009-2011)

The conversion of Bigelow survey catches to Albatross equivalents is an uncertain, but necessary step in order to maintain a consistent time series and fully utilize the short Bigelow time series. To avoid any confounding effects of the Bigelow conversion in deriving model-independent estimates of biomass, an attempt was made to use raw (i.e., unconverted) Bigelow time series data (2009 - 2011) to estimate total biomass. Total survey area-swept biomass can be estimated using Appendix 6 Equation 1.

(1)  $B_{AW} = I/1000 \bullet A/f \bullet 1/q$ 

where:

 $B_{AW}$  = Area swept biomass I = survey index A = survey area f = trawl area q = survey catchability

The survey area depends on the strata set included. For the purposes of these analyses, the inshore survey strata were included to better characterize total catch across all age classes (strata 57-69) in addition to the offshore survey strata (strata 26-30, 36-40). The nearshore area that makes up the inshore survey strata has higher abundance of juveniles relative to the offshore areas. During the Bigelow survey years, these strata have been consistently sampled. The differences in availability of young age classes between the inshore and offshore regions is evident when comparing the selectivity of NEFSC offshore surveys to the MADMF survey in the SAW55\_3BLOCK\_BASE model (Fig. A.177). The total surface area of strata 26-30, 36-40 and 57-69 is 63.8 thousand km<sup>2</sup> and 36.5 thousand km<sup>2</sup> when strata 29,30 and 36 are excluded. The total trawl area of the Bigelow is 0.024 km<sup>2</sup> when using wing spread to define the effective trawl area and 0.061 km<sup>2</sup> when using door spread. Comparatively, the Albatross tow area in terms of wing spread is 0.038 km<sup>2</sup>.

Assumptions on the effective trawl area and q can have large impacts on survey-based estimates of total biomass. Moving from a q of 1.0 to 0.2 will result in a fivefold increase in terms of biomass (Fig. A.6.7). Assuming that the door spread best characterizes the effective trawl area results in biomass estimates less than half that compared to calculations made using wing spread. If there is herding between the doors and an assumption of wing spread is used to determine area swept biomass, biomass estimates may be inflated (or in the case of the model, q estimates, may be higher than reality). The true effective trawl area and survey catchability is not known, but an assumption that a wing spread-based estimate of effective trawl area and 80% efficiency (q=0.8) appears reasonable. Using these assumptions to estimate a survey-based estimate of total biomass yielded results similar to the SAW 53 BASE model estimates of total biomass at the time of the survey (i.e., total January 1 biomass decremented by total mortality, Z, occurring before the survey; Fig. A.6.8). In 2009 and 2010 the BASE biomass estimates are all within the 80% bootstrap CI of the Bigelow-based biomass estimates. Excluding the offshore survey strata does not impact the overall perception of Bigelow-based total biomass. Given an assumption that the Bigelow survey q=0.8, it's reasonable to conclude that a comparative q for the Albatross survey is approximately 0.5 if the Bigelow to Albatross conversion coefficient of 1.602 on fish  $\geq 54$  cm is used as a rough estimate of differences in catchability (i.e., the Bigelow survey is 60% more efficient at catching cod compared to the Albatross survey). By performing a similar analysis on the Albatross survey series, but using a q assumption of 0.5, a time series of survey-estimated total biomass can be constructed. The survey-based time series is not inconsistent with the BASE model estimates of total biomass at the time of the survey (Z-decremented to the time of the survey). The BASE biomass estimates generally fall within the 80% CI of both the NEFSC spring and fall survey-based biomass estimates (Fig. A.6.9). While the estimates are not exact, they are all of the same relative scale, suggesting that the scale of the biomass estimated by the ASAP model is realistic.

# Thinking of q in terms of the catchability of 'survey-able' biomass

The BASE model estimate of NEFSC spring survey q (0.92) seems unreasonably high when thought of in terms of total survey efficiency. However, when interpreting the model q values, the impact of survey selectivity on the q estimates needs to be considered. Effectively, the ASAP model q estimates represent the q in terms of fully selected fish (i.e., after accounting for survey selectivity). To examine whether the SAW 53 BASE q estimates were reasonable, the model estimates have been used to estimate survey-based total biomass as was done above. Unlike the previous analysis that incorporated the inshore survey strata, only the offshore survey strata are included here, as this is consistent with the NEFSC survey indices used in the SAW 53 BASE model. This maintains consistency between the survey index and model-based estimates of q and selectivity at age. Survey-based biomass indices were generated using both the full offshore strata set (26-30, 36-40) and with strata 29,30 and 36 excluded. The model estimates of q applied to estimate total biomass were: NEFSC spring = 0.92 (full strata set), 0.57 (exclude 29, 30 and 36) and NEFSC fall = 0.53 (full strata set), 0.42 (exclude 29, 30 and 36).

Total survey-based estimates of biomass were compared to the 'survey-able' biomass estimated from the SAW 53 BASE model. 'Survey-able' biomass was estimated by decrementing the January 1 biomass (NEFSC 2012a, Table A.63) by total Z between January 1 and the time of the survey (spring vs. fall) and filtering the Z-decremented biomass through the survey selectivity ogive. The SAW 53 BASE-estimated 'surveyable' biomass generally fell within the 80% survey CI on total biomass for both the spring (Fig. A.6.10) and fall (A.6.11) surveys. How q is defined, whether in terms of absolute efficiency or in terms of the fully selected ages, does impact the qvalue. However, when the q is properly applied in a model-independent exercise, the calculations yield biomass estimates that are comparable with those estimated by the BASE model.

# A.6.4. Multiple fleet definitions

Preliminary ASAP runs attempted to break the fishery catch into separate fleets (commercial and recreational). Selectivity was fit non-parametrically (selectivity-at-age) with two selectivity blocks per fleet. The timing of the selectivity block varied slightly by fleet, but generally the split between blocks occurred during the 1990s. The SAW55\_BASE model treats commercial and
recreational catch (landings and discards) as a single fleet. Three different alternate fleet formulations were explored: 1) for each fleet (commercial and recreational), catch was divided into retained and discarded catch, with each disposition constituting its own fleet such that there were 4 fleets total (SAW55\_4FLEET); 2) catch was divided into commercial and recreational catch with each catch input treated as a separate fleet (SAW55\_2FLEET); 3) catch was divided into landed and discarded catch with each catch input treated as a separate fleet (SAW55\_SPLIT\_LAND\_DISC).

All of the split fleet models suffered from severe diagnostic issues. Most notably there was strong residual patterning in the fits to catch at age (Figs. A.6.12-A.6.14). Compared to the SAW55\_BASE models, the split fleet models had lower estimates of 2011 spawning stock biomass and equal or higher estimates of age 5 fishing mortality (Table A.6.3). Given the problems experienced with these complex ASAP formulations and robustness of the assessment results, the SAW 55 WG supported the decision to use a simplified, single fleet, model formulation.

## A.6.5. Inclusion of catch-per-unit-effort indices

During the SAW 55 Data Working Group (SAW 55 WG 2012a) commercial and recreational landings-per-unit-effort (LPUE) indices were presented. The WG expressed several concerns with the use of these indices which are summarized in detail in the assessment report. Because of these concerns, the WG recommended that the LPUE indices not be included in the GOM cod assessment model.

Sensitivity runs were however conducted to evaluate the impacts of including these LPUE indices in the SAW55\_BASE model. The LPUE indices were inputted into the model both separately (SAW55\_COM\_LPUE and SAW55\_REC\_LPUE) and combined (SAW55\_LPUE). Summary diagnostics of all runs are presented in Table A.6.4.

Initial attempts to fit the commercial LPUE indices revealed a poor fit the index with strong residual patterning (Fig. A.6.15). At the Data WG meeting there was considerable discussion about the contraction of the commercial fishery and intense aggregation of the fishery that occurred between 2006 and 2010. In the fits the commercial LPUE index there was a strong residual pattern that indicated differences in fleet catchability pre- and post-2006. Based on the similarities of the residual patterning to observed behavior of the fleet, a second commercial LPUE model was constructed that split the commercial LPUE index into two separate series (SAW55\_COM\_LPUE\_SPLIT): one series included years 1982-2005 and the second included the years 2006-2011. The split model fits to the LPUE series were considerably better than those of the single series (Fig. A.6.15). There was three-fold increase in catchability (q) between the pre- and post-2006 periods. Interestingly, the model estimates of spawning stock biomass, fishing mortality and age 1 recruitment were nearly identical to that of the SAW55\_BASE model (Fig. A.6.16).

Similar to the commercial LPUE index, the model fit to the recreational index was poor. There was a string of positive residuals early in the time series (pre-2002) and negative residuals in the

second half of the time series (Fig. A.6.17). Attempts to fit both LPUE indices (commercial and recreational) within a single model suffered from the same problems observed in the individual runs (Fig. A.6.18).

Because the LPUE indices do not have catch-at-age components, rather they are linked to the selectivity of the fishery, there was concern that the poor fits to the survey indices were due to attempting to link commercial or recreational LPUE indices to selectivities that included combined commercial and recreational catch patterns. Attempts were made to run LPUE models on the SAW55\_2FLEET model described previously to address these concerns; however, these model runs did not converge.

## A.6.6. Inclusion/exclusion of survey indices

To better understand how the model results are being influenced by each of the survey indices the SAW55\_BASE model was run using only one index at a time. The three sensitivity runs were SAW55\_NEFSC\_SPRING (NEFSC spring survey), SAW55\_NEFSC\_FALL (NEFSC fall survey) and SAW55\_MADMF\_SPRING (MADMF spring survey). In all three sensitivity runs all other model configurations were left unchanged.

All three models had similar starting biomass values in 1982 ranging from 21,628 to 25,513 mt (Table S.6.7) however the MADMF spring survey model exhibited a large increase in spawning stock biomass over time such that by 2011, the spawning stock biomass was estimated at 34,137 mt compared to the 11,874 mt of the SAW55\_BASE model. The survey fits from each of the models relative to the SAW55\_BASE model was similar (Fig. A.6.19), however the large difference between models was due to a large buildup of age  $9^+$  fish in the MADMF spring survey (Fig. A.6.20). The increase in older age fish is a product of the declining selectivity with age in the MADMF spring survey (Fig. A.176). The MADMF survey contains very little information on older fish in the population; with only this survey in the model there is nothing to constrain build-up of biomass in the  $9^+$  group.

# A.6.7. Survey selectivity assumptions (dome vs. flat topped) and plus group assumption (age $9^+$ vs. $11^+$ )

Explorations were conducted to evaluate the impacts of: a) extending the age matrices out to age 11<sup>+</sup> (SAW55\_11PLUS) compared to the 9<sup>+</sup> formulation used in the SAW55\_BASE model; and b) allowing the NEFSC survey selectivities to be domed (SAW55\_DOME) relative to the flat-topped assumed in the SAW55\_BASE model. Additionally a combined model was run that allowed doming of the NEFSC survey selectivity and included extended age structure out to age 11<sup>+</sup> (SAW55\_DOME11).

The SAW55\_BASE model was insensitive to the plus group specification; the BASE and BASE\_11 models achieved nearly identical results (67 mt difference) with respect to estimates of 2011 spawning stock biomass (Table A.6.6). The survey selectivities of ages 10 and 11 were poorly estimated as evidenced on the large CVs on these ages in both fishery blocks 1 and 2

(Table A.6.7). Selectivity of age 10 in block 1 hit a boundary at 1. Given the insensitivity of model results to the choice of the plus group and the poorly estimated selectivities on older ages, the base model configuration using an age  $9^+$  group is supported.

Relative to the SAW55\_BASE model, the influence of allowing survey selectivities to be domed resulted in a positive rescaling of spawning stock biomass (e.g., 46% increase in 2011 SSB) and a decrease in age 5 fishing mortality from 0.59 to 0.50. Based on the evidence presented earlier, there is little biological or scientific evidence to support such strong doming, additionally, there was little model support for this with an increase of 6 parameters and an improvement of only 4 objective points. The improvement in the objective function was identical between the SAW55\_11PLUS and SAW55\_DOME11 runs. Given the lack of external evidence for domed-shaped survey selectivities, the lack of model preference for domed selectivity and the cautions highlighted in Legault (2012), the WG supported the assumption of flat-topped survey selectivity.

## A.6.8. Assessment starting points (e.g., 1964, 1970 vs. 1982)

The SAW55 BASE assessment begins in 1982. The rationale for this approach is described in detail the main report. Two alternate start points were explored within the framework of the SAW55 BASE model: 1964 (SAW55 HIST 1964) and 1970 (SAW55 HIST 1970). Extending the time series back in time results in a loss of information content as described in the main report. For all historical runs the same adjustments described for the 1932 Beverton-Holt ASAP runs were applied to the SAW55 BASE historical runs. A summary of model diagnostics is presented in Table A.6.8. The historical runs, BASE 1970 and BASE 1964, did not alter the perception of the stock. Nearly identical trends were observed in spawning stock biomass. fishing mortality and age 1 recruitment (Fig. A.6.21). With respect to evaluating the current condition of the stock, the choice in starting year has little impact. Where the starting year does make a difference is in establishing reference points. Extending the time series back in time established additional contrast in the spawner-recuit relationship, however there remains no clear functional form to the relationship even when the assessment time series is extended back to 1964 (Fig. A.6.22). Given the experience of the GARM III, caution should be taken in placing too much weight on recruitment estimates driven entirely off of survey information (as are the recruitment estimates pre-1982) that cannot be corroborated with catch-at-age information.

### A.6.9. Catch precision assumptions

At SARC 53, the Panel expressed concern that the CVs on the aggregate catch used in the base model (CV=0.05) assumed higher precision than was warranted given the CV estimates of 0.11 - 0.38 for commercial discards (Table A.25) and recreational catch percent standard errors (PSE) around 20% (Table A.43). Given that the same assumption has been made in SAW 55, explorations have been conducted evaluating the sensitivity of the model to both higher and lower CVs. In these sensitivity runs only the CVs on the aggregate catch were adjusted; all model inputs and parameters were held constant. Four different CVs were assumed in the model: 0.01, 0.10, 0.20, and 0.30. The model runs and summary diagnostics are presented in Table

A.6.9. Increasing catch CVs lead to slight improvements in the model fits to the survey indices, but only marginally (Appendix Fig. A1.11). The root mean square error on the total index fit went from 1.08 under the SAW55\_BASE model to 1.00 in the 0.30 CV model. The primary effect of the higher CVs was reduced fit to the aggregate catch with very little overall change in the residual patterns, only in the magnitude of the residuals (Fig. A.6.23). The 2011 estimates of spawning stock biomass ranged from 11,990 mt to 10,535 mt with biomass decreasing with an increasing CV. Overall, increasing CVs on the aggregate catch had negligible impacts on the assessment results.

### A.6.10. Stock structure considerations

Most of the discussion related to stock structure occurred during the SAW 55 Data WG. However, there were questions raised following the completion of the SAW 53 assessment that alternative definitions of stock structure could potentially change the perception of the cod resource(s). Here two different explorations have been conducted: 1) evaluate the likely outcome of considering only a western Gulf of Maine cod assessment; and 2) evaluate the likely outcome if the Georges Bank and Gulf of Maine cod resources were assessed as a single unit stock.

A western Gulf of Maine (wGOM) assessment model was constructed by first developing western Gulf of Maine survey indices. The western Gulf of Maine was defined at strata 26, 27 and 40 (Fig. A.6.24). These strata coincide with the region of highest cod density in the Gulf of Maine over the past five years (Fig. A.6.25). A comparison of the wGOM survey indices to those of the entire Gulf of Maine show that the survey trends from the wGOM are nearly identical to those of the Gulf of Maine as a whole (Fig. A.6.26). Conversely, the eastern Gulf of Maine have exhibited sharper declines in survey abundance relative to the Gulf of Maine as a whole. The declines seen in the eastern Gulf of Maine have only minimal effects on the full Gulf of Maine indices due to the dominance of the western Gulf signal. This effect can be better understood by examining the scale of the Gulf of Maine indices in the eastern Gulf of Maine survey indices relative to the Gulf of Maine as a whole (Fig. A.6.27). The abundance indices in the eastern component are approximately two to five times lower than those of the Gulf of Maine as a whole. The survey indices at age from the wGOM compared to the full GOM strata are nearly identical for both the spring (Fig. A.6.28) and (Fig. A.6.29).

Estimates of western Gulf of Maine catch were obtained by calculating the annual fraction of total Gulf of Maine commercial landings coming from statistical areas 513 and 514. Between 1982 and 2011, these two statistical areas have accounted for > 60% of the total Gulf of Maine cod landings and > 90% over the last five years (Fig. A.6.30). The annual fractions where then applied to the aggregate landings and discards (Table A.8) as well as the catch-at-age matrices (Tables A.17 and A.29). No changes were made to the recreational fishery catches since this fishery operates primarily in the western Gulf of Maine. A combined catch-at-age matrix was constructed using the revised catch inputs and the weight-at-age matrix was updated based on a numbers-weighted approach that incorporated the revised catches.

The SAW55\_BASE model inputs were then modified by updating the NEFSC survey indices (aggregate, at-age and input CVs) and the catch inputs (aggregate catch, catch-at-age, weights-at-

age). All other model inputs and configurations were left the same. A comparison of the summary diagnostics of the SAW55\_BASE and the SAW55\_WESTERN models is provided in Table A.6.10. The trends in spawning stock biomass in the western Gulf of Maine have varied, but don't exhibit as large of long-term decline as seen over the entire Gulf of Maine region (Fig. A.6.31). While this could imply large declines in the eastern Gulf of Maine biomass, given non-linearities in the models the eastern Gulf of Maine biomass does not necessarily equal the total minus that of the wGOM. It's important to note that the 2011 estimates of spawning stock biomass and fishing mortality are nearly identical between the two models. This suggests that the current perception of the resource is not dramatically different if only the western Gulf of Maine is considered. Given that spawner-per-recruit (SPR) reference points are likely to be similar between the wGOM-only and GOM regions given the dominance of the wGOM signal in the SPR inputs, consideration of a wGOM only assessment would likely not alter the current stock status.

To construct a combined Georges Bank-Gulf of Maine assessment (SAW55\_COMBINED\_GOM\_GBK) the following steps were taken:

- Started the model in 1982 and used age9<sup>+</sup> formulation.
  - Gulf of Maine assessment starts in 1982 with age  $9^+$  group.
  - Georges Bank assessment starts in 1978 with age  $10^+$  group.
- Treated Gulf of Maine and Georges Bank catches as separate fleets.
  - Used fleet-specific catch weights.
- Re-calculated Georges Bank catch weights to age9<sup>+</sup> formulation using numbers weighted approach.
- Re-calculated aggregate catch weights-at-age using numbers-weighted approach.
- Re-estimated stock/SSB weights-at-age using Rivard approach back to January 1.
- Assumed a mean spawning period at end of February (0.167), which is the mean spawning period used in the Georges Bank assessment.
  - It should be noted that this will have only marginal impacts on the assessment model since it is not directly used in the assessment solution, only in the calculation of spawning stock biomass.
- Used Gulf of Maine maturity ogive.
  - Similar to the spawning period assumption, this will have marginal impacts on the results because it is not directly used in the assessment solution.
- Indices inputted as stock-specific indices.
  - Both MADMF spring and DFO survey indices were included.

The combined GOM/GBK run was compared to the individual Gulf of Maine (SAW55\_BASE) and Georges Bank (GBCOD\_BASE\_ASAP) model results as well as the sum of the individual assessments. The sum of the individual stock spawning stock biomasses and age1 recruitment are similar to the combined model results (Fig. A.6.32). The aggregate fishing mortality is an approximate average of the stock-specific fishing mortalities. Given these similarities, it is not likely that alternate stock structure assumptions will results in considerably different perceptions of resource status. Regardless of the assumptions on stock structure spawning stock biomasses are severely depleted from the highs observed in the early 1980s. Currently the Gulf of Maine assessment has a minor retrospective pattern relative to that observed for the Georges Bank

assessment. Combining the two stocks in to a single unit stock assessment does not resolve the retrospective pattern (Fig. A.6.33). Given the retrospective patterns observed in the combined assessment it's likely that a combined unit-stock approach would effectively degrade the quality of management information with respect to the Gulf of Maine resource.

It should be noted that the exploratory analyses conducted here, both with respect to the western Gulf of Maine and unit stock assessment are preliminary. A number of critical issues with respect to data inputs would need to be addressed before undertaking future such analyses in a more formal manner.

#### **Appendix A.6. Tables**

Table A.6.1. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment model to the upper and lower 95% confidence intervals of the survey calibration factors used throughout the history of the assessment time series.

| Model                   |              | SAW55_BASE | SAW55_SURV_CONV_LOWER | SAW55_SURV_CONV_UPPER |
|-------------------------|--------------|------------|-----------------------|-----------------------|
| Paramet                 | ers          | 101        | 101                   | 101                   |
| Objective function      |              | 2554       | 2563                  | 2559                  |
|                         | Suvey age    | 860        |                       |                       |
|                         | comps        |            | 866                   | 858                   |
| Components of           | Catch age    | 395        | 207                   | 200                   |
| objective function      | comps        |            | 390                   | 398                   |
| objective function      | Index fit    | 794        | 798                   | 799                   |
|                         | Catch fit    | 211        | 211                   | 211                   |
|                         | Recruit devs | 293        | 293                   | 294                   |
|                         | Catch        | 0.29       | 0.30                  | 0.28                  |
|                         | Index1       | 1.14       | 1.19                  | 1.13                  |
| DMCE                    | Index2       | 0.97       | 1.04                  | 1.09                  |
| RNISE                   | Index3       | 1.13       | 1.14                  | 1.14                  |
|                         | Index total  | 1.08       | 1.12                  | 1.12                  |
|                         | Recruit devs | 1.42       | 1.38                  | 1.45                  |
|                         | Fleet1       | 1.34       | 1.34                  | 1.38                  |
| Mean age RMSF           | Index1       | 1.50       | 1.61                  | 1.63                  |
| With an age KNDE        | Index2       | 1.74       | 1.67                  | 1.77                  |
|                         | Index3       | 1.37       | 1.36                  | 1.37                  |
|                         | NEFSC spring | 0.89       | 0.87                  | 0.95                  |
| Survey catchability (q) | NEFSC fall   | 0.53       | 0.50                  | 0.54                  |
|                         | MADMF spring | 0.21       | 0.20                  | 0.21                  |
| SSB1982 (               | mt)          | 23320      | 23086                 | 23299                 |
| SSB2011 (               | mt)          | 11874      | 15098                 | 9804                  |
| Fage5, 20               | 11           | 0.59       | 0.52                  | 0.73                  |

Table A.6.2. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_3BLOCK\_BASE assessment to the use of survey biomass indices relative to abundance (numbers) indices.

| Mo                 | del         | SAW55_3BLOCK_BASE SAW55_3BLOCK_BASE_BIOMAS |            | SAW55_3BLOCK_BASE_BIOMASS_ADJ |
|--------------------|-------------|--------------------------------------------|------------|-------------------------------|
| Selectivity blocks |             | 3                                          | 3          | 3                             |
| Year               | splits      | 1989, 2005                                 | 1989, 2005 | 1989, 2005                    |
| Paran              | neters      | 93                                         | 93         | 93                            |
| Objective          | function    | 2055                                       | 2192       | 1997                          |
| Maximun            | ngradient   | 9.2E-05                                    | 3.7E-05    | 3.4E-05                       |
|                    | Suvey age   |                                            |            |                               |
|                    | comps       | 602                                        | 685        | 573                           |
| Componen           | Catch age   | 200                                        | 207        | 250                           |
| ts of              | comps       | 390                                        | 390        | 350                           |
| objective          | Index fit   | 794                                        | 838        | 806                           |
| function           | Catch fit   | 210                                        | 213        | 210                           |
|                    | Recruit     |                                            | -          | -                             |
|                    | devs        | 59                                         | 59         | 59                            |
|                    | Catch       | 0.21                                       | 0.50       | 0.20                          |
|                    | Index1      | 1.13                                       | 1.75       | 1.09                          |
|                    | Index2      | 0.97                                       | 1.27       | 0.97                          |
| RMSE               | Index3      | 1.14                                       | 1.87       | 0.91                          |
|                    | Index total | 1.08                                       | 1.65       | 0.99                          |
|                    | Recruit     |                                            |            |                               |
|                    | devs        | 1.51                                       | 1.49       | 1.47                          |
|                    | Fleet1      | 0.96                                       | 1.13       | 0.94                          |
| Mean age           | Index1      | 1.02                                       | 1.49       | 0.99                          |
| RMSE               | Index2      | 1.18                                       | 1.63       | 1.21                          |
|                    | Index3      | 1.06                                       | 0.87       | 1.00                          |
| SSB19              | 82 (mt)     | 22036                                      | 23610      | 22795                         |
| SSB20              | 11 (mt)     | 9903                                       | 7607       | 8281                          |
| Fage5              | ,2011       | 0.78                                       | 1.04       | 0.94                          |

Table A.6.3. Summary of model diagnostics from a sensitivity analysis of the of Maine Atlantic cod SAW55\_BASE assessment to the incorporation of multiple fleet definitions.

| Model              |                 | SAW55_BASE            | SAW55_4FLEET                                                                                         | SAW55_2FLEET                                                 | SAW55_SPLIT_LAND_DISC                     |
|--------------------|-----------------|-----------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|
| Model description  |                 | Base model from SAW55 | Commerical landings, discards<br>and recreational<br>landings/discards treated as<br>separate fleets | Commercial and<br>recreational fleets<br>modelled separately | Modelled landings and discards separately |
| Number of param    | eters           | 101                   | 239                                                                                                  | 147                                                          | 147                                       |
| Objective function | n               | 2554                  | 3716                                                                                                 | 2970                                                         | 2981                                      |
|                    | Suvey age comps | 860                   | 888                                                                                                  | 859                                                          | 861                                       |
| Components of      | Catch age comps | 395                   | 1199                                                                                                 | 632                                                          | 672                                       |
| function           | Index fit       | 794                   | 794                                                                                                  | 794                                                          | 794                                       |
| runction           | Catch fit       | 211                   | 546                                                                                                  | 392                                                          | 361                                       |
|                    | Recruit devs    | 293                   | 289                                                                                                  | 293                                                          | 293                                       |
|                    | Fleet 1         | 0.29                  | 0.21                                                                                                 | 0.23                                                         | 0.27                                      |
|                    | Fleet 2         |                       | 0.05                                                                                                 | 0.20                                                         | 0.12                                      |
|                    | Fleet 3         |                       | 0.05                                                                                                 |                                                              |                                           |
|                    | Fleet 4         |                       | 0.01                                                                                                 |                                                              |                                           |
| RMSE               | Total catch     | 0.29                  | 0.11                                                                                                 | 0.21                                                         | 0.21                                      |
|                    | Index1          | 1.14                  | 1.13                                                                                                 | 1.14                                                         | 1.13                                      |
|                    | Index2          | 0.97                  | 0.96                                                                                                 | 0.97                                                         | 0.96                                      |
|                    | Index3          | 1.13                  | 1.13                                                                                                 | 1.13                                                         | 1.13                                      |
|                    | Recruit devs    | 1.14                  | 1.30                                                                                                 | 1.42                                                         | 1.08                                      |
|                    | Fleet1          | 1.34                  | 1.31                                                                                                 | 1.24                                                         | 1.50                                      |
|                    | Fleet2          |                       | 1.37                                                                                                 | 0.89                                                         | 1.70                                      |
|                    | Fleet3          |                       | 1.48                                                                                                 |                                                              |                                           |
| Mean age RMSE      | Fleet4          |                       | 1.65                                                                                                 |                                                              |                                           |
|                    | Index1          | 1.50                  | 1.49                                                                                                 | 1.43                                                         | 1.45                                      |
|                    | Index2          | 1.74                  | 1.83                                                                                                 | 1.74                                                         | 1.76                                      |
|                    | Index3          | 1.37                  | 1.36                                                                                                 | 1.38                                                         | 1.38                                      |
| SSB1982 (mt)       |                 | 23,320                | 24,396                                                                                               | 23,359                                                       | 24,331                                    |
| SSB2011 (mt)       |                 | 11,874                | 10,657                                                                                               | 11,635                                                       | 10,755                                    |
| Fages              | 5,2011          | 0.59                  | 0.70                                                                                                 | 0.59                                                         | 0.61                                      |
| Survey             | Index 1         | 0.89                  | 0.90                                                                                                 | 0.91                                                         | 0.91                                      |
| catchability (a)   | Index 2         | 0.53                  | 0.53                                                                                                 | 0.54                                                         | 0.54                                      |
| catchability (q)   | Index 3         | 0.21                  | 0.21                                                                                                 | 0.21                                                         | 0.21                                      |

Table A.6.4. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to the incorporation of commercial (COM\_LPUE), recreational (REC\_LPUE) and combined (\_LPUE) landings-per-unit-effort indices.

|                    | Model           | SAW55_BASE | SAW55_COM_LPUE | SAW55_COM_LPUE_SPLIT | SAW55_COM_LPUE_SPLIT_V2 | SAW55_REC_LPUE | SAW55_LPUE | SAW55_LPUE_V2    |
|--------------------|-----------------|------------|----------------|----------------------|-------------------------|----------------|------------|------------------|
| Pa                 | arameters       | 101        | 102            | 103                  |                         | 102            | 102        |                  |
| Objective function |                 | 2554       | 2572           | 2568                 |                         | 2565           | 2582       |                  |
|                    | Suvey age comps | 860        | 860            | 860                  |                         | 860            | 860        |                  |
| Components of      | Catch age comps | 395        | 395            | 395                  | Did not converge        | 395            | 395        | Did not converge |
| objective          | Index fit       | 794        | 813            | 808                  |                         | 804            | 823        |                  |
| function           | Catch fit       | 211        | 211            | 211                  |                         | 211            | 211        |                  |
|                    | Recruit devs    | 293        | 293            | 293                  |                         | 293            | 293        |                  |
|                    | Catch           | 0.29       | 0.29           | 0.29                 |                         | 0.28           | 0.29       |                  |
|                    | Index1          | 1.14       | 1.15           | 1.14                 |                         | 1.14           | 1.15       |                  |
|                    | Index2          | 0.97       | 0.99           | 0.97                 |                         | 0.97           | 0.98       |                  |
|                    | Index3          | 1.13       | 1.13           | 1.13                 |                         | 1.13           | 1.13       |                  |
| RMSE               | Index5          |            | 0.55           | 0.24                 |                         |                | 0.56       |                  |
|                    | Index6          |            |                | 0.27                 |                         |                |            |                  |
|                    | Index7          |            |                |                      |                         | 0.37           | 0.38       |                  |
|                    | Index total     | 1.08       | 0.99           | 0.95                 |                         | 1.00           | 0.93       |                  |
|                    | Recruit devs    | 1.42       | 1.41           | 1.42                 |                         | 1.43           | 1.41       |                  |
|                    | Fleet1          | 1.34       | 1.32           | 1.34                 |                         | 1.34           | 1.33       |                  |
| Mean age           | Index1          | 1.50       | 1.50           | 1.50                 |                         | 1.50           | 1.50       |                  |
| RMSE               | Index2          | 1.74       | 1.74           | 1.73                 |                         | 1.73           | 1.74       |                  |
|                    | Index3          | 1.37       | 1.37           | 1.37                 |                         | 1.37           | 1.37       |                  |
| SS                 | B1982 (mt)      | 23320      | 23310          | 23383                |                         | 23315          | 23301      |                  |
| SS                 | B2011 (mt)      | 11874      | 13853          | 11985                |                         | 11635          | 13018      |                  |
| F                  | age5, 2011      | 0.59       | 0.52           | 0.59                 |                         | 0.60           | 0.53       |                  |

| Model              |                    | SAW55_BASE | SAW55_NEFSC_SPRING | SAW55_NEFSC_FALL | SAW55_MADMF_SPRING |
|--------------------|--------------------|------------|--------------------|------------------|--------------------|
| Parameters         |                    | 101        | 91                 | 91               | 89                 |
| Objective function |                    | 2554       | 1508               | 1459             | 1348               |
|                    | Suvey age          | 860        | 345                | 312              | 197                |
| Componen           | Catch age          | 395        | 390                | 301              | 386                |
| ts of<br>objective | comps<br>Index fit | 794        | 271                | 256              | 266                |
| function           | Catch fit          | 211        | 210                | 210              | 200                |
|                    | Recruit<br>devs    | 293        | 292                | 291              | 290                |
|                    | Catch              | 0.29       | 0.21               | 0.17             | 0.14               |
|                    | Index1             | 1.14       | 1.14               |                  |                    |
|                    | Index2             | 0.97       |                    | 0.97             |                    |
| RMSE               | Index3             | 1.13       |                    |                  | 1.08               |
|                    | Index total        | 1.08       | 1.14               | 0.97             | 1.08               |
|                    | Recruit<br>devs    | 1.42       | 1.39               | 1.34             | 1.20               |
|                    | Fleet1             | 1.34       | 1.27               | 1.26             | 1.04               |
| Mean age           | Index1             | 1.50       | 1.51               |                  |                    |
| RMSE               | Index2             | 1.74       |                    | 1.74             |                    |
|                    | Index3             | 1.37       |                    |                  | 1.34               |
| SSB19              | 982 (mt)           | 23320      | 22217              | 25513            | 21628              |
| SSB20              | 11 ( <b>mt</b> )   | 11874      | 11254              | 12345            | 34137              |
| Fage5              | 5,2011             | 0.59       | 0.64               | 0.56             | 0.28               |

Table A.6.5. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to inclusion of only a single survey index at one time.

Table A.6.6. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to the implementation of domed selectivity in the NEFSC survey indices and extension of the age structure out to an 11<sup>+</sup> group.

| Model              |                   | SAW55_BASE | SAW55_DOME | SAW55_11PLUS | SAW55_DOME11 |
|--------------------|-------------------|------------|------------|--------------|--------------|
| Parameters         |                   | 101        | 107        | 107          | 117          |
| Objective function |                   | 2554       | 2550       | 2582         | 2578         |
|                    | Suvey age comps   | 860        | 859        | 875          | 874          |
| Components of      | Catch age comps   | 395        | 395        | 408          | 409          |
| objective          | Index fit         | 794        | 793        | 794          | 792          |
| function           | Catch fit         | 211        | 210        | 211          | 210          |
|                    | Recruit devs      | 293        | 293        | 293          | 293          |
|                    | Fleet 1           | 0.29       | 0.24       | 0.29         | 0.24         |
|                    | Index 1           | 1.14       | 1.11       | 1.14         | 1.11         |
| RMSE               | Index 2           | 0.97       | 0.96       | 0.97         | 0.95         |
|                    | Index 3           | 1.13       | 1.11       | 1.13         | 1.11         |
|                    | Recruit devs      | 1.42       | 1.38       | 1.42         | 1.38         |
|                    | Fleet1            | 1.34       | 1.34       | 1.33         | 1.34         |
| Mean age           | Index1            | 1.50       | 1.47       | 1.49         | 1.48         |
| RMSE               | Index2            | 1.74       | 1.75       | 1.73         | 1.74         |
|                    | Index3            | 1.37       | 1.37       | 1.37         | 1.36         |
| Survey             | Index 1           | 0.89       | 0.52       | 0.89         | 0.71         |
| Survey             | Index 2           | 0.53       | 0.34       | 0.53         | 0.44         |
| catchability (q)   | Index 3           | 0.21       | 0.25       | 0.21         | 0.21         |
| SSB <sub>1</sub>   | 982 (mt)          | 23320      | 37315      | 22640        | 39066        |
| SSB <sub>2</sub>   | 011 ( <b>mt</b> ) | 11874      | 17279      | 11807        | 18670        |
| Fag                | e5, 2011          | 0.59       | 0.50       | 0.59         | 0.49         |

Table A.6.7. Summary of selectivity parameter estimates and corresponding coefficients of variation (*italics*) from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to the implementation of domed selectivity in the NEFSC survey indices and extension of the age structure out to an  $11^+$  group.

| l       | Model         | SAW5  | 5_BASE  | SAW55 | 5_DOME  | SAW55 | 11PLUS  | SAW55 | DOME11  |
|---------|---------------|-------|---------|-------|---------|-------|---------|-------|---------|
|         | Age1          | 0.04  | 0.18    | 0.04  | 0.18    | 0.04  | 0.18    | 0.04  | 0.18    |
|         | Age2          | 0.25  | 0.10    | 0.26  | 0.10    | 0.25  | 0.10    | 0.26  | 0.11    |
|         | Age3          | 0.57  | 0.09    | 0.58  | 0.10    | 0.57  | 0.09    | 0.59  | 0.10    |
|         | Age4          | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    |
|         | Age5          | 1.00  |         | 1.00  |         | 1.00  |         | 1.00  |         |
| Block 1 | Age6          | 0.78  | 0.25    | 0.74  | 0.26    | 0.75  | 0.25    | 0.69  | 0.26    |
|         | Age7          | 1.00  | 0.07    | 0.88  | 0.41    | 0.84  | 0.36    | 0.64  | 0.40    |
|         | Age8          | 1.00  | 0.00    | 1.00  | 0.00    | 0.69  | 0.53    | 0.50  | 0.59    |
|         | Age9/+        | 0.33  | 0.45    | 0.10  | 0.67    | 0.55  | 0.76    | 0.42  | 0.86    |
|         | Age10         |       |         |       |         | 1.00  | 0.01    | 0.85  | 1.51    |
|         | Age11+        |       |         |       |         | 0.27  | 0.81    | 0.04  | 1.35    |
|         | Age1          | 0.02  | 0.18    | 0.02  | 0.19    | 0.02  | 0.18    | 0.02  | 0.19    |
|         | Age2          | 0.07  | 0.11    | 0.08  | 0.12    | 0.07  | 0.11    | 0.08  | 0.13    |
|         | Age3          | 0.32  | 0.08    | 0.36  | 0.10    | 0.32  | 0.08    | 0.37  | 0.10    |
|         | Age4          | 0.79  | 0.07    | 0.87  | 0.08    | 0.79  | 0.07    | 0.88  | 0.09    |
|         | Age5          | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    |
| Block 2 | Age6          | 1.00  |         | 1.00  |         | 1.00  |         | 1.00  |         |
|         | Age7          | 0.92  | 0.17    | 0.64  | 0.22    | 0.92  | 0.17    | 0.62  | 0.23    |
|         | Age8          | 0.88  | 0.27    | 0.44  | 0.37    | 0.87  | 0.27    | 0.42  | 0.38    |
|         | Age9/+        | 0.77  | 0.50    | 0.13  | 0.60    | 0.70  | 0.44    | 0.25  | 0.58    |
|         | Age10         |       |         |       |         | 0.86  | 0.63    | 0.16  | 0.79    |
|         | Age11+        |       |         |       |         | 1.00  | 0.01    | 0.04  | 1.03    |
|         | Age1          | 0.04  | 0.19    | 0.05  | 0.21    | 0.05  | 0.18    | 0.05  | 0.22    |
|         | Age2          | 0.14  | 0.16    | 0.17  | 0.19    | 0.14  | 0.15    | 0.17  | 0.19    |
|         | Age3          | 0.30  | 0.15    | 0.35  | 0.18    | 0.30  | 0.15    | 0.37  | 0.19    |
|         | Age4          | 0.51  | 0.15    | 0.61  | 0.17    | 0.53  | 0.14    | 0.63  | 0.18    |
|         | Age5          | 0.75  | 0.15    | 0.83  | 0.16    | 0.76  | 0.15    | 0.85  | 0.16    |
| Index 1 | Age6          | 1.00  |         | 1.00  |         | 1.00  |         | 1.00  |         |
|         | Age7          | 1.00  |         | 1.00  | 0.00    | 1.00  |         | 1.00  | 0.00    |
|         | Age8          | 1.00  |         | 0.56  | 0.40    | 1.00  |         | 0.51  | 0.40    |
|         | Age9/+        | 1.00  |         | 0.16  | 0.55    | 1.00  |         | 0.38  | 0.60    |
|         | Age10         |       |         |       |         | 1.00  |         | 0.37  | 0.75    |
|         | Age11+        |       |         |       |         | 1.00  |         | 0.05  | 1.02    |
|         | Age1          | 0.17  | 0.15    | 0.20  | 0.17    | 0.17  | 0.14    | 0.20  | 0.17    |
|         | Age2          | 0.40  | 0.14    | 0.46  | 0.16    | 0.40  | 0.13    | 0.47  | 0.16    |
|         | Age3          | 0.59  | 0.14    | 0.66  | 0.15    | 0.58  | 0.13    | 0.68  | 0.16    |
|         | Age4          | 0.89  | 0.14    | 0.97  | 0.15    | 0.89  | 0.13    | 0.99  | 0.15    |
|         | Age5          | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    | 1.00  | 0.00    |
| Index 2 | Age6          | 1.00  |         | 1.00  |         | 1.00  |         | 1.00  |         |
|         | Age7          | 1.00  |         | 0.62  | 0.38    | 1.00  |         | 0.58  | 0.38    |
|         | Age8          | 1.00  |         | 0.42  | 0.61    | 1.00  |         | 0.38  | 0.61    |
|         | Age9/+        | 1.00  |         | 0.20  | 0.61    | 1.00  |         | 0.54  | 0.67    |
|         | Age10         |       |         |       |         | 1.00  |         | 0.16  | 1.37    |
|         | Age11+        |       |         |       |         | 1.00  |         | 0.10  | 0.97    |
|         | A50 ascend    | 0.00  | 3000.30 | 0.00  | 3000.05 | 0.00  | 3316.67 | 0.00  | 3316.88 |
| Index 3 | Slope ascend  | 10.00 |         | 10.00 |         | 1.00  |         | 10.00 |         |
| muex 3  | A50 descend   | 0.00  | 2994.57 | 0.00  | 3000.00 | 0.00  | 3316.65 | 0.00  | 3316.48 |
|         | Slope descend | 3.50  | 0.18    | 3.16  | 0.15    | 3.64  | 0.18    | 3.15  | 0.15    |

Table A.6.8. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to the assessment starting year.

| Model         |                    | SAW55_BASE | SAW55_HIST_1970 | SAW55_HIST_1964 |
|---------------|--------------------|------------|-----------------|-----------------|
| Starting year |                    | 1982       | 1970            | 1964            |
| Parameters    |                    | 101        | 133             | 145             |
| Objecti       | ve function        | 2554       | 3267            | 3439            |
| Maximu        | ım gradient        | 0.0016     | 0.0005          | 0.0000          |
|               | Suvey age          |            |                 |                 |
|               | comps              | 860        | 1130            | 1131            |
| Components    | Catch age          | 205        | 207             | 207             |
| of objective  | comps              | 395        | 396             | 396             |
| function      | Index fit          | 794        | 1019            | 1089            |
|               | Catch fit          | 211        | 307             | 352             |
|               | Recruit devs       | 293        | 415             | 472             |
|               | Catch              | 0.29       | 0.28            | 0.27            |
|               | Index1             | 1.14       | 1.15            | 1.13            |
| DMSE          | Index2             | 0.97       | 1.14            | 1.08            |
| KIVISE        | Index3             | 1.13       | 1.13            | 1.13            |
|               | Index total        | 1.08       | 1.14            | 1.11            |
|               | Recruit devs       | 1.42       | 1.43            | 1.43            |
|               | Fleet1             | 1.34       | 1.34            | 1.34            |
| Mean age      | Index1             | 1.50       | 1.35            | 1.35            |
| RMSE          | Index2             | 1.74       | 1.66            | 1.67            |
|               | Index3             | 1.37       | 1.37            | 1.37            |
| Survey        | NEFSC spring       | 0.89       | 0.74            | 0.76            |
| catchability  | NEFSC fall         | 0.53       | 0.59            | 0.61            |
| (q)           | MADMF spring       | 0.21       | 0.21            | 0.21            |
| SSB1964 (mt)  |                    |            |                 | 14330           |
| SSB           | 1970 (mt)          |            | 33836           | 34381           |
| SSB           | 1982 (mt)          | 23320      | 23349           | 23228           |
| SSB           | 2011 ( <b>mt</b> ) | 11874      | 12198           | 11776           |
| Fag           | ge5, 2011          | 0.59       | 0.58            | 0.60            |

Table A.6.9. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to the assumed precision of the aggregate catch input. Precision is expressed in terms of the coefficient of variation (CV).

| Mo                      | del                | SAW55_CATCH_CV01 | SAW55_BASE | SAW55_CATCH_CV10 | SAW55_CATCH_CV20 | SAW55_CATCH_CV30 |
|-------------------------|--------------------|------------------|------------|------------------|------------------|------------------|
| Catel                   | h CV               | 0.01             | 0.05       | 0.10             | 0.20             | 0.30             |
| Paran                   | neters             | 101              | 101        | 101              | 101              | 101              |
| Objective               | function           | 2507             | 2554       | 2572             | 2584             | 2588             |
|                         | Suvey age<br>comps | 861              | 860        | 859              | 856              | 852              |
| Components of objective | Catch age<br>comps | 396              | 395        | 394              | 392              | 389              |
| function                | Index fit          | 795              | 794        | 792              | 788              | 787              |
|                         | Catch fit          | 161              | 211        | 234              | 259              | 273              |
|                         | Recruit devs       | 294              | 293        | 292              | 289              | 287              |
|                         | Catch              | 0.06             | 0.29       | 0.51             | 0.75             | 0.83             |
|                         | Index1             | 1.15             | 1.14       | 1.11             | 1.03             | 0.99             |
| DMCE                    | Index2             | 0.98             | 0.97       | 0.95             | 0.95             | 0.97             |
| RNISE                   | Index3             | 1.14             | 1.13       | 1.11             | 1.06             | 1.04             |
|                         | Index total        | 1.09             | 1.08       | 1.06             | 1.02             | 1.00             |
|                         | Recruit devs       | 1.43             | 1.42       | 1.40             | 1.35             | 1.32             |
|                         | Fleet1             | 1.34             | 1.34       | 1.33             | 1.31             | 1.29             |
| Mean age                | Index1             | 1.50             | 1.50       | 1.49             | 1.46             | 1.43             |
| RMSE                    | Index2             | 1.74             | 1.74       | 1.72             | 1.69             | 1.67             |
|                         | Index3             | 1.37             | 1.37       | 1.37             | 1.36             | 1.36             |
| SSB19                   | 82 (mt)            | 23460            | 23320      | 22924            | 21702            | 20249            |
| SSB20                   | 11 (mt)            | 11990            | 11874      | 11597            | 11026            | 10535            |
| Fage5                   | , 2011             | 0.59             | 0.59       | 0.60             | 0.60             | 0.59             |

Table A.6.10. Summary of model diagnostics from a sensitivity analysis of the Gulf of Maine Atlantic cod SAW55\_BASE assessment to considering only data from the western Gulf of Maine (NEFSC offshore survey strata 26, 27, 40).

| Model                     |                    | SAW55_BASE            | SAW55_WESTERN                                             |  |
|---------------------------|--------------------|-----------------------|-----------------------------------------------------------|--|
| Model description         |                    | Base model from SAW55 | Western Gulf of Maine only<br>(513-514, strata 26-27, 40) |  |
| Number of parameters      |                    | 101                   | 101                                                       |  |
| <b>Objective function</b> |                    | 2554                  | 2550                                                      |  |
|                           | Suvey age          | 860                   | 885                                                       |  |
| Components                | Catch age<br>comps | 395                   | 398                                                       |  |
| of objective              | Index fit          | 794                   | 778                                                       |  |
| function                  | Catch fit          | 211                   | 204                                                       |  |
|                           | Recruit devs       | 293                   | 285                                                       |  |
|                           | Fleet 1            | 0.29                  | 0.25                                                      |  |
|                           | Index 1            | 1.14                  | 1.21                                                      |  |
| RMSE                      | Index 2            | 0.97                  | 1.14                                                      |  |
|                           | Index 3            | 1.13                  | 1.07                                                      |  |
|                           | Recruit devs       | 1.42                  | 1.33                                                      |  |
| SSB19                     | 82 (mt)            | 23,320                | 16,526                                                    |  |
| SSB2011 (mt)              |                    | 11,874                | . 12,690                                                  |  |
| Fage5, 2011               |                    | 0.59                  | 0.53                                                      |  |
| Survey                    | Index 1            | 0.89                  | 0.51                                                      |  |
| catchability              | Index 2            | 0.53                  | 0.37                                                      |  |
| (q)                       | Index 3            | 0.21                  | 0.25                                                      |  |

### **Appendix A.6. Figures**



Figure A.6.1. Sensitivity of the Gulf of Maine Atlantic cod SAW55\_BASE assessment model to the upper and lower 95% confidence intervals of the survey calibration factors used throughout the history of the assessment time series.



Figure A.6.2. Sensitivity of the Gulf of Maine Atlantic cod SAW55\_3BLOCK\_BASE assessment to the use of survey biomass indices relative to abundance (numbers) indices.



Figure A.6.3. Sensitivity analysis showing the response of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model to different assumptions of survey catchability (q) of the Northeast Fisheries Science Center spring survey.



Figure A.6.4. Gulf of Maine Atlantic cod NEFSC spring (bottom) and fall (top) survey indices of abundance (numbers per tow) when estimated from all NEFSC offshore strata (26, 27, 28, 29, 30, 36, 37, 38, 39, 40; black line) and when strata 29, 30, and 36 are excluded (red line).



Figure A.6.5. Comparison of Gulf of Maine cod spawning stock biomass (top), age 5 fishing mortality (F) (middle) and age-1 recruitment (thousands of fish; bottom) between the SAW55\_BASE model (all survey strata) and the SAW55\_REV\_SURV\_STRATA (excludes offshore survey strata 29, 30 and 36).



Figure A.6.6. ASAP model estimates of NEFSC survey catchability (*q*) for Gulf of Maine Atlantic cod when estimated by the SAW55\_BASE model which includes swept area estimates from all survey strata and when estimated by the SAW55\_REV\_SURV\_STRATA model which excludes offshore survey strata 29, 30, and 36.



Figure A.6.7. Area swept estimates of total Gulf of Maine Atlantic cod biomass under different assumptions of NEFSC spring Bigelow survey catchability (q) and effective trawl area (wing spread vs. door spread). The 80% bootstrap confidence interval (CI) is shown by the dashed lines.



Figure A.6.8. Area swept estimates of total Gulf of Maine Atlantic cod biomass from 2009 to 2011 based on the NEFSC spring (top) and fall (bottom) Bigelow survey when the effective area is set equal to the wing spread and the survey is assumed to be 80% efficient (q=0.8). Biomass has been estimated using the full strata set (red line, with 80% bootstrap confidence intervals) and using a strata set that excludes strata 29,30 and 36 (blue line). In these analyses, the full strata set also includes inshore survey strata 57-69. Biomass estimates are compared to the annual total biomass estimated from the ASAP base model (black line) after accounting for total mortality between January 1 and the survey seasons. \**NEFSC fall 2011 survey information were not available at the time of this report*.



Figure A.6.9. Area swept estimates of total Gulf of Maine Atlantic cod biomass from 1982 to 2011 based on the NEFSC spring (top) and fall (bottom) survey when a the effective trawl area is set equal to the wing spread and strata set 29, 30 and 36 are excluded from the indices calculation. In these analyses, the full strata set also includes inshore survey strata 57-69. Survey efficiencies of 50% (q=0.5) and 80% (q=0.8) were assumed for the Albatross IV (1982-2008) and Bigelow (2009-2011) survey time series respectively (the vertical blue line delineates the split in survey time series). The 80% bootstrap confidence intervals of area swept estimates of biomass area shown by the dashed red lines. Biomass estimates are compared to the annual total biomass estimated from the ASAP base model (black line) after accounting for total mortality between January 1 and the survey seasons. \**NEFSC fall 2011 survey information were not available at the time of this report.* 



Figure A.6.10. Comparison of the SAW 53 ASAP estimated total 'survey-able' biomass (metric tons; black line) and the 80% confidence intervals (red lines) of area swept estimates of total Gulf of Maine cod biomass from 1982 to 2011 based on the NEFSC spring survey. Area swept biomass indices have been calculated using all strata (strata 26- 30 and 36- 40; top) and excluding strata 29, 30 and 36 (bottom). Survey efficiency was set at ASAP model estimates of q=0.92 when using all strata and q=0.53 when excluding strata 29, 30 and 36. ASAP 'survey-able' biomass was derived from total biomass by accounting for both total mortality since January 1 and survey selectivity at age.



Figure A.6.11. Comparison of the SAW 53 ASAP estimated total 'survey-able' biomass (metric tons; black line) and the 80% confidence intervals (red lines) of area swept estimates of total Gulf of Maine cod biomass from 1982 to 2011 based on the NEFSC fall survey. Area swept biomass indices have been calculated using all strata (strata 26- 30 and 36- 40; top) and excluding strata 29, 30 and 36 (bottom). Survey efficiency was set at ASAP model estimates of q=0.57 when using all strata and q=0.42 when excluding strata 29, 30 and 36. ASAP 'survey-able' biomass was derived from total biomass by accounting for both total mortality since January 1 and survey selectivity at age.



Figure A.6.12. Residual plots of the Gulf of Maine Atlantic cod catch-at-age fits compared between the SAW55\_BASE model (left) and the SAW55\_4FLEET (right).



Figure A.6.13. Residual plots of the Gulf of Maine Atlantic cod catch-at-age fits compared between the SAW55\_BASE model (left) and the SAW55\_2FLEET (right).



Figure A.6.14. Residual plots of the Gulf of Maine Atlantic cod catch-at-age fits compared between the SAW55\_BASE model (left) and the SAW55\_SPLIT\_LAND\_DISC (right).



Figure A.6.15. Model fits of variants of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model to the commercial landings-per-unit-effort (LPUE) index. The SAW55\_COM\_LPUE uses the commercial LPUE index as a single series. The SAW55\_COM\_LPUE\_SPLIT model splits the commercial LPUE series between 2005 and 2006.



Figure A.6.16. Comparison of the Gulf of Maine Atlantic cod assessment results between the ASAP SAW55\_BASE model and the SAW55\_COM\_LPUE\_SPLIT model.



Figure A.6.17. Model fit of a variant of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model, SAW55\_REC\_LPUE, to the recreational landings-per-unit-effort (LPUE) index.



Figure A.6.18. Model fits of a variant of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model, SAW55\_LPUE, to the commercial (Index 5) and recreational landings-per-unit-effort (Index7) indices.



Figure A.6.19. Model fits of variants of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model to the aggregate catch, NEFSC spring, NEFSC fall and MADMF spring survey indices. Each of the alternate models only included a single survey index.



Figure A.6.20. Comparison of the Gulf of Maine Atlantic cod ASAP model estimates of numbers of age 9<sup>+</sup> fish over time between models exploring the sensitivity of the SAW55\_BASE model to individual survey indices.


Figure A.6.21. Comparison of the Gulf of Maine Atlantic cod assessment results from models using different starting years. All models are based on the SAW55\_BASE model which starts in 1982. The SAW55\_HIST\_1964 and SAW55\_HIST\_1970 models started in 1964 and 1970 respectively.



Figure A.6.22. Scatter plots of Gulf of Maine Atlantic cod age 1 recruits vs. spawning stock biomass from the SAW55\_BASE, SAW55\_HIST\_1970, and SAW\_HIST\_1964 ASAP models. The starting year for each of the models was 1982, 1970 and 1964 respectively.



Figure A.6.23. Model fits of variants of the Gulf of Maine Atlantic cod ASAP SAW55\_BASE model to the aggregate catch. The level of precision assumed for the aggregate catch was varied between models. The SAW55\_BASE model assumed 0.05 coefficient of variation (CV) on the catch. The SAW55\_CATCH\_CV01, \_CV10, \_CV20, \_CV30 assumed 0.01, 0.10, 0.20 and 0.30 respectively.



Figure A.6.24. Map of the northeast United States continental shelf showing sub-regions used to characterize NEFSC survey trends of Atlantic cod.



Figure A.6.25. Distribution of Gulf of Maine Atlantic cod between 2007 and 2011 from the NEFSC bottom trawl surveys (fall and spring combined).



Figure A.6.26. Northeast Fisheries Science Center (NEFSC) spring (left) and fall (right) bottom trawl survey abundance (numbers/tow) indices for Gulf of Maine Atlantic cod from 1963 to 2012 expressed as z-scores ( $[x-\mu]/\sigma$ ). Plots on the top compare the indices for the entire Gulf of Maine region (red) to those from only the western Gulf of Maine (blue). Plots on the bottom compare the indices for the entire Gulf of Maine region (red) to those from only the eastern Gulf of Maine (blue).



Figure A.6.27. Gulf of Maine Atlantic cod Northeast Fisheries Science Center (NEFSC) bottom trawl survey abundance indices (numbers/tow) from the spring (left) and fall (right) surveys showing the differences in scale between indices from the entire Gulf of Maine region (red) and those from only the eastern Gulf of Maine (blue).



Figure A.6.28. Comparison of Notheast Fisheries Science Center (NEFSC) spring bottom trawl survey numbers at age indices for Gulf of Maine Atlantic cod calculated using all offshore strata (grey) and only those strata in the western Gulf of Maine (26, 27, 40; green).



Figure A.6.29. Comparison of Notheast Fisheries Science Center (NEFSC) fall bottom trawl survey numbers at age indices for Gulf of Maine Atlantic cod calculated using all offshore strata (grey) and only those strata in the western Gulf of Maine (26, 27, 40; green).



Figure A.6.30. Fraction of Gulf of Maine Atlantic cod commercial landings from statistical areas 513 and 514 between 1982 and 2011.



Figure A.6.31. Comparison of time series plots of spawning stock biomass, age 5 fishing mortality and age 1 recruitment from a western Gulf of Maine Atlantic cod stock assessment model to the SAW55\_BASE assessment model which includes the entire western Gulf of Maine.



Figure A.6.32. Time series plots of spawning stock biomass, age 5 fishing mortality and age 1 recruitment from a combined Gulf of Maine-Georges Bank Atlantic cod stock assessment model. The model results from individual stock assessment models and the cumulative results are also shown.



Figure A.6.33. Retrospective plots for spawning stock biomass, age 5 fishing mortality and age 1 recruitment from a combined Gulf of Maine-Georges Bank Atlantic cod stock assessment model.

[SAW55 Editor's Note: The SARC-55 review panel <u>did not recommend</u> adopting the GOM cod Statistical Catch-at-Age (SCAA) assessment results that are in Appendices A.2 - A.5 and referred to in Appendix A.7. Those results are included in this report to document and demonstrate the work that was done by the SAW cod Working Group]

### Appendix A.7. Comparison of the four assessment models recommended by the SAW 55 Working Group and subsequent consequence analysis.

This appendix summarizes the comparison of the four assessments models and the corresponding reference points and short-term projections that were developed by the  $55^{\text{th}}$  Stock Assessment Workshop Working Group (SAW 55 WG) for consideration by the  $55^{\text{th}}$  Stock Assessment Review Committee (SARC 55) Panel. The four models for the Gulf of Maine Atlantic cod stock differed both in use of pre-1982 information and natural mortality (*M*) assumptions. Two main assessment model variants were configured as follows:

- Stock-recruit dynamics based on spawner per recruit analysis (SPR) of short-term (1982 present) dataset with either natural mortality constant (M = 0.2) for the entire time series or M ramping up (linearly) from 0.2 during 1982 1988 period to 0.4 during 2003 2011 (M-ramp). These models were constructed using the statistical catch-at-age model ASAP (Age Structured Assessment Program) and are described in the main assessment report. It is important to note that there are differences in the estimation of the M-ramp reference points and short-term projections advanced by the SAW 55 WG compared to those ultimately accepted by the SARC 55 Panel. The details of the final M-ramp reference points and short-term projections accepted by the SARC 55 Panel are described in the main assessment report while the details of those forwarded by the SAW 55 WG are provided below.
- Stock-recruit dynamics based on a stock recruitment model (SR) using long-term (1932 present) dataset with either *M* constant (0.2) for the entire time series or *M* ramping up (linearly) from 0.2 during 1932 1988 to 0.4 during 2003 2011. These models were constructed using the Statistical Catch-at-Age (SCAA) formulation and are described in Appendix A.2 and A.3.

While the SAW 55 WG could not reach consensus on which model should serve as the basis of current stock status determination and management advice, it agreed that the 'newly proposed model' should be that of each lead scientist. Thus, for the ASAP formulation, the model which uses the 1982 – present dataset with M constant (0.2) for the entire time was preferred, while for the SCAA formulation, the model which uses the 1932 – present dataset with M ramping up from 0.2 to 0.4 was preferred. Notwithstanding this, the WG concurred that lack of consensus should not be interpreted as implying equal support for the models and developed pros and cons of the main features of each model to indicate their relative level of support.

M = 0.2

The features that lend support to the assumption that M has remained constant throughout the time series are those features which do not support the M ramp assumption, which is discussed below. The main feature against the assumption of constant M is the presence of a retrospective pattern. However, there is some evidence to suggest that this may be transitory and becoming less of an issue (SAW 55 WG, 2012c). It was for this reason that no adjustment for the retrospective pattern was made to any of the models.

#### *M*-ramp

One of the main features supporting the assumption of a recent change in natural mortality is that it employs an M = 0.4 which is generally consistent with the results of the 2003 – 2006 GMRI tagging data and associated analyses (if one assumes a 50% reporting rate of high reward tags). The tagging analysis indicated that M could be as high as 0.6. Tag reporting rates would have to be very low in order to be consistent with an M of 0.2.

Another line of support for this assumption is the model fits. The value of the objective function for the M ramp model was lower (by 8-10 log-likelihood points depending on the specific formulation) than that of the constant M model. Further, compared to the constant M model, assuming that M had changed more recently reduces the retrospective pattern.

The final observation supporting a recently elevated M in Gulf of Maine cod is evidence of increasing M in the adjacent NAFO Div. 4X cod stock based on both tagging analyses and assessment model fits.

A number of features don't lend support to a recently increasing *M*. There is no evidence for increased predation, either by fish or pinnipeds, in the diet compositional data collected by the NEFSC. Regarding the GMRI tagging analyses, if reporting rates of high reward tags were less than 50%, natural mortality would be less than 0.4. It is unfortunate that there are little or no historical tagging studies to which the results of the GMRI study could be compared. Besides using different assumptions, these earlier studies did not formally incorporate parameters to estimate movement. For these reasons, the tagging studies which suggested higher M (> 0.2) in 4X may not apply to Gulf of Maine Cod (SAW 55 WG 2012a).

Regarding model fits, the likelihood profile of M for the 2003 – 2011 period was relatively flat, with estimates between 0.1 and 0.6 potentially possible. Exploratory runs indicated that M profiling was sensitive to which years to include in the recent period of high M. A change of two years would result in a more informative profile (favoring higher M).

The final lines of evidence against a recently elevated M relate to the life history information. Compared to adjacent stocks, there have been little or no long-term changes in maturity at age, fish condition and growth. Meta-analyses of life history parameters suggest an M of 0.2 with no trend over time.

#### Long-term (1932 – present): recruitment productivity based on SR model

One of the features in support of using the longer term time series is the NEFSC survey dataset which contains information on Gulf of Maine cod year-class strengths during the 1960s (size frequency information during 1963 - 69 and indices of abundance at age during 1970 - 81). Sensitivity analyses (e.g. on catch CVs) did not indicate qualitative differences in the estimated reference points and alternative assumptions about fishery selectivities during the pre-1982 period also made minimal differences in the estimated reference points. Overall, the estimation process has explicitly taken into account the agreed levels of uncertainty in the catch and sampling during the historical period.

Use of the longer-term time series allows analytical estimation of MSY based reference points, due to the presence of more contrast in population dynamics, which thus avoids resorting to the use of proxies. Model fits indicate that there is a preference for Ricker stock-recruit over BH relationships, with even stronger domes in the former suggested, though as highlighted below, the model preference for a Ricker SR was small. Ricker-based estimates of  $B_{MSY}$  are reasonably precise (CVs of approx. 15%) although the 2011 spawning stock biomass is more precisely estimated when a BH relationship is assumed. Use of a Ricker relationship is consistent with evidence for cannibalism observed in other Cod stocks (Puvanendran et al., 2008) although there has been no evidence of post-larval cannibalism in either Gulf of Maine or Georges Bank Cod.

A number of features don't lend support to use of the long-term dataset. Models run with either the Ricker or BH relationship starting in 1970 provide relatively the same estimates of spawning biomass and recruitment, indicating that it is primarily the information in the 1960s which is providing the basis for differing stock-recruit relationships. This is a time period during which there is no age compositional data and fisheries statistics are most uncertain. Issues with the historical data quality are discussed in SAW 55 WG (2012a). Further, the survey aggregate numbers indices for the 1960s contains data on age 0 cod which cannot be removed from the analysis, although when aggregate biomass indices are used (in which age 0 cod would play a less prominent role), the assessment results are qualitatively similar.

Regarding model fits, there is little difference in the value of the objective function when using either a Ricker or BH relationship in a model starting in 1932 (about 3 points for M = 0.2 or 8 points for the *M*-ramp). For both *M* scenarios, the difference in log likelihoods between Ricker and BH was due to stock - recruit residuals during 1963 – 1969, the period with no age composition data. A pattern of positive residuals exists for both relationships during 1977 – 87, a period with high catches.

Simulation studies have indicated a propensity to fit domed stock -recruit relationships (i.e. Ricker), even when a BH is true (De Valpine and Hastings, 2002). However, the results of these studies depend heavily on the scenario being simulated (e.g. length of time series) and may not apply to the current situation.  $F_{MSY}$  (0.53) estimated using a Ricker model is generally larger than  $F_{MAX}$ , although this is to be expected when the stock-recruitment relationships are domed. On the other hand, spawning biomass did decline after the 1970s when the resource experienced fishing mortalities consistent with the Ricker-based  $F_{MSY}$ .

There is an overall concern that if there have been long-term stock productivity changes, analytically-derived estimates of  $B_{MSY}$  and  $F_{MSY}$  based on 1932 – present stock dynamics, which can be considered a weighted average over the entire time series, may not reflect current conditions.

#### Short-term (1982 – present): recruitment productivity based on SPR

The main feature supporting use of the shorter-term time series is that this is the period which has the highest data density. Data are available on the quantity and size composition of the landings and discards, both commercial and recreational. A number of survey indices are available, each with aggregate indices of abundance and biomass, along with data on age/size composition. Biological information such as growth, maturity and length / weight relationships are also available.

Regarding model fits, the estimates of biomass and fishing mortality, as well as the reference points are robust to a wide range of model assumptions and uncertainties.

The main issue against using the short-term time series is that it does not provide sufficient contrast to estimate stock-recruit relationships, and thus requires the use of  $B_{MSY}$  and  $F_{MSY}$  proxies which in turn has associated uncertainties (i.e. selection of percentage spawner per recruit).

## *Differences in the estimation of the M-ramp reference points and short-term projections advanced by the SAW 55 WG compared to those accepted by the SARC 55 Panel*

There was consensus among the SAW 55 WG that a proxy reference point approach was the preferred approach for the ASAP 1982 models. A yield per recruit (YPR) analysis was performed using a 3-year average of weights-at-age which was consistent with the approach used in SAW/SARC 53 and supported by recent observed trends. The remaining YPR inputs were time invariant (maturity-at-age) or were constant in the most recent time block of the assessment model (selectivity, natural mortality). For the *M*-ramp model the SAW 55 WG assumed that M would remain at 0.4 and carried forward this assumption when setting reference points. Contrary to the decisions made by the SAW 55 WG, the SARC 55 Panel concluded that "... for long-term projections that [the] Review Panel decided that M should be 0.2, because the longer-term historical evidence seems to indicate that M = 0.2 is more plausible" (SARC 55 2012). This had implications for the determination of appropriate F<sub>MSY</sub> proxy as well as the estimation of SSB<sub>MSY</sub> and MSY. Unlike the *M*-ramp F<sub>MSY</sub> proxy accepted by the SARC 55 Panel which were based on an  $F_{40\%}$  SPR assuming M = 0.2, the SAW 55 WG M-Ramp  $F_{MSY}$ proxy was based on  $F_{50\%}$  assuming M = 0.4. The basis for the existing (SAW 53; NEFSC 2012a) overfishing reference points was derived at GARM III (NEFSC 2008), and is based on  $F_{40\%}$ ; however this decision was based on an assumed natural mortality of M = 0.2. Additional analyses by the SAW 55 WG evaluated various proxies for F<sub>MSY</sub> by comparing estimated SSB and recruitment ratios (SSB/R) with expected spawning biomass per recruit (SPR) over a range of fishing mortalities (F=20% to F80% in 5% increments) to investigate the potential for replacement under equilibrium assumptions (i.e. constant harvest rate and biology over the

lifespan). An analysis of replacement lines under recent productivity (approximately last 10 years) indicated that for the M = 0.2 option,  $F_{40\%}$  (0.18) was still appropriate. When the M was increased to 0.4 (M-ramp), the replacement lines became steeper with  $F_{40\%}$  rising to 0.44 (Fig. A.7.1). It was noted that the  $F_{MSY}$  proxy for Georges Bank cod for the M-ramp model was set by the SAW 55 WG at  $F_{50\%}$  based upon  $F_{med}$  considerations. Recognizing that it is a judgment call, the WG decided that the  $F_{MSY}$  proxy for the GOM cod M-ramp model should be based on  $F_{50\%}$  (0.29), consistent with the  $F_{MSYproxy}$  used for Georges Bank cod. It should be noted that subsequent to the SAW/SARC 55 work was presented at SAW 56 WG that invalidates the replacement line approach for determining an appropriate spawning potential ratio (Legault and Brooks 2013).

To arrive at estimates for SSB<sub>MSY</sub> and a corresponding MSY, long term projections were run sampling from the empirical distribution of recruitment estimates from the preferred ASAP model (recruitment estimates from 1982-2009, final two years excluded). Based on suggestions made by the SARC 53 Panel, the modeling approach was modified to better account for uncertainty in projections at low stock sizes. The revised projection model samples from a cumulative density function derived from estimated age-1 recruitment. However, the revised model adjusts projected recruitment when SSB falls below some specified spawning biomass threshold based on a linear function that declines to zero at zero spawning stock biomass. Consistent with the SAW 53 assessment, the 'hinge' was set at the lowest observed SSB in the time series. For the M = 0.2 scenario, this was 6,300 mt and 7,900 mt for the *M*-ramp scenario. To approximate the distribution of the SSB and MSY distributions, the long term projections were made from 1000 estimates of numbers at age in 2011, which were estimated by performing MCMC simulation of the ASAP base model (described above under TOR 5). \*Note that the 2011 age 1 estimates were based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. All projections were conducted with the AGEPRO software (Age Structured Projection Model v4.1). The ASAP, 1982 start year reference points forwarded to the SARC 53 Panel for review are summarized in Table A.7.1.

Similar to the assumptions made for estimating reference points, the SAW 55 WG conducted short-term projections for each of the ASAP, 1982 start year scenarios assuming natural mortality to remain equal to the M in the terminal year of the assessment model. Short-term projections (3 years; 2013-2015) were conducted using 3-year averages of weights-at-age which was consistent with the approach used in SAW 53 and supported by recent observed trends. The remaining YPR inputs were time invariant (maturity-at-age) or were constant in the most recent time block of the assessment model (selectivity, natural mortality). The short term projections were conducted based on the current assessment results without accounting for retrospective bias. Numbers-at-age in 2012 were derived from 1000 different vectors of numbers-at-age produced from the MCMC chain with 2011 age 1 estimates based on sampling from the empirical distribution of recruitment estimates from only the ten year period 2000-2009. Short term projections have used an assumed catch in 2012 of 3,767 mt. This estimate is based on the current commercial and recreational catches as well as the expected catch over the remainder of the year which has been extrapolated using the harvest trajectories from the past two years (NEFMC PDT, T. Nies pers. comm.).

Recruitment was sampled from a cumulative density function (CDF) of estimated age 1 recruitment from 1982 to 2010. The same AGEPRO model used for reference point determination was used to conduct short-term projections (i.e., model adjusts projected recruitment based on a linear function that declines to zero at zero SSB when SSB falls below some 'hinge' SSB-level corresponding to the lowest SSB observed in the time series). For the M=0.2 scenario, the 'hinge' SSB value was set at 6,300 mt and 7,900 mt for the M-ramp scenario. All projections were run under the assumption of 75% F<sub>MSY</sub> (M = 0.2 scenario = 0.14, M-ramp scenario = 0.22). It is important to note that the 75% F<sub>MSY</sub> assumption for the SAW 55 WG M-ramp projections differs from the 75% F<sub>MSY</sub> proxy accepted by the SARC 55 Panel (75% of 0.18 = 0.14).

Projection results for both the M = 0.2 and M-ramp models are summarized in terms of median SSB and fishery catch (yield) in Table A.7.2. Under 75% F<sub>MSY</sub> exploitation, the stock is projected to rebuild under the M = 0.2 and M-ramp scenarios by 2022 and 2019 respectively.

#### Consequence Analysis

Biological reference points associated with each of the four models are presented in Table A.7.3. The risks associated with management actions taken during 2013 - 2015 were examined by undertaking short-term stock projections under the competing assumptions for the state of nature. For instance, if the true state of nature is that natural mortality has remained unchanged at 0.2 and that stock productivity is best reflected by the 1982 – present dataset (SPR, M = 0.2 model), then the consequences of management actions by setting projected catch according to 75% F<sub>MSY</sub> based on the three alternative states of nature were examined (short-term (SPR) with *M*-ramp, long-term (SR) with M = 0.2 and long-term (SR) with *M*-ramp). In all cases, the 2012 catch was provided by the NEFMC Groundfish Plan Development Team. Projections were only conducted until 2015. There may be longer term consequences which might be revealed through a more extensive analysis. This is beyond the current terms of reference.

In these explorations, the assessments using the long-term dataset assumed a Ricker stockrecruitment relationship. Use of a BH relationship produced results for future catches under 50%  $F_{MSY}$  within the range of the other alternate states of nature, indicating that the analyses presented below bracket the risks to the stock of assuming one state of nature while another might be true. It should be pointed out that while these runs are not presented in detail here, the results of these BH runs are also plausible.

The column headers in Table A.7.4 and Figure A.7.2 represent the 'true' states of nature considered, these being:

- ASAP, 1982 start, M = 0.2: stock dynamics and assessment based on 1982 present dataset with M = 0.2 for the time series
- ASAP, 1982, *M*-ramp: stock dynamics and assessment based on 1982 present dataset with *M* ramped from 0.2 to 0.4 during 1989 2002
- SCAA, 1932 start, Ricker, M = 0.2: stock dynamics and assessment based on 1932 present dataset with M = 0.2 for the time series

• SCAA, 1932, Ricker, *M*-ramp: stock dynamics and assessment based on 1932 – present dataset with *M* ramped from 0.2 to 0.4 during 1989 – 2002

The row headers in Table A.7.4 indicate the basis of the management action during the projection period (2013 – 2015). Thus, the row header 'SCAA, 1932, Ricker, *M*-ramp' indicates that catch was projected assuming that the stock conditions and reference points were as per these dynamics. All projections were conducted at 75%  $F_{MSY}$ , based on the assumed state of nature and thus which establishes the catch in each cell. This is the 'planned' catch. The cells of the table indicate the SSB and fully recruited fishing mortality ( $F_{full}$ ) which are a consequence of applying the catch based on the assumed state of nature to the SSB of the 'true' state of nature. The diagonal rows represent the situation in which the management actions based upon the assumed state of nature are in fact correct. In these stochastic projections (see TOR 8a), there were cases in which the projection attempted to harvest more fish than exist in the population's exploitable biomass. The fraction of feasible projections for the eight combinations of states of nature and basis of management action are provided in Table A.7.5.

The consequence analysis is summarized in Figure A.7.2. As with Table A.7.3, the column headers indicate one of the 'true' states of nature. The row headers indicate whether or not catch, SSB or  $F_{full}$  is being displayed along the row. The content of each cell summarizes the consequences (reflected by the medians of the distributions in question) of assuming one state of nature when another is true. The black line in each cell indicates the catch, SSB and  $F_{full}$  for the 'true' state of nature. The coloured lines (for the projected period only) indicate the catch, SSB and  $F_{full}$  which result when the 75%  $F_{MSY}$  estimated catch is incorrectly based upon an alternate state of nature. The dashed lines in each figure are the B<sub>MSY</sub>,  $F_{MSY}$  and MSY for the 'true' states of nature.

When management actions are correctly based upon a particular state of nature (the diagonals of Table A.97), a modest increase in SSB is projected until 2015 for the two ASAP and one of the SCAA (M = 0.2) options. Only in the case of the SCAA, 1932, Ricker, *M*-ramp option is SSB projected to decline, though this is a consequence, at least in part, of the harvest strategy being applied where the resource is estimated to be above SSB<sub>MSY</sub>. The 2011 SSB estimates range 9,903 - 10,221 t and 13,735 - 14,509 t for the two ASAP and SCAA options respectively. Fully recruited fishing mortality declines for the two ASAP options (from 0.86 - 0.9 to 0.14 - 0.22), increases slightly (from 0.52 to 0.56) for the SCAA, 1932, Ricker, M = 0.2 option, and increases (from 0.61 to 0.71) for the SCAA, 1932, Ricker, M-ramp option. Catch for the two ASAP options declines from 6830 t in 2011 to 1,929 - 2,030 t in 2015. For the SCAA, 1932, Ricker, M = 0.2 option, catch increases from 6830 t in 2011 to 8,424 t in 2015 while it declines to 5,020 tover the same period for the SCAA, 1932, Ricker, M-ramp option. If the management actions are correctly based upon the 'true' state of nature, the two ASAP models indicate that, in 2013, the stock is in an overfished state (Table A.7.6). In contrast, the two SCAA models indicate that the stock would not be in an overfished state in 2013. In all cases, overfishing is not occurring in 2013.

It is useful to consider the consequences of mis-specifying natural mortality separately from stock – recruit dynamics (based on either the ASAP or SCAA models). For the two ASAP models which base stock-recruit dynamics on spawner per recruit considerations, mis-specifying

the natural mortality is inconsequential, with catch, SSB and  $F_{full}$  being very similar. Consequently, the 2013 stock status would remain as overfished but that overfishing is not occurring. The natural mortality assumption is slightly more of an issue when stock dynamics are based on the long-term derived stock-recruitment relationship (SCAA models). Assuming an *M*ramp when *M* is actually equal to 0.2 results in a lower than 'planned' fishing mortality and catch and higher than 'planned' SSB. Status in 2013 would still be not overfished and overfishing not occurring. When *M* is assumed to be 0.2 but an *M*-ramp is correct, fishing mortality and thus catch would be considerably higher than 'planned' with the result that in 2013 the stock would be experiencing overfishing although it would not be overfished (Table A.7.6).

The consequences of mis-specifying the stock-recruit dynamics are overall more severe than mis-specifying natural mortality. If management actions during 2012 - 2015 are based on stock-recruit dynamics assuming SPR dynamics (the ASAP models) when those based on SR dynamics should have been used (the SCAA models), fishing mortality and thus catch would be lower than 'planned' while SSB would be higher than 'planned'. There would, nevertheless, be no change in the 2013 status.

If management actions during 2012 - 2015 were based on stock-recruit dynamics assuming an SR function (the SCAA models), when those based on SPR should have been used (the ASAP models), fishing mortality and thus catch would be much higher than 'planned' while SSB would decline more than 'planned', particularly if *M* had also been assumed to be 0.2. This would result in the stock being determined as overfished as well as overfishing occurring in 2013 regardless of the natural mortality.

To summarize, mis-specification of stock-recruit dynamics has greater implications for management actions during 2012 - 2015 than mis-specification of natural mortality. Mis-specification of natural mortality is inconsequential if stock-recruit dynamics conform to SPR considerations but are more of an issue when recruitment is based on an SR function (in this case a Ricker relationship).

Appendix A.7 Tables Table A.7.1. Yield per recruit proxy reference points for Gulf of Maine Atlantic cod under both the ASAP SAW55\_3BLOCK\_BASE and ASAP\_3BLOCK\_BASE\_M\_SPLIT models.

| Model                     | F <sub>MSY</sub><br>(proxy) | Fmsy | SSB <sub>MSY</sub> (mt)  | MSY (mt)               | Median age1<br>recruitment | SSB hinge (mt) | Hinge<br>year |
|---------------------------|-----------------------------|------|--------------------------|------------------------|----------------------------|----------------|---------------|
| SAW55_3BLOCK_BASE         | F40%                        | 0.18 | 54,743 (40,207 - 73,354) | 9,399 (6,806 - 13,153) | 5,254                      | 6,300          | 1998          |
| SAW55_3BLOCK_BASE_M_SPLIT | F50%                        | 0.29 | 19,605 (14,746 - 25,782) | 4,840 (3,586 - 6,435)  | 9,446                      | 7,900          | 1994          |

Table A.7.2. Short-term projections (3 years) for Gulf of Maine Atlantic cod under an assumed harvest of 75% F<sub>MSY</sub> based on the ASAP SAW55\_3BLOCK\_BASE and SAW55\_3BLOCK\_BASE\_M\_SPLIT (*M*-ramp) models. \**Note, the projections have not been adjusted for retrospective bias.* 

|      | Innut         | ,          | SAW55_3BLOCK_BASE              | SAW55_3BLOCK_BASE_M_SPLIT |                                 |                                |                   |  |
|------|---------------|------------|--------------------------------|---------------------------|---------------------------------|--------------------------------|-------------------|--|
| Voor |               | Rebu       | uild year at 75% Fmsy = 2      | 2022                      | Rebuild year at 75% Fmsy = 2019 |                                |                   |  |
| Tear | Input         | Catch (mt) | Spawning stock<br>biomass (mt) | F <sub>full</sub>         | Catch (mt)                      | Spawning stock<br>biomass (mt) | F <sub>full</sub> |  |
| 2000 | Result        | 5,823      | 9,070                          | 0.62                      | 5,823                           | 12,976                         | 0.45              |  |
| 2001 | Result        | 8,055      | 11,885                         | 0.72                      | 8,055                           | 17,222                         | 0.51              |  |
| 2002 | Result        | 6,509      | 11,951                         | 0.57                      | 6,509                           | 17,208                         | 0.40              |  |
| 2003 | Result        | 6,497      | 10,005                         | 0.67                      | 6,497                           | 13,966                         | 0.48              |  |
| 2004 | Result        | 5,766      | 8,594                          | 0.68                      | 5,766                           | 11,878                         | 0.50              |  |
| 2005 | Result        | 5,441      | 7,213                          | 0.92                      | 5,441                           | 9,831                          | 0.70              |  |
| 2006 | Result        | 4,268      | 6,752                          | 0.78                      | 4,268                           | 9,311                          | 0.60              |  |
| 2007 | Result        | 5,527      | 8,725                          | 0.75                      | 5,527                           | 11,693                         | 0.60              |  |
| 2008 | Result        | 7,375      | 10,282                         | 0.94                      | 7,375                           | 13,297                         | 0.77              |  |
| 2009 | Result        | 8,355      | 11,457                         | 0.98                      | 8,355                           | 14,332                         | 0.83              |  |
| 2010 | Result        | 7,670      | 11,141                         | 0.87                      | 7,670                           | 12,979                         | 0.79              |  |
| 2011 | Result        | 6,830      | 9,903                          | 0.86                      | 6,830                           | 10,221                         | 0.90              |  |
| 2012 | Assumed catch | 3,767      | 8,995                          | 0.46                      | 3,767                           | 7,711                          | 0.58              |  |
| 2013 | Projection    | 1,249      | 9,406                          | 0.14                      | 1,289                           | 6,825                          | 0.22              |  |
| 2014 | Projection    | 1,503      | 12,143                         | 0.14                      | 1,396                           | 8,426                          | 0.22              |  |
| 2015 | Projection    | 2,030      | 16,802                         | 0.14                      | 1,929                           | 11,456                         | 0.22              |  |

| Doforonao Daint                                  | ASAP, 19 | 982 start    | SCAA, 1932 start, Ricker |        |  |  |
|--------------------------------------------------|----------|--------------|--------------------------|--------|--|--|
| Kelerence r orm                                  | M=0.2    | M=0.2 M-ramp |                          | M-ramp |  |  |
| SSB <sub>MSY</sub> (B <sub>target</sub> )        | 54,743   | 19,605       | 20,910                   | 11,180 |  |  |
| 1/2 SSB <sub>MSY</sub> (B <sub>threshold</sub> ) | 27,372   | 9,803        | 10,455                   | 5,590  |  |  |
| MSY                                              | 9,399    | 4,840        | 12,840                   | 7,170  |  |  |
| F <sub>MSY</sub>                                 | 0.18     | 0.29         | 0.75                     | 0.95   |  |  |
| 75% F <sub>MSY</sub>                             | 0.14     | 0.22         | 0.56                     | 0.71   |  |  |

Table A.7.3. Reference points associated with states of nature of Gulf of Maine cod.

Table A.7.4. Results of consequence analysis of Gulf of Maine cod; column and row headers indicate 'true' state of nature and basis of management action (75%  $F_{MSY}$  for 2013 – 2015) under assumed states of nature; cells provide projections of SSB and fully recruited fishing mortality for 'true' states of nature for catch set according to assumed state of nature; diagonals (shaded) indicate that management actions were correctly specified for the state of nature.

|                                     |      |               | States of Nature   |                               |                      |                      |                  |                    |                     |                   |                   |                      |                   |                         |
|-------------------------------------|------|---------------|--------------------|-------------------------------|----------------------|----------------------|------------------|--------------------|---------------------|-------------------|-------------------|----------------------|-------------------|-------------------------|
| Management and an entry has been in |      |               | ASAP, 198          | 32 start, M=0.2               |                      | ASAP, 1982           | start, M-ramp    |                    | SCAA, 1932 st       | art, Ricker, M=0. | 2                 | SCAA, 1932 sta       | art, Ricker, M-ra | mp                      |
| Management actions - catches in     | Year | Input         | SSBmsy = 54,743 mt | 4SY = 9,399 mt F <sub>n</sub> | <sub>sy</sub> = 0.18 | SSBmsy = 19,605 mt N | 4SY = 4,840 mt 1 | $F_{msy} = 0.29$ § | SBmsy = 20,910 mt N | 1SY = 12,840 mt F | $T_{msy} = 0.75$  | SSBmsy = 11,180 mt ! | MSY = 7,170 mt F  | ð <sub>msy</sub> = 0.95 |
| 2013-2015                           |      |               | Catch (mt)         | SSB (mt)                      | F <sub>full</sub>    | Catch (mt)           | SSB (mt)         | F <sub>full</sub>  | Catch (mt)          | SSB (mt)          | F <sub>full</sub> | Catch (mt)           | SSB (mt)          | F <sub>full</sub>       |
|                                     | 2011 | Result        | 6,830              | 9,903                         | 0.86                 | 6,830                | 10,221           | 0.90               | 6,830               | 14,509            | 0.52              | 6,830                | 13,735            | 0.61                    |
|                                     | 2012 | Assumed catch | 3,767              | 8,995                         | 0.46                 | 3,767                | 7,711            | 0.58               | 3,771               | 16,427            | 0.25              | 3,771                | 12,582            | 0.37                    |
| ASAP, 1982 start, M=0.2             | 2013 | Projection    | 1,249              | 9,406                         | 0.14                 | 1,249                | 6,833            | 0.21               | 1,249               | 17,661            | 0.07              | 1,249                | 10,921            | 0.12                    |
|                                     | 2014 | Projection    | 1,503              | 12,143                        | 0.14                 | 1,503                | 8,436            | 0.24               | 1,503               | 24,375            | 0.06              | 1,503                | 13,527            | 0.13                    |
|                                     | 2015 | Projection    | 2,030              | 16,802                        | 0.14                 | 2,030                | 11,432           | 0.23               | 2,030               | 33,073            | 0.06              | 2,030                | 16,709            | 0.15                    |
|                                     | 2011 | Result        | 6,830              | 9,903                         | 0.86                 | 6,830                | 10,221           | 0.90               | 6,830               | 14,509            | 0.52              | 6,830                | 13,735            | 0.61                    |
|                                     | 2012 | Assumed catch | 3,767              | 8,995                         | 0.46                 | 3,767                | 7,711            | 0.58               | 3,771               | 16,427            | 0.25              | 3,771                | 12,582            | 0.37                    |
| ASAP, 1982 start, M-ramp            | 2013 | Projection    | 1,289              | 9,389                         | 0.14                 | 1,289                | 6,825            | 0.22               | 1,289               | 17,661            | 0.07              | 1,289                | 10,921            | 0.13                    |
|                                     | 2014 | Projection    | 1,396              | 12,145                        | 0.13                 | 1,396                | 8,426            | 0.22               | 1,396               | 24,328            | 0.06              | 1,396                | 13,488            | 0.12                    |
|                                     | 2015 | Projection    | 1,929              | 16,937                        | 0.13                 | 1,929                | 11,456           | 0.22               | 1,929               | 33,161            | 0.06              | 1,929                | 16,791            | 0.14                    |
|                                     | 2011 | Result        | 6,830              | 9,903                         | 0.86                 | 6,830                | 10,221           | 0.90               | 6,830               | 14,509            | 0.52              | 6,830                | 13,735            | 0.61                    |
|                                     | 2012 | Assumed catch | 3,767              | 8,995                         | 0.46                 | 3,767                | 7,711            | 0.58               | 3,771               | 16,427            | 0.25              | 3,771                | 12,582            | 0.37                    |
| SCAA, 1932 start, Ricker, M=0.2     | 2013 | Projection    | 8,423              | 7,215                         | 1.41                 | 8,423                | 4,942            | 2.63               | 8,423               | 17,661            | 0.56              | 8,423                | 10,921            | 1.10                    |
|                                     | 2014 | Projection    | 7,621              | 4,719                         | 2.77                 | 7,621                | 3,231            | 5.00               | 7,621               | 16,266            | 0.56              | 7,621                | 7,706             | 1.91                    |
|                                     | 2015 | Projection    | 8,424              | 5,134                         | 3.09                 | 8,424                | 4,043            | 4.89               | 8,424               | 18,367            | 0.56              | 8,424                | 7,032             | 2.42                    |
|                                     | 2011 | Result        | 6,830              | 9,903                         | 0.86                 | 6,830                | 10,221           | 0.90               | 6,830               | 14,509            | 0.52              | 6,830                | 13,735            | 0.61                    |
|                                     | 2012 | Assumed catch | 3,767              | 8,995                         | 0.46                 | 3,767                | 7,711            | 0.58               | 3,771               | 16,427            | 0.25              | 3,771                | 12,582            | 0.37                    |
| SCAA, 1932 start, Ricker, M-ramp    | 2013 | Projection    | 5,803              | 8,214                         | 0.81                 | 5,803                | 7,711            | 1.46               | 5,803               | 17,661            | 0.34              | 5,803                | 10,921            | 0.71                    |
|                                     | 2014 | Projection    | 4,507              | 7,354                         | 0.81                 | 4,507                | 5,450            | 1.84               | 4,507               | 19,447            | 0.25              | 4,507                | 9,252             | 0.71                    |
|                                     | 2015 | Projection    | 5,020              | 9,159                         | 0.76                 | 5,020                | 4,636            | 1.46               | 5,020               | 25,272            | 0.22              | 5,020                | 10,385            | 0.71                    |

Table A.7.5. Fraction of feasible projection runs from the Gulf of Maine Atlantic cod consequence analysis. Infeasible runs occur when the projection is attempting to harvest more fish than exist in the population's exploitable biomass will allow; Column headers indicate state of nature and row headings indicate basis of management action

| Model                     | ASAP, 1982 start, M=0.2 | ASAP, 1982 start, M-ramp | SCAA, 1932 start, Ricker, M=0.2 | SCAA, 1932 start, Ricker, M-ramp |
|---------------------------|-------------------------|--------------------------|---------------------------------|----------------------------------|
| SAW55_3BLOCK_BASE         | 1.00                    | 1.00                     | 1.00                            | 1.00                             |
| SAW55_3BLOCK_BASE_M_SPLIT | 1.00                    | 1.00                     | 1.00                            | 1.00                             |
| SCAA_1932_RICKER          | 0.44                    | 0.13                     | 1.00                            | 0.69                             |
| SCAA_1932_RICKER_M_RAMP   | 0.97                    | 0.93                     | 1.00                            | 1.00                             |

Note:

SAW55\_3BLOCK\_BASE = ASAP, 1982 start, M = 0.2SAW55\_3BLOCK\_BASE\_M\_SPLIT = ASAP, 1982 start, M-ramp SCAA 1932 RICKER = SCAA, 1932 start, Ricker, M = 0.2

SCAA 1932 RICKER *M* RAMP = SCAA, 1932 start, Ricker, *M*-ramp

Table A.7.6. Status of 2013 spawning stock biomass and fishing mortality of Gulf of Maine cod; column and row headings indicate 'true' state of nature and basis of management action respectively; cells indicate 2013 stock status resulting from application of management actions under assumed state of nature (rows) to 'true' state of nature.

|                 |                          |        | True state of nature                       |                                            |                                                   |                                                   |  |  |  |  |  |
|-----------------|--------------------------|--------|--------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|--|--|--|
|                 |                          |        | ASAP, 1                                    | 982 start                                  | SCAA, 1932                                        | start, Ricker                                     |  |  |  |  |  |
|                 |                          |        | M=0.2                                      | M-ramp                                     | M=0.2                                             | M-ramp                                            |  |  |  |  |  |
|                 | start, YPR               | M=0.2  | Overfished, overfishing is<br>not occuring | Overfished, overfishing is<br>not occuring | Not overfished,<br>overfishing is not<br>occuring | Not overfished,<br>overfishing is not<br>occuring |  |  |  |  |  |
| ıt action basis | ASAP, 1983               | M-ramp | Overfished, overfishing is<br>not occuring | Overfished, overfishing is<br>not occuring | Not overfished,<br>overfishing is not<br>occuring | Not overfished,<br>overfishing is not<br>occuring |  |  |  |  |  |
| Managemer       | SCAA, 1932 start, Ricker | M=0.2  | Overfished, overfishing is<br>occuring     | Overfished, overfishing is<br>occuring     | Not overfished,<br>overfishing is not<br>occuring | Not overfished,<br>overfishing is occuring        |  |  |  |  |  |
|                 |                          | M-ramp | Overfished, overfishing is<br>occuring     | Overfished, overfishing is<br>occuring     | Not overfished,<br>overfishing is not<br>occuring | Not overfished,<br>overfishing is not<br>occuring |  |  |  |  |  |

#### **Appendix A.7 Figures**



**Replacement Lines Using Recent Productivity** 

Figure A.7.1. Comparison Gulf of Maine Atlantic cod replacement lines under a range of percent spawner per recruit values based on an *M*-ramp ( $0.2 \rightarrow 0.4$ ) assumption (based on SAW55\_3BLOCK\_BASE\_M\_SPLIT model). The most recent ten years of recruitment observations (2001-2010) are highlighted green.



Figure A.7.2. Trends in Gulf of Maine cod SSB (top row), fully recruited fishing mortality (middle row) and catch (bottom row) during 2000 - 2015; column headers indicate 'true' state of nature; cells provide trend in indicator under 'true' state of nature when catch during projection period (based on 75% F<sub>MSY</sub> is correctly specified (black) and mis-specified (red: ASAP, 1982, M = 0.2; blue: ASAP, 1982, M-ramp; green: SCAA, 1932, Ricker, M = 0.2; grey: SCAA, 1932, Ricker, M-ramp; MSY – based reference points indicated in dashed line on each pl

### B. Stock Assessment of Georges Bank Atlantic Cod (Gadus morhua) for 2012

### SAW 55 Terms of Reference

#### **Terms of Reference**

1. Estimate catch from all sources including landings and discards. Characterize the uncertainty in these sources of data and take into account the recommendations and subsequent work from the March 2012 MRIP workshop. Evaluate available information on discard mortality and, if appropriate, update mortality rates applied to discard components of the catch.

2. Present the survey data and calibration information being used in the assessment (e.g., indices of abundance, recruitment, state surveys, age-length data, etc.). Consider model-based (e.g. GLM) as well as design-based analyses of the survey data in developing trends in relative abundance. Investigate the utility of commercial or recreational LPUE as a measure of relative abundance. Characterize the uncertainty and any bias in these sources of data.

3. Summarize the findings of recent workshops on stock structure of cod of the Northeastern US and Atlantic Canada.

4. Investigate the evidence for natural mortality rates which are time- and/or age-specific. If appropriate, integrate these into the stock assessment (TOR 5).

5. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Consider feasibility of survey catchability estimates, the starting year for the assessment, estimation of the stock recruitment curve, inclusion of multiple fleets, and whether to use domed or flat selectivity-at-age for the NEFSC surveys. Provide a summary of steps in the model building process. Include a historical retrospective analysis to allow a comparison with previous assessment results. Review the performance of historical projections with respect to stock size, catch recruitment and fishing mortality.

6. State the existing stock status definitions for "overfished" and "overfishing". Then update or redefine biological reference points (BRPs; point estimates or proxies for  $B_{MSY}$ ,  $B_{THRESHOLD}$ ,  $F_{MSY}$ , and MSY) and provide estimates of their uncertainty. Consider alternative parametric models of the stock recruitment relationship. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the appropriateness of existing BRPs and any "new" (i.e., updated, redefined, or alternative) BRPs.

7. Evaluate stock status with respect to the existing model (from the most recent accepted peer reviewed assessment) and with respect to a new model developed for this peer review. In both cases, evaluate whether the stock is rebuilt.

a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.

b. Then use the newly proposed model and evaluate stock status with respect to "new" BRPs (from Cod TOR-6).

8. Develop and apply analytical approaches to conduct single and multi-year stock projections to compute the pdf (probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).

Provide numerical annual projections (3-5 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass.

Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).

Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions.

Describe this stock's vulnerability (see "Appendix to the SAW TORs") to becoming overfished, and how this could affect the choice of ABC.

9. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in recent SARC reviewed assessments and review panel reports. Identify new research recommendations

#### **Executive Summary**

ToR 1. Estimate catch from all sources including landings and discards. Characterize the uncertainty in these sources of data and take into account the recommendations and subsequent work from the March 2012 MRIP workshop. Evaluate available information on discard mortality and, if appropriate, update mortality rates applied to discard components of the catch.

Total Georges Bank (GB) cod commercial landings taken by USA and Canadian fleets, and Distant Water Fleets are available from 1893-2011 and total catch is available from 1960-2011. Total USA commercial landings ranged between 11,000 mt to 40,000 mt during 1960-1993, averaging about 21,000 mt. As stock biomass declined and year round closures were implemented in Dec 1994, landings declined, ranging between 3,000 mt – 15,000 mt during 1994-2011, averaging about 6,000 mt. Total Canadian landings ranged between 19 mt to 18,000 mt during 1960-1993 and after large quota restrictions in 1993, CA landings ranged between 600 mt to 8,500 mt with an average of about 1,600 mt during 1994-2011. Total USA and Canadian commercial landings of GB cod were 4,454 mt in 2011, a 13% increase from 2010. In 2011, the USA accounted for 83% of the total landings and Canada the remaining 17%.

Atlantic cod discarded on Georges Bank by the USA commercial fisheries were estimated from the NEFSC 1989-2011 observer data (NEFOP) and the 2010-2011 at-sea monitoring (ASM) data. Uncertainty estimates presented as coefficients of variation (CV) varied between 8% and 53% for the total GB discard estimates. Estimates of discards in the large mesh otter trawl fishery during 1978-1988 were hindcasted using a survey filter method. The Northern Demersal Working Group (WG) agreed that 'Delphi' determined mortality rates were to be applied to the final estimates of USA discards included in this assessment. In 2011, the USA commercial fisheries discarded 122 mt (CV = 12%) and the Canadian fisheries discarded 42 mt. USA discards accounted for 3% of the total catch and Canadian discards accounted for 1% of the total catch in 2011.

USA recreational catch of GB cod were estimated using data provided by the NOAA Marine Recreational Fisheries Statistics Survey (MRFSS, 1981-2003), and NOAA Marine Recreational Information Program (MRIP, 2003-2011). Recreational catch accounts for 1%-10% of the total catch since 1981, and in the past five years averaged 2% of the catch. In 2011 recreational catch was 219 mt, 5% of the total catch.

Total catch ranged between 11,000 mt to 62,000 mt during 1960-1993, averaging about 35,000 mt. After the year round closures were implemented in Dec 1994, catches declined, ranging between 4,000 mt – 16,000 mt during 1994-2011, averaging about 8,400 mt. Total combined USA and Canadian catch of GB cod was 4,472 mt in 2011, a 13% increase from 3,950 mt caught in 2010. USA catches accounted for 83% and Canadian catches accounted for 17% of the total catch in 2011. The total catch at age for ages 1-10+ is summarized across all components: the USA commercial landings and discards, USA recreational landings and discards, and Canadian commercial landings and discards during 1978-2011. The total catch during 2011 was dominated by age 3 and age 4 fish of the 2008 and 2007 year class.

#### SEE Fishery Section for details.

#### ToR2.

Present the survey data and calibration information being used in the assessment (e.g., indices of abundance, recruitment, state surveys, age-length data, etc.). Consider model-based (e.g. GLM) as well as design-based analyses of the survey data in developing trends in relative abundance. Investigate the utility of commercial or recreational LPUE as a measure of relative abundance. Characterize the uncertainty and any bias in these sources of data.

NEFSC spring and autumn research bottom trawl surveys have been conducted off the Northeast coast of the USA since 1968 and 1963, respectively. Indices of abundance (stratified mean number per tow) and biomass (stratified mean weight per tow (kg)) were estimated from both the spring and autumn surveys for Georges Bank cod during 1963-2012. The indices were standardized for differences in fishing power of the *FRV Albatross IV* and the *FRV Delaware II*, for differences between catchability of BMV and polyvalent doors, introduced in 1985, and for the calibration of the *FSV H.B. Bigelow* catches to *FRV Albatross IV* units. Spring surveys were conducted with a Yankee #41 trawl during 1973-1981, and with a Yankee #36 for all other years through 2008, however, no fishing power coefficients are available for standardization. NEFSC spring and autumn catch per tow biomass and abundance indices show similar trends throughout the time series. Survey indices were variable but relatively stable between 1963 and the early 1980s, then gradually declined until about 1995 and have remained low since that time.

Canadian research bottom trawl surveys have been conducted in February on Georges Bank since 1986. Survey abundance indices have fluctuated and generally declined during 1990-2004 and have been increasing until 2010. Both the 1999 and 2000 indices increased primarily due to the recruitment of the 1996 year class.

The WG considered a GLM model to investigate the utility of model-based survey indices of abundance for the NEFSC spring and autumn survey data compared to the design based indices described above. The negative binominal model with factors of year, stratum, and time of day gave the best fit to the data for both spring and autumn. Overall, the model and design – based abundance and biomass trends are very similar. The WG concluded that the GLM is acting as a time series smoother and thus to best reflect uncertainty in the survey data, the WG recommends use of the design-based indices. The CVs from the GLM can be compared to those generated during the stage two iterative re-weighting process (in the ASAP model diagnostics) as the latter incorporates both observation and process error, similar to what the GLM produces.

A general linear model (GLM), first conducted in the 1993 assessment was repeated in the current assessment to estimate USA standardized fishing effort and commercial landings-perunit-effort (LPUE) for Georges Bank cod during 1978-2011. The LPUE index indicates a declining trend from 1980 through 1995, a gradual increase to 2002 with another decline through 2006, then an increasing trend to 2011. The LPUE index was last estimated in the 1998 assessment but was not used as an index of abundance in the 1998 assessment or in any subsequent assessments. At that time, the post-1994 effort data was no longer considered to be equivalent to the historic 1978-1993 effort series due to increased management restrictions. The SAW 55 WG reviewed the updated analysis and recommended that the standardized LPUE not be used in the SAW 55 assessment model for several reasons. The LPUE does not represent the entire stock for the entire time series since the index incorporates only the USA landings and effort data in the western part of the stock area since 1985. This was illustrated in a series of quarterly distribution maps of commercial LPUE during 1978-1994 and annual distribution maps of LPUE during 1994-2011. The Canadian fishery contributes about an average 25% to the overall landings and that is not accounted for in the GLM. In addition, there have been significant regulatory changes since 1994 and most recently the implementation of sector management, all resulting in spatial shifts in the fishery. All of these factors detract from the utility of the index as a measure of abundance. The WG recommendation to not utilize the index is consistent with the findings of the recent NEFSC-sponsored LPUE workshop.

A log-normal general linear model (GLM) was applied to recreational data to estimate an LPUE index (cod landed/angler hour) for Georges Bank cod during 1994-2011. The standardized LPUE index indicates a variable but declining trend from 1994 to 2002 and then a variable but increasing trend from 2003-2011. The WG had several concerns with respect to the applicability of the LPUE index. At the beginning of the time series, there is uncertainty whether the data reported was in pounds or in numbers (as required). There were a limited number of party/charter boats involved in the fishery (17), but only a few vessels (4) consistently fished over the time series. In addition, the fishery was conducted primarily in the westernmost part of the stock area. The WG concluded that the recreational LPUE index was not representative of the stock and should not be included in the assessment model.

SEE Stock Abundance and Biomass Indices Section for details

# ToR 3. Summarize the findings of recent workshops on stock structure of cod of the Northeastern US and Atlantic Canada.

A work plan on the topic of Atlantic cod stock structure in the Northeast United States/Scotian Shelf region was recommended by the New England Fishery Management Council's Scientific and Statistical Committee. The work plan laid out a three-phase process for re-evaluating, and possibly revising, the spatial basis for assessment and management of Atlantic cod. The first phase was to review data (genetic, life history, tagging, etc.) in order to evaluate the "null hypothesis" of the status quo management units.

The NEFSC sponsored a public workshop on cod stock structure, held June 12-14, 2012, facilitated by the Gulf of Maine Research Institute to address Phase I. Invited participants from the fishing and scientific communities presented on a range of topics with opportunities for discussion. The full workshop report is available at <a href="http://www.gmri.org/mini/index.asp?ID=52&p=149">http://www.gmri.org/mini/index.asp?ID=52&p=149</a>.

Many of the workshop participants felt that there was compelling evidence that the current management units need to be revised. The Workshop did not reach any conclusions on what the most appropriate management units might be. This will require further data analysis and modeling in order to complete Phase I of the SSC recommended process. The workshop report also identifies gaps in the data and analyses and recommended action to address them.

The Workshop did not explicitly address and propose the next steps in the process. The Steering Committee recommended that an inclusive but focused Working Group meeting be held involving a small group of Canadian and US scientists to consider the results of the Workshop. This Working Group should be provided the short-term data and analyses identified as missing by the Workshop. Using that information, as well as the conclusions from the Workshop, the Working Group should determine the most appropriate representations of biological stock structure to complete Phase I of the process. The results from this Working Group meeting should be evaluated through an independent peer-review process.

Since the phased review process of cod stock structure that was recommended by the SSC has not been completed, no changes to stock structure were incorporated into this assessment.

#### SEE Background section

## ToR4. Investigate the evidence for natural mortality rates which are time- and/or age-specific. If appropriate, integrate these into the stock assessment (TOR 5).

Instantaneous natural mortality (M) has been assumed to be 0.2, constant and age-invariant, in all previous assessments of Georges Bank cod. In this benchmark review, the WG investigated several life-history analyses and also tagging results to evaluate the M assumption. In the meta-analysis of life history-based estimates, M estimates ranged between 0.21 - 0.45. These variable estimates and the conflicting result of a decrease in condition in the spring but not the autumn, as evidenced by both the Fulton's K and the differences in seasonal length – weight equations, make it difficult to make a definitive conclusion on a hypothesis for a shift in life history parameters. It should be noted that maximum age as high as 15 has been observed in the commercial fishery as recently as 2011, and age 12 in the more recent years, which suggests comparable natural mortalities relative to earlier in the time series.

The method of Lorenzen (1996) was used to provide an aged-based estimate of M. This method, which is based upon the relationship between body weight and M across a wide range of species, was used in SAW 54 to provide age-based estimates of M for Southern New England – Mid Atlantic Bight yellowtail flounder. The peer review panel of SAW 54 (O'Boyle 2012) considered that applying an inter-species relationship to infer within-species dynamics was an over-interpretation of the method. While M no doubt may be age-specific, the pattern estimated from the Lorenzen method may not be appropriate. Recent work performed by Jon Deroba (NEFSC) and Amy Shueller (SEFSC) (*https://afs.confex.com/afs/2012/webprogram/Paper10183.html*) indicated that using constant or age varying mortality would have similar impacts on the assessment. The SAW 55 WG thus concluded that the parsimonious approach is for the SAW 55 assessment models to use a single *M* for all ages.

Two working papers considered the predator field of cod in the Gulf of Maine-Georges Bank area. Link (2012) noted that directed piscivory of cod by other fish was not common, with less than 200 cod in over 550,000 stomachs observed the survey time series. Similarly, the evidence for cannibalism is weak with only 20 cod found in over 20,000 stomachs. Studies to date suggest that M due to fish predation is likely low and is focused on juvenile and smaller size groups. Waring (2012) considered marine mammals as a potential source of elevated M in the Gulf of

Maine area. Firm estimates on the size of the current herds are not available. Notwithstanding this, the food habit research suggests that cod mortality due to seals is low. Additionally, while seals are known to prey on cod, they are generalist feeders and the importance of cod in the diet of Gulf of Maine area grey seals is unknown. There is limited information that suggests that cod represent only a minor component of harbor seal diet along the Maine coast.

An analysis of tagging data collected during 2003 – 2006 to jointly estimate natural and fishing mortality was undertaken during GARM III. This analysis was updated for SAW 55 and contrary to the earlier work, this analysis was not length-based. Estimates of M ranged from 0.4 to 0.7 for Georges Bank cod tag returns of greater than 50 cm. The analysis provided evidence of significant cod movements between GM and GB and area 4X on the order of 4.1% to 29.7%. While M was relatively high compared to current estimates, fishing mortality (F) was comparatively low, prompting discussion on whether or not it was representative of the fishery due to local effects. The results were highly sensitive to the assumed return rate of high-reward tags. High-reward return rates on the order of 50% were associated with Georges Bank cod M estimates of 0.4, with M increasing as the high-reward tag rate increased. Model preference (based on log-likelihood function) was for assumptions of near-100% on reporting rates of the high-reward tags. Estimates of F were inversely related to the M response with F declining with higher assumptions of high-reward tags reporting rates. Across all ranges total mortality (Z) was estimated about 0.8-0.9.

Concerns were raised with the tagging conducted in the Cape Cod area, which represented over 50% of the data in the database, which prompted the greater than 50 cm analysis. The tagging had been conducted employing a wide range of expertise with mostly small cod being tagged. This in combination with the warm water in the area may have resulted in higher tag induced mortality than assumed in the model. There were additional concerns with the assumed tag reporting rate (100%) for high reward tags. There is evidence to suggest differential reporting rates among some sectors of the commercial fishery, most notably the reporting rate by gillnet vessels was five times lower than that of trawl vessels. It is unknown if these same reporting trends also apply to the high-reward tags. There was also discussion on the age groups of cod represented by the study. Within the subset of greater than 50 cm fish, only about 10% of the released cod were greater than 80 cm. GB cod at 50 cm are 2 years old on average, implying that the estimates of M are for ages 2 to 5 fish but weighted towards the younger ages.

The SAW 55 WG discussed how best to use these estimates of M. It was hesitant to conclude that M was in the range of 0.6 - 0.7 and to recommend that these estimates be directly included in the assessment models. Rather, the tagging analysis is another form of modeling that should be considered. The WG discussed the availability of historical tagging to which the current estimates could be compared. It was reported that tagging work conducted in the Gulf of Maine area (with a smaller percentage of tagging done on GB) during the 1970s and 1980s suggested M estimates in the order of 0.2 - 0.3 whereas tagging in the 1990s was suggestive of M similar to the more recent results. These observations are based upon unpublished work that could not be corroborated at the meeting. Much of the historical work had been focused on cod movements and did not provide estimates of natural, fishing or total mortality. Further, concerns were raised that there was no obvious mechanism (e.g. predation) that could explain a recent increase in M, although it was countered that no mechanism has been identified for the current M estimate of
0.2, though this estimate is supported by life history parameters. The SAW 55 WG recommended profiling natural mortality across both the historical and more recent periods of the assessment to inform the discussion as to whether or not there has been a long-term change in M. The WG agreed that an option (M-ramp) with an M change should be considered as an alternate to a base model which would assume no change in M (i.e. M = 0.2).

#### See Life History- Natural mortality section

ToR5. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Consider feasibility of survey catchability estimates, the starting year for the assessment, estimation of the stock recruitment curve, inclusion of multiple fleets, and whether to use domed or flat selectivity-at-age for the NEFSC surveys. Provide a summary of steps in the model building process. Include a historical retrospective analysis to allow a comparison with previous assessment results. Review the performance of historical projections with respect to stock size, catch recruitment and fishing mortality.

The Georges Bank cod stock assessment has historically been assessed as an age-based assessment employing virtual population analysis (VPA). Given the biased retrospective pattern observed in recent assessments the 2012 benchmark assessment review presented the opportunity to explore a new model formulation to mitigate the retrospective bias. The WG chose to use a forward projecting model, ASAP (Age Structured Assessment Program). To bridge between the previous VPA formulation and the ASAP model formulation the following models were presented: a VPA updated through 2012, a VPA-like ASAP formulation, and the final accepted BASE ASAP formulation.

# BASE ASAP

The catch at age includes combined USA and Canadian landings and discards, and USA recreational landings from 1978-2011 for ages 1-10+. Swept-area estimates of abundance were used to calibrate the model include the NEFSC 1978-2011 spring survey indices for ages 1-10, the NEFSC autumn survey indices for ages 1-6, and the Canadian DFO 1986-1992, and 1995-2011 survey indices for ages 1-10. Input to the Base ASAP model includes the MRIP equivalents and the application of 'delphi' discard mortality rates.

A multinomial distribution was assumed for both fishery catch at age and survey age compositions. The survey time series were *not* split between 1994/1995 as in the VPA. Since exploratory runs indicated similar trends in spawning stock biomass (SSB) and F between formulations with the survey time series split or not split, the WG agreed to proceed with no split in the survey time series.

Both survey and fishery selectivity were flat-topped. Examination of the logistic fit of the four fishery blocks clearly indicated only 2 blocks are appropriate given the similarities between blocks 1 and 2 (1978-1982, 1983-1993) and blocks 3 and 4 (1994-1999, and 2000-2011). The final effective sample size (ESS) was based on the stage 2 multiplier as described by Francis (2011) for both catch and survey age composition.

Fully recruited F (unweighted, ages 5-8), not adjusted for retrospective bias was estimated at 0.23 in 2011, a 21% decrease from 2010. SSB in 2011, not adjusted for retrospective bias, was estimated at 22,217 mt, a 29% increase from 2010. Recruitment (millions of age 1 fish) of the 2003 year class (7.0 million), not adjusted for retrospective bias, is now estimated to be smaller than the 1998 year class (11.9 million). The 2008 year class (8.0 million) and 2009 (8.1 million) are similar in size to the 2003 year class.

A retrospective analysis was performed to evaluate how well ASAP calibration would have estimated F, SSB, and recruits at age 1 for seven years (2004-2010) prior to the terminal year, 2011. While the magnitude of the retrospective bias is slightly less than that of the VPA, the pattern of over estimating SSB and underestimating F relative to the terminal year continues in this model. The WG agreed to address the retrospective bias in the BASE ASAP by adjusting the terminal year results by applying the 7-year rho factor.

MCMC simulation was performed to obtain posterior distributions of the SSB and average  $F_{5+}$  time series. The 2011 SSB estimate, not adjusted for retrospective bias, of 22,217 mt has a 90% PI of 15,809 mt – 31,993 mt and the 2011 average  $F_{5+}$  = 0.23, not adjusted for retrospective bias, has a 90% PI of 0.15- 0.34.

#### Alternative ASAP Models

Given the continued retrospective bias in the ASAP model results and the discussion of possible shifts in M in recent years based on tagging data, the WG agreed to explore two alternative models. Both of the alternatives address the issue of losses due to unaccounted for mortality (i.e. 'missing catch'), either from unaccounted for natural mortality, or from unaccounted for removals from the fishery (undocumented discard mortality (e.g. mortality experienced by fish escaping the gear during commercial operations), unreported/missing dealer or logbook statistics, biased or underestimated discards).

See Assessment Model Formulation Section

ToR 6. State the existing stock status definitions for "overfished" and "overfishing". Then update or redefine biological reference points (BRPs; point estimates or proxies for  $B_{MSY}$ ,  $B_{THRESHOLD}$ ,  $F_{MSY}$ , and MSY) and provide estimates of their uncertainty. Consider alternative parametric models of the stock recruitment relationship. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the appropriateness of existing BRPs and any "new" (i.e., updated, redefined, or alternative) BRPs.

The current non-parametric biological reference points (BRP) for GB cod, based on  $F_{40\%}$  were revised in February 2012 based on VPA model results are as follows:

 $SSB_{MSY}$  proxy= 140,424 mt,  $F_{MSY}$  proxy ( $F_{40\%}$ ) = 0.23, MSY proxy= 28,774 mt.

#### Base Model-SARC 55 accepted model

The GARM III BRP Panel selected F<sub>40%</sub> from the non-parametric yield-per-recruit (YPR)

analysis as the basis for the estimation of BRPs for GB Atlantic cod. The SAW 55 WG evaluated various proxies for  $F_{MSY}$  to determine if  $F_{40\%}$  was still appropriate by comparing estimated SSB and recruitment ratios with expected spawning biomass per recruit over a range of fishing mortalities (F=20% to F80% in 5% increments) to investigate the potential for replacement under equilibrium assumptions (i.e. constant harvest rate and biology over the lifespan). An analysis of replacement lines under recent productivity (approximately last 10 years) indicated that 90% of the years were above the  $F_{40\%}$  replacement line for the Base ASAP model thus  $F_{40\%}$  was still an appropriate  $F_{MSY}$  proxy.

Non-parametric estimates of MSY and SSB<sub>MSY</sub> based on  $F_{40\%}$  from YPR analysis were estimated using the 33-year time series mean recruitment as:  $F_{40\%} = 0.18$ , MSY = 17,391 mt, SSB<sub>MSY</sub> = 107,291 mt.

Long term stochastic projections out to 100 years at  $F_{MSY} = 0.18$ , provided the following non-parametric biomass reference points:

 $F_{40\%}$ = 0.18, MSY = 30,622 mt, (80% CI: 25,450- 36,302), SSB<sub>MSY</sub> = 186,535 mt (80% CI: 155,398 - 220,756)

The WG determined that the relationship between stock and recruitment during 1978-2011 did not provide support for use of either a Ricker or Beverton-Holt (BH) function. When a BH was estimated within the BASE ASAP model, the relationship was relatively linear with unexploited SSB and unexploited recruitment being estimated essentially to infinity. For this reason, the WG agreed that BRPs for GB cod continue to be based upon BMSY proxies.

See Biological Reference Points Section

ToR 7. Evaluate stock status with respect to the existing model (from the most recent accepted peer reviewed assessment) and with respect to a new model developed for this peer review. In both cases, evaluate whether the stock is rebuilt.

a. When working with the existing model, update it with new data and evaluate stock status (overfished and overfishing) with respect to the existing BRP estimates.

# Status of Stock – VPA

Based on the updated 2012 VPA model results, unadjusted for retrospective bias, the stock is overfished (SSB<sub>2011</sub> = 12, 532 <  $\frac{1}{2}$  SSB<sub>MSY</sub>) and overfishing is occurring (F<sub>2011</sub> = 0.69 > F<sub>40%</sub>). The stock is not rebuilt. MSY proxy BRPs continue to be appropriate for this model given that the relationship between stock and recruitment does not support the use of a parametric model.

See Biological Reference Points Section

# b. Then use the newly proposed model and evaluate stock status with respect to "new" BRPs (from Cod TOR-6).

#### Status of Stock – BASE ASAP

Based on the accepted BASE ASAP model results, adjusted for retrospective bias, the stock is overfished (SSB<sub>2011</sub> = 13,216 mt <  $\frac{1}{2}$  SSB<sub>MSY</sub>) and overfishing is occurring (F<sub>2011</sub> = 0.43 > F<sub>40%</sub>). The stock is not rebuilt. The WG agreed that MSY proxy BRPs are appropriate for this model given that the relationship between stock and recruitment does not support the use of a parametric model

See Biological Reference Points Section

ToR 8. Develop and apply analytical approaches to conduct single and multi-year stock projections to compute the pdf (probability density function) of the OFL (overfishing level) and candidate ABCs (Acceptable Biological Catch; see Appendix to the SAW TORs).

a. Provide numerical annual projections (3-5 years). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F, and probabilities of falling below threshold BRPs for biomass. Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).

Short term stochastic projections under  $F = 75\%F_{MSY}$  were performed for the BASE model results to estimate landings and SSB during 2013-2015. Recruitment was estimated from a 2-stage cumulative distribution function (CDF) associated with a SSB breakpoint of 50,000 mt. Catch in 2012 was estimated based on year-to-date catch (commercial and recreational landings and discards) and assumed catch for the remainder of the year.

The results of the short term projections indicate that for the BASE ASAP, under an  $75\%F_{MSY} = 0.14$ , catch is projected to initially decrease but then increase by 2015 to a catch higher than that in 2012, and SSB is projected to increase in each year through 2015. The rebuilding plan for GB cod requires that the stock reach SSB<sub>MSY</sub> by 2026, however, the Frebuild projection was not conducted at this time.

See Projections Section

# **b.** Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions. Consequence Analysis

The risks associated with management actions taken during 2013 - 2015 were examined by undertaking stock projections under the competing assumptions of the state of nature. For instance, if the true state of nature is that natural mortality has remained unchanged at 0.2 and that stock productivity is best reflected by the M = 0.2 model, then the consequences of management actions taken by setting projected catch according to 75% F<sub>MSY</sub> based on the two alternative states of nature ("M ramp" and "Catch Multiplier") were examined.

When management actions are correctly based upon a particular state of nature an increase in SSB is projected until 2015 for the three options, this particularly the case for Catch Mult. If the management actions are correctly based upon the 'true' state of nature, the base and catch mult

models indicate that, in 2013, the stock is in an overfished state. In contrast, the MRamp model indicates that the stock would not be in an overfished state in 2013.

In regards to the consequences of mis-specifying the state of nature, there is little impact on the absolute estimate of SSB (but not status), although assuming an M ramp when increased recent catch is true results in less than 'planned' growth in SSB. Assuming an Mramp when either of the other models is true also has significant implications for 2013  $F_{FULL}$  and catch. In each case, catch would be higher than 'planned', resulting in higher than 'planned' catch. The consequences of assuming the base and catch mult models when Mramp is true are relatively modest in absolute terms. However, due to the changes in the reference points, the 2013 status changes depending on the basis of the management action and the state of nature.

If the Base model is the true state of nature, assuming increased recent catch when setting catch will result in the same status (overfished but not overfishing) while assuming Mramp when setting catch will result in being overfished and overfishing. If the Mramp is the true state of nature, assuming either of the other options when setting 2013 - 2015 catch will not change status (not overfished and no overfishing). If catch mult is the true state of nature, while status does not change if setting catches is based upon the base option (not overfished and no overfishing), status changes to overfished and overfishing if catch are based upon the M ramp option.

In summary, the Base option is the most sensitive of the three to setting 2013 -2015 catch according to the alternate states, while the Mramp option is the least sensitive.

See Appendix Section

# c.Describe this stock's vulnerability (see "Appendix to the SAW TORs") to becoming overfished, and how this could affect the choice of ABC.

Productivity of the stock is low with two decades of poor recruitment and a truncated age structure. Natural mortality may have increased in recent years, thus accounting for the low productivity although evidence for such an increase is lacking in the food habits data. However, the analysis of 2003-2006 tagging data suggests M was high during the years tagged cod were released. Cod have been shown to have low hatching rate for 1<sup>st</sup> and 2<sup>nd</sup> time spawners (13% and 62%) (Trippel 1998), suggesting that an age structure of older repeat spawners would likely be more productive, under favorable environmental conditions. Given the uncertainty in the magnitude of M and the overfished state of the stock, at 7% of SSB<sub>MSY</sub> the stock is vulnerable to an allowable biological catch (ABC) quota that is too high.

See Summary Section

# ToR 9. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in recent SARC reviewed assessments and review panel reports. Identify new research recommendations.

The WG reviewed the status of previous research recommendations and proposed new ones to address issues raised during the three WG meetings, indicating priorities (<u>High</u>, <u>Medium</u>, <u>Low</u>)

as it felt appropriate. Some of these recommendations were felt to be common to both Gulf of Maine and GB cod.

The SAW 55 WG reviewed the status of previous research recommendations and proposed new ones to address issues raised during the three WG meetings. The WG proposed six new research recommendations which primarily focus on improving estimates of natural mortality and the survival of post-capture fish as well as advances in assessment methods. All new research recommendations proposed by the SAW 55 WG have been assigned relative priorities as appropriate. Many of these recommendations were felt to be common to both the Gulf of Maine and Georges Bank Atlantic cod stocks and are labeled as 'general'.

See Recommendations Section.

#### B. Georges Bank Atlantic Cod Gadus morhua

#### Background

#### Distribution and Stock Structure

The Atlantic cod, *Gadus morhua*, is a demersal gadoid species found on both sides of the North Atlantic. In the Northwest Atlantic, cod occur from Greenland to North Carolina (Collette and Klein–MacPhee 2002). In US waters (Figure B1), cod are assessed and managed as two stocks: (i) Gulf of Maine and (ii) Georges Bank and southward (Serchuk et al. 1994)

Recent reviews of historical and contemporary tagging studies (O'Brien et al. 2005, Tallack 2007, Loehrke and Cadrin 2007) suggest that there is movement of fish between the Gulf of Maine and Georges Bank stocks with the degree of mixing < 30% (Hunt et al. 1999, Tallack 2009, Miller 2012). The SAW 55 WG reviewed some preliminary analyses evaluating possible impacts of stock mixing on assessment results (Chen and Cao 2012). Overall, the results indicated that the lack of consideration of inter-stock mixing had little impact on the Gulf of Maine cod assessment results. By inference, little impact would be expected for the GB cod stock model results. The importance of the quality of the catch information was highlighted. The WG expressed several concerns and possible areas of improvement in the analysis. While the study is a work in progress with many assumptions and issues to be resolved, it highlighted the value of undertaking modeling to explore complex spatial processes influencing cod in the Gulf of Maine – Georges Bank region.

Several meta-analyses of the life history parameters of Atlantic cod in the region have been conducted over the last four decades that generally support the current stock boundaries. These investigations have highlighted differences in both the growth and maturity rates between the Gulf of Maine and Georges Bank stocks (Pentilla and Gifford 1976, Begg et al. 1999).

A work plan on the topic of Atlantic cod stock structure in the Northeast United States/Scotian Shelf region was recommended in 2012 by the New England Fishery Management Council's Scientific and Statistical Committee. The work plan laid out a three-phase process for reevaluating, and possibly revising, the spatial basis for assessment and management of Atlantic cod. The first phase was to review data (genetic, life history, tagging, etc.) in order to evaluate the "null hypothesis" of the status quo management units.

The NEFSC sponsored a public workshop on cod stock structure, held June 12-14, 2012, facilitated by the Gulf of Maine Research Institute to address Phase I. Invited participants from the fishing and scientific communities presented on a range of topics with opportunities for discussion. The full workshop report is available at <u>http://www.gmri.org/mini/index.asp?ID=52.</u>

Many of the workshop participants felt that there was compelling evidence that the current management units need to be revised. The Workshop did not reach any conclusions on what the most appropriate management units might be. This will require further data analysis and modeling in order to complete Phase I of the SSC recommended process. The workshop report also identifies gaps in the data and analyses and recommended action to address them.

The Workshop did not explicitly address and propose the next steps in the process. The Steering Committee recommended that an inclusive but focused Working Group meeting be held involving a small group of Canadian and US scientists to consider the results of the Workshop. This Working Group should be provided the short-term data and analyses identified as missing by the Workshop. Using that information, as well as the conclusions from the Workshop, the Working Group should determine the most appropriate representations of biological stock structure to complete Phase I of the process. The results from this Working Group meeting should be evaluated through an independent peer-review process.

Since the phased review process of cod stock structure that was recommended by the SSC has not been completed, no changes to stock structure were incorporated into this assessment.

#### Assessment History

The Georges Bank (GB) Atlantic cod *Gadus morhua* stock was last assessed and peer reviewed in February 2012 (O'Brien et al. 2012). Georges Bank cod assessments were first conducted during the International Convention for the Northwest Atlantic Fisheries (ICNAF) era. In all contemporary assessments the age-structured Virtual Population Analysis (VPA) model has been applied. Since the inception of the SARC/SAW process the GB cod stock has been assessed in 1985 (Anthony and Murawski 1985), 1986 (Serchuk and Wigley 1986), 1988 (Serchuk 1988), 1990 (Serchuk and Wigley 1990), 1991 (Serchuk et al. 1991), 1992 (Serchuk et al 1992), 1993 (Mayo et al. 1994), 1994 (Serchuk et al. 1994), and 1997 (O'Brien 1999). The stock was assessed in the Transboundary Resources Assessment Committee (TRAC) in 1998 (O'Brien and Cadrin 1999), 2000 (O'Brien and Munroe 2000), and 2001 (O'Brien and Munroe 2001). The stock was next assessed by the Groundfish Assessment Review Meeting (GARM) in 2002 (O'Brien et al. 2002), 2005 (O'Brien et al 2006), and 2008 (O'Brien et al. 2008). The 2012 assessment (this document) is being assessed by SARC 55.

Serchuk and Wigley (1992) provide a very thorough and comprehensive historical review of GB cod assessments and fishery. More recently, in 2002, the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish established biological reference points (BRPs) for GB cod based on a Beverton-Holt stock recruit relationship with an assumed prior for the unfished recruitment from the VPA data (NEFSC 2002). The BRPs were:  $F_{MSY} = 0.175$ , MSY = 35,200 mt and SSB<sub>MSY</sub> = 217,000 mt. The MSY included commercial landings only and did not include recreational landings or discards. In 2008, BRPs for GB cod were re-established by the GARM III BRP Review Panel (O'Boyle 2008). Based on a non-parametric YPR analysis the  $F_{MSY}$  proxy was set as  $F_{40\%}$  of maximum spawning potential, and SSB<sub>MSY</sub> and MSY were estimated based on long-term projections at  $F_{40\%}$ .

| Stock Assessment |           | F <sub>0.1</sub> | F <sub>40%</sub> | F MSY | B <sub>MSY</sub> (mt) |
|------------------|-----------|------------------|------------------|-------|-----------------------|
| SAW              | 2000      | 0.18             |                  |       | 108,000               |
| SAW              | 2001      | 0.18             |                  |       | 108,000               |
| GARM I           | 2002      |                  |                  | 0.18  | 217,000               |
| GARM II          | 2005      |                  |                  | 0.18  | 217,000               |
| GARM III         | 2008      |                  | 0.25             |       |                       |
| Update           | 2012, Feb |                  | 0.23             |       |                       |

BRPs for recent assessments:

In the 2008 assessment (O'Brien et al. 2008), fully recruited F shifted from age 4, as seen in previous assessments, to fully recruited F at age 5. This was due, in part, to increases in minimum mesh size requirements to 6.5 inch square or diamond mesh that were established in May 2002. From 1999 to 2002, mesh requirements had been 6.5 inch square or 6.0 inch diamond mesh. To address the retrospective bias all survey times series of abundance used for calibration were split between 1994/1995. The split lessened the retrospective bias and the perceived 'change in catchability' was considered to alias an unknown mechanism that is the cause of the retrospective bias.

#### Fishery

#### Management

Georges Bank Atlantic cod is a transboundary stock that historically had been harvested by both USA and Canadian fishing fleets. Since October 1984, with implementation of the Hague Line by the International Court of Justice, delimiting the EEZ boundary, neither country has had access to the full stock, only those portions within their respective waters.

Since 1970, two areas of GB have been closed to USA fishing during some or all of the months from February-May. In December of 1994, these areas, designated Closed Areas I and II were closed year-round (Figure B1). Also since 1994, the Canadian fishery for GB cod (SA 551-552) has been closed from January through May, and since 2005, February through May.

Prior to 1977, GB cod was managed by quota allocation within ICNAF. Since 1977, USA commercial and recreational fisheries for cod have been managed under the New England Fishery Management Council's (NEFMC) Northeast Multispecies Fishery Management Plan (FMP). Under this FMP, cod were included in a complex of 16 groundfish species managed by time/area closures, gear restrictions, and minimum size limits. Starting in 1994, this complex was managed using direct effort controls, including a moratorium on permits and days-at-sea restrictions under Amendments 5, 7, and 13 to the FMP. Trip limits were in effect for both Gulf of Maine and Georges Bank cod. Amendment 9 established initial biomass rebuilding targets (NEFMC 1998) and defined control rules which specify target fishing mortality rates and corresponding rebuilding time horizons. Amendment 13 implemented formal rebuilding plans within specified time frames, based on revised biomass and fishing mortality targets derived by the Working Group on Re-evaluation of Biological Reference Points for New England Groundfish (2002) for 18 groundfish stocks reviewed at the 2002 Groundfish Assessment Review Meeting (GARM) (NEFSC 2002a, 2002b). The goal of the management program is to reduce fishing mortality to levels which will allow stocks within the complex to initially rebuild above minimum biomass thresholds and, ultimately, to remain at or near target biomass levels. Framework 42 was implemented in 2006, establishing B<sub>MSY</sub> targets and F<sub>MSY</sub> thresholds, as well as formal rebuilding plans for overfished stocks, reviewed at the 2005 Groundfish Assessment Review Meeting (GARM II) (NEFSC 2005). In addition, a formal quota-sharing agreement was implemented in 2004 between Canada and the USA to share the harvest of cod in the transboundary eastern GB cod management unit. The agreement includes total allowable catch quotas for each country as well as in-season monitoring of the USA catch of cod on eastern Georges Bank. The Canadian fishery on Georges Bank is managed under an individual quota

system.

In 2010, the domestic groundfish fishery experienced a major management change with the passage of Amendment 16. Amendment 16, with the introduction of annual catch limits (ACLs), represented a return to the use of hard TACs. Additionally, 17 new groundfish sectors were approved and those vessels not members of a groundfish sector were subject to additional cuts in DAS and restrictive trip limits. Vessels fishing under the sector management were exempt from DAS restrictions and instead, each sector was given a share of the total commercial groundfish sub-ACL. How the catch was divided up amongst sector vessels or how catch was allocated throughout the year was left to the sole discretion of the sector. One of the requirements of Amendment 16 was an increase in the overall level of observer coverage. This was accomplished using observers trained through the existing Northeast Fisheries Observer Program (NEFOP) as well as a new class of observers termed At-Sea Monitors (ASMs). The data collection protocols for ASMs were restricted to catch estimation and the collection of limited biological information (e.g., lengths). The recent shift to a catch share system in 2010 appears to have dramatically reduced discards but it is too soon to fully understand the overall impacts of the sector management system. Details of USA management measures, not totally inclusive, are in Appendix B1. Table 1 and Canadian management measures are listed in Appendix B1. Table 2.

#### Commercial Data Collection

The collecting and processing of the commercial fishery and landings data has been conducted using two methods during the time series. Prior to 1994, information of the catch quantity, by market category, was derived from reports of landings transactions submitted voluntarily by processors and dealers. More detailed data on fishing effort and location of fishing activity were obtained for a subset of trips from personal interviews of fishing captains conducted by port agents in the major ports of the Northeast. Information acquired from the interview was used to augment the total catch information obtained from the dealer.

In 1994, a mandatory reporting system was initiated requiring anyone fishing for or purchasing regulated groundfish in the Northeast to submit either vessel trip reports (VTR; logbooks) or dealer reports, respectively (Power *et al.* 1997 WP). Information on fishing effort (number of hauls, average haul time) and catch location were now obtained from logbooks submitted to NMFS by vessel captains instead of personal interviews. Estimates of total catch by species and market category were derived from mandatory dealer reports submitted on a trip basis to NMFS. Since 1994, catches by market category were allocated to area fished using a multi-tier tripbased allocation procedure as described at the GARM III data meeting (Wigley et al. 2008). Dealer electronic reporting was implemented in May 2004, however, this did not result in any changes to the allocation procedure. The uncertainty in allocation of landings to an area, the random component of the allocation, estimated for yellowtail flounder and haddock stocks (Legault et al 2008) indicated very low magnitude of uncertainty. The conclusion is that this source of uncertainty is not of consequence within NEFSC stock assessments.

# Commercial Catch

#### Commercial Landings

Total GB cod commercial landings taken by USA and Canadian fleets, and Distant Water Fleets

(DWF) are available from 1893-2011 (Figure B2a) and total catch is available from 1960-2011 (Table B1, Figure B2b). Landings data were reported by area (e.g. Georges Bank and Gulf of Maine) only since 1932 (Serchuk and Wigley 1992) thus the landings prior to that time have been prorated to stock area. USA cod landings are generally highest in the second calendar quarter (April-June) and are taken predominantly from the western part of Georges Bank (statistical areas (SA) 521-522, 525-526, 537-539, and Subarea 6) throughout the year (Table B2a-b). Landings from SA 537-539 and Subarea 6 contribute a small percentage to total landings. The majority of the landings from the eastern part of Georges Bank (SA 561-562) are taken in the first and second calendar quarter (Table B2a-b). USA cod landings are taken primarily by otter trawl gear and gill net gear (Table B3). Landings are classified into several market categories but are primarily landed as either: 'scrod', 'market' or 'large'. The 'market' category followed by the 'scrod' category generally represents the majority of landings (Figure B3).

Since 1994, the Canadian fishery for GB cod (SA 551-552) has been closed from January through May, and since 2005, February through May. Canadian landings are taken primarily during the third quarter (July-September) by long line and otter trawl gear.

Total USA commercial landings ranged between 11,000 mt to 40,000 mt during 1960-1993, averaging about 21,000 mt. As stock biomass declined and year round closures were implemented in December 1994, landings declined, ranging between 3,000 mt – 15,000 mt during 1994-2011, averaging about 6,000 mt. Total Canadian landings ranged between 19 mt to 18,000 mt during 1960-1993 and after large quota restrictions in 1993, CA landings ranged between 600 mt to 8,500 mt with an average of about 1,600 mt during 1994-2011.

Total USA and Canadian commercial landings of GB cod were 4,454 mt in 2011, a 13% increase from 2010. In 2011, the USA accounted for 83% of the total landings and Canada the remaining 17%.

#### Commercial Discards

Atlantic cod discarded on Georges Bank by the USA commercial fisheries were estimated from the NEFSC 1989-2011 observer data (NEFOP) and the 2010-2011 at- sea monitoring (ASM) data using the Standardized Bycatch Reporting Methodology (SBRM) as recommended by the GARM III Data meeting (GARM 2007, Wigley et al. 2007). Comparison of the NEFOP and ASM data showed no significant differences, so the data was used in combination. Using observed tows only, a ratio of discarded cod to total kept of all species (d:k) was estimated on a trip basis by gear, quarter, and area (western GB, eastern GB, and Southern New England). Discard estimates were derived for the large and small mesh otter trawl, large mesh gillnet, longline, and scallop gears. Large and small mesh was defined by mesh greater or lesser than  $5\frac{1}{2}$ inches, respectively. If there were insufficient trips per quarter (less than 2) d:k was imputed from the half year or full year estimate. Total discards by weight for each gear (Table B4) were estimated from the product of d:k and total commercial landings of all species in the gear/quarter/area stratum. Uncertainty estimates presented as coefficients of variation varied between 8% and 53% for the total GB cod discard estimates (Table B4). Estimates of cod discarded in the large mesh otter trawl fishery during 1978-1988 were hindcasted using a survey filter method (O'Brien and Esteves 2001, Mayo et al. 1992, Palmer et al. 2008).

A NEFSC sponsored workshop was held in July 2012 to determine the mortality of discarded cod caught in gear off the coast of New England. The Northern Demersal Working Group (WG) agreed that the following 'Delphi' determined mortality rates were to be applied to the final estimates of USA discards included in this assessment.

| Mortality Rate (%)     |             |         |          |               |              |
|------------------------|-------------|---------|----------|---------------|--------------|
|                        | Otter trawl | Gillnet | Longline | Hook and line | Recreational |
| 25TH PERCENTILE        | 70          | 68      | 26       | 13            | 20           |
| MEDIAN                 | 75          | 80      | 33       | 20            | 30           |
| <b>75TH PERCENTILE</b> | 80          | 86      | 39       | 25            | 35           |

Cod discards in the Canadian fishery are not expected given the regulation that prohibits discarding of undersized fish. However, discards in the groundfish fishery have been estimated with the ratio of sums method, using the difference in ratio of cod to haddock from observed and unobserved trips. There is a lack of observer data for both mobile and fixed gear prior to 1997; however, estimates of cod discards in the groundfish fishery are provided for 1997-1999, 2005-2006, 2008-2011 (Wang and O'Brien 2012). The Canadian scallop fishery has been prohibited from landing cod since 1996. Discards in this fishery were estimated using the ratio of discards to scallop effort from 1978-2004 (Van Eeckhaute et al. 2005) and using a 3-month moving window estimation of discard rate per hour to monthly effort in hours since 2005 (Gavaris et al. 2007) (Table B1).

In the USA fishery, otter trawl gear accounts for the majority of the discarded fish in western and eastern Georges Bank and in Southern New England. Discards have ranged between 100 mt - 600 mt, representing 5% of the USA commercial catch on average (Table B1). In the Canadian fishery, discards represent about 9% of the Canadian catch on average (Table B1).

In 2011, the USA commercial fisheries discarded 122 mt (CV = 12%) of GB cod and the Canadian fisheries discarded 42 mt of GB cod. USA discards accounted for 3% and Canadian discards accounted for 1% of the total GB cod catch in 2011 (Table B1, Figure B2b).

# Recreational Catch

# Landings and Discards

USA recreational landings (a + b1) and discards (b2) of GB cod were estimated using data provided by the NOAA Marine Recreational Fisheries Statistics Survey (MRFSS) from 1981-2003, and from the NOAA Marine Recreational Information Program (MRIP) from 2004-2011. Interview data from all ports south of Massachusetts were considered to be from the GB stock. Data collected from Massachusetts was assigned to the Gulf of Maine (GM) or GB stock based on the port landed; any data from ports on the south side of Cape Cod were considered to be from the GB stock while those on the north side were assigned to the GM stock.

A MRIP/MRFSS ratio of means for 2004-2011 was applied to the 1981-2003 MRFSS numbers to convert to MRIP equivalents. The ratio of 1.01 was applied to numbers landed (a + b1) by half year and the ratio of .65 to numbers discarded (b2) by half year (Table B5a). The uncertainty of the recreational catch estimates, measured as percent standard error (PSE), is generally less than 20% for Massachusetts catch, but more variable and higher for Rhode Island and New York

catches (Table B5b).

Recreational catch accounts for 1%-10% of the total catch since 1981, and in the past five years averaged 2% of the catch. In 2011 recreational catch was 219 mt, 5% of the total catch.

# Total Catch

Total catch ranged between 11,000 mt to 62,000 mt during 1960-1993, averaging about 35,000 mt. After the year round closures were implemented in December 1994, catches declined, ranging between 4,000 mt - 16,000 mt during 1994-2011, averaging about 8,400 mt.

Total combined USA and Canadian catch of GB cod was 4,472 mt in 2011, a 13% increase from 3,950 mt caught in 2010. USA catches accounted for 83% of the total catch in 2011 and Canadian catches accounted for remaining 17%.

#### Sampling intensity

The numbers of samples taken to characterize the length and age composition of the USA and Canadian commercial cod landings from GB are summarized in Tables B6a and B6b. In the USA fishery, sampling intensity by market category has improved since 1978, in part due to the decline in landings over time. Sampling intensity has been relatively high since 2003, ranging between one sample per 4 mt to 1 sample per 53 mt (Table B6a). These estimates are biased, however, since samples are usually less than the recommended 100 fish/sample, particularly for the 'large' market category. In the USA fishery the average number of fish measured per sample was 57 and the average number of fish aged per sample was 15 during 2011. In the Canadian fishery, sampling since 2003 has ranged between one sample per 2 mt to one sample per 16 mt. The average number of fish measured per sample was 212 and the average number of fish aged per sample was 35 in the Canadian fishery during 2011 (Table B6b).

# Age and Size Composition

# USA Commercial Landings at Age

For the 2008 cod benchmark, the age and size composition of the 1978-2007 USA landings, disaggregated into eastern (SA 561-562) and western Georges Bank (SA 521-522, 525-526, 537-539) was estimated, by market category, from length frequency and age samples pooled by calendar quarter (O'Brien et al. 2008). In some years samples were pooled semi-annually or annually within a market category or samples were 'borrowed' from adjacent areas, due to an insufficient number of samples within a quarter.

Landed mean weights were estimated by applying seasonal length-weight equations based on 1992-2007 spring and autumn research survey data to the quarterly length frequency samples, by market category,by area:

Statistical areas: 521,522,525,526,561,562 (Georges Bank) Quarter 1 and 2 : ln weight (kg,live) = -11.6913 + 3.0291 ln length (cm), (1) Quarter 3 and 4: ln weight (kg,live) = -11.9883 + 3.1221 ln length (cm), (2)

Statistical areas: 537,538,539 (Southern New England) Quarter 1 and 2 : In weight (kg,live) = -12.4143 + 3.2341 ln length (cm), (3) Numbers of fish landed, by quarter, were estimated by dividing the mean weight into the quarterly landings, by market category, and prorating the total numbers by the corresponding market category sample length frequency. Quarterly age-length keys were then applied to the numbers-at-length to estimate numbers landed at age. Annual estimates of landings at age were obtained by summing values over market category and quarter. Derivation of landings at age by quarter, rather than by month, was performed since not all months had at least two length frequency samples per market category (i.e., minimum desired for monthly catch estimates).

In 2012, the age and size composition of the 2008-2011 USA landings was estimated as described above. A comparison of the 1992-2007 length-weight relationship with an updated 1992-2011 length-weight relationship indicated minimal differences (see Length-Weight section), therefore, the 1992-2007 length-weight relationship continued to be used in the estimation of 2008-2011 age and size composition of commercial landings.

Uncertainty in estimation of landings at age, measured as the coefficient of variation (CV) are lower for younger ages, less than 20%, compared to the older ages, where fewer samples are available (Table B7).

The eastern and western Georges Bank landings-at-age were combined to obtain the landings-atage matrix in numbers (Figure B4), weight, mean weight, and mean length during 1978-2011 (Table B8a). The 2011 landings were dominated by age 3 and age 4 fish of the 2008 and 2007 year class (Table B8a). The 2003 year class was the most recent year class of note but still below the long term average. This year class's contribution to the fishery is now minimal, however, the number of age 8 fish in 2011 is the highest since the 1996 year class at this age.

# Canadian Commercial Landings at Age

Canadian landings-at-age data from the Northeast Peak of Georges Bank (SA 551-552) were obtained from Y. Wang, (Department of Fisheries and Oceans (DFO), St. Andrews NB) for 1978-2011 (Wang and O'Brien 2012). Size and age composition of the landings was estimated from pooled port and at-sea samples by quarter and gear type (otter trawl, gillnet, and longline), rather than by market category as in the USA. Seasonal length-weight equations, based on 1995-2000 observer data (Wang et al. 2009) were applied to quarterly length frequency samples, by gear:

| Quarter 1 and 2 : | ln weight (kg, live) = -11.4689 + 2.9832 ln length (cm) | (5) |
|-------------------|---------------------------------------------------------|-----|
| Quarter 3 :       | ln weight (kg, live) = -11.0922 + 2.9069 ln length (cm) | (6) |
| Quarter 4 :       | ln weight (kg, live) = -11.3264 + 2.9775 ln length (cm) | (7) |

The Canadian landings-at-age matrix in numbers (Figure B5), weight (mt), mean weight (kg) and mean length (cm) for 1978-2011 are presented in Table B8b. The 2011 landings were dominated by age 4 and age 5 fish of the 2007 and 2006 year class (Table B8b).

# USA Commercial Discards at Age

The age and size composition of cod discarded in the commercial fishery during 1989-2011 were estimated similarly to that described above for commercial landings by applying combined survey and commercial age-length keys, by half year, to observer length frequency data, and using the 1992-2011 length weight equation derived from spring and autumn research survey data:

| Quarter 1 and 2 : | ln weight (kg,live) = $-11.7019 + 3.0269$ ln length (cm) | (8)  |
|-------------------|----------------------------------------------------------|------|
| Quarter 3 and 4:  | ln weight (kg,live) = $-12.0190 + 3.1313$ ln length (cm) | (9). |

In the large mesh otter trawl fishery, a higher proportion of larger fish and a lower proportion of smaller fish were discarded on eastern GB compared to western over the time series (Figure B6). In the western GB area, a higher proportion of smaller fish were discarded in the latter half of the year and a high proportion of larger fish discarded in the first half of the year (Figure B6). Thus, discards at age for large mesh otter trawl were estimated by half-year, for eastern and western GB. Also, given the generally lower amount of large mesh otter trawl discards in the Southern New England (SNE) area, these data were added to western GB. Summarization of length sampling data by gear indicated a combination of low or sporadic sampling over the time series (Table B9), particularly for small mesh otter trawl and scallop dredge. Comparison of length frequency samples by gear indicated that the length range of discards was similar between the gears. Therefore, discards at age for all gears were estimated by prorating large mesh otter trawl discards at age during 1989-2011 were obtained by summarizing across half-years and areas (eastern GB and western GB+SNE).

The age and size composition of discards for 1978-1988 was initially presented at the 2008 benchmark review (O'Brien et al. 2008). Using the hindcasted discards at length for large mesh otter trawl estimated by the survey filter method (O'Brien and Esteves 2001, Mayo *et al.* 1992, Palmer et al. 2008), discards at age were estimated by applying autumn research survey proportions at age and the historical length-weight equation:

$$\ln \text{ weight (kg,live)} = -11.7231 + 3.0521 \ln \text{ length (cm)}$$
(10).

Equation 10 had been used historically before the current survey length-weight data became available after 1992.

The total USA commercial discards-at-age in numbers, weight (mt), mean weight (kg) and mean length (cm) for 1978-2011 are presented in Table B10a. The commercial discards are generally dominated by age 2 and age 3 fish during the time series (Table B10a).

# Canadian Commercial Discards at Age

Discards from the Canadian groundfish fishery were assumed to have the same size and age composition as the fishery landings. The size composition of discards from the scallop fishery was estimated using observer length frequency and age data (Wang and O'Brien 2012). The total Canadian commercial discards-at-age in numbers, weight (mt), mean weight (kg) and mean length (cm) for 1978-2011 are presented in Table B10b. The commercial discards are generally

dominated by age 2 and age 3 fish during the time series (Table B10b).

Combined USA and Canadian discards at age indicate that ages 2 and 3 are primarily discarded in recent years (Figure B7).

# USA Recreational Landings and Discards at Age

The number of length samples taken in the recreational fishery is insufficient to be used in estimating the landings at age. However, a review of the limited samples available indicated a length range similar to that observed in the NEFSC survey. Assuming that recreationally captured fish are caught in proportion to the population age structure, a combined commercial and survey age-length key, and research survey length frequencies and length-weight relationships (Eq. 8 and 9) were applied by half-year to the number of fish caught to obtain the recreational landings and discards at age for 1981-2011.

Landings and discard length frequencies were differentiated by applying a length cutoff to the survey length frequency. The length cutoff corresponded to the minimum size regulation in effect at the time and the minimum size observed in length samples taken by MRFSS/MRIP:

1981-1985: 30 cm 1986: 38 cm 1987: 43 cm 1988: 43 cm 1989: 48 cm 1996: 51 cm 2002-2011: 58 cm

For 1978-1980, MRFSS data was not collected, therefore, the magnitude and size composition of the recreational catches in those years were assumed to be equivalent to the 1981 estimates.

The recreational catch at age, in numbers, weight (mt), mean weight (kg) and mean length (cm) during 1981-2011 are presented in Table B11a for landings and Table B11b for discards. The recreational catch would appear to be dominated by ages 4-5 in the landings component and ages 2-3 in the discard component in recent years (Table B10b, Figure B8).

Recreational catch represents 1%-20% of the total USA catch of cod during 1981-2011. In 2011, recreational catch accounted for 5% of the total GB cod catch (Table B1, Figure B2b).

# Total Catch at Age

The total catch at age is summarized across all components during 1978-2011: USA commercial landings and discards, USA recreational landings and discards, and Canadian commercial landings and discards and is presented for numbers (000s), weight (mt), mean weight (kg) and mean length (cm) of fish at age in Table B12. The total catch numbers at age will be input to the assessment model formulation.

The total catch during 2011 was dominated by age 3 and age 4 fish of the 2008 and 2007 year

#### class (Table B12, Figure B9).

# Catch Mean Weight and Length at Age

Mid-year mean weights at age for ages 1-10+ are summarized for USA (Table B8a) and Canadian landings (Table B8b) and total catch (Table B12). Although there does not appear to be a trend in January 1 mean weight for ages 1-3 during the 34-year time series, there does appear to be a declining trend in mean weight for ages 4-9 (Figure B10a). The mean weight for age 10+ has been increasing, however, since 2007. The trend in mean lengths at age (Figure 10b) is similar to the trend in mean weight suggesting that there has not been a decline in condition for commercially and recreationally caught GB cod.

#### **Stock Abundance and Biomass Indices**

#### Commercial Catch Rates

A general linear model (GLM), first conducted in the 1993 assessment (Mayo et al. 1994a; Mayo *et al.* 1994b) was repeated in the current assessment to estimate USA standardized fishing effort and commercial landings-per-unit-effort (LPUE; mt/day fished) for Georges Bank cod during 1978-2011. Prior to the 1994 assessment, trends in fishing effort and LPUE had been estimated but these were not standardized estimates (Serchuk et al. 1993). Factors included in the GLM were year, statistical area (521,522,561,562,525,526), calendar quarter, tonnage class (TC 31, 32, 33, 41) and depth code (1 =1-30 fathom, 2=31-60 fm, 3=61-100 fm). The specific factors used for standardization were year 1978, area 521, quarter 2, TC 33, and depth code 3. Landings data included all USA interviewed otter trawl trips landing cod during 1978-1993 and any otter trawl trips that reported landing cod on the VTR during 1994-2011 from the Georges Bank area. The LPUE index indicates a declining trend from 1980 through 1995, a gradual increase to 2002 with another decline through 2006, then an increasing trend to 2011(Figure B11).

Standardized effort and LPUE were last estimated in the 1998 assessment (O'Brien and Cadrin 1999). In 1998, under the management restrictions of days at sea (DAS), larger mesh sizes, closed areas since December of 1994, mandatory logbooks for collection of effort data implemented in May 1994, and other management measures, the post 1994 effort data was no longer considered to be equivalent to the historic 1978-1993 effort series. The LPUE series was, therefore, not used as an index of abundance in the 1998 assessment (O'Brien and Cadrin 1999) or in any subsequent assessments.

The WG reviewed the analysis and recommended that the standardized 1978-2011 LPUE series not be used in the SAW 55 assessment model for several reasons. The LPUE does not represent the entire stock because the index incorporates only the USA landings and effort data and since 1985, only from the western part of the stock area. This was illustrated in a series of quarterly distribution maps of commercial LPUE during 1978-1994 (WP 17a-c) and annual distribution maps of LPUE during 1994-2011 (WP 16). The Canadian fishery contributes about an average 25% to the overall landings and that is not accounted for in the GLM. In addition, there have been significant regulatory changes since 1994 as described above and most recently the implementation of sector management since May 2010, all resulting in spatial shifts in the fishery. All of these factors detract from the utility of the index as a measure of abundance. The WG recommendation to not utilize the index is consistent with the findings of the recent

#### NEFSC-sponsored LPUE workshop.

#### Recreational Catch Rates

A log-normal general linear model (GLM) was applied to recreational data to estimate an LPUE index (cod landed/angler hour) for Georges Bank cod during 1994-2011 (WP 11). The link function was the 'identity' and factors used in the standardization included year, month, area, permit, and fishing category (party vs. charter). Zero-inflated models were fit and there were no significant differences in trend compared to the log-normal. The standardized LPUE index indicates a variable but declining trend from 1994 to 2002 and then a variable but increasing trend from 2003-2011 (Figure B11).

The WG had several concerns with respect to the applicability of the LPUE index. At the beginning of the time series, there is uncertainty whether the data reported was in pounds or in numbers (as required). There were a limited number of party/charter boats involved in the fishery (17), but only a few vessels (4) consistently fished over the time series. In addition, the fishery was conducted primarily in the westernmost part of the stock area. The WG concluded that the recreational LPUE index was not representative of the stock and should not be included in the assessment model.

# Survey Biomass and abundance indices

#### USA Surveys

NEFSC spring and autumn research bottom trawl surveys have been conducted off the Northeast coast of the USA since 1968 and 1963, respectively (Azarovitz 1981). Indices of abundance (stratified mean number per tow) and biomass (stratified mean weight per tow (kg)) were estimated from both the spring and autumn surveys for Georges Bank cod (offshore strata 13-25, Figure B12a) during 1963-2012. The indices were standardized for differences in fishing power of the FRV Albatross IV and the FRV Delaware II, for differences between catchability of BMV and polyvalent doors, introduced in 1985, and for the calibration of the FSV H.B. Bigelow catches to FRV Albatross IV units. The fishing power coefficients of 0.79 and 0.67 to convert Delaware II to Albatross IV equivalents and the door conversion coefficients of 1.56 and 1.62 were both applied to abundance and biomass indices, respectively (NEFSC 1991). Spring surveys were conducted with a Yankee #41 trawl during 1973-1981, and with a Yankee #36 for all other years through 2008. No fishing power coefficients are available, however, for adjusting the Yankee #41 to Yankee #36 equivalents. Since 2009, for both seasons, length-based conversion coefficients (Brooks et al. 2010, Table B13) and a constant weight conversion coefficient of 1.579 (Miller et al. 2010) have been applied to the *Bigelow* catch per tow data to standardize to Albatross IV units.

NEFSC spring and autumn catch per tow biomass and abundance indices show similar trends throughout the time series (Tables B14, Figures B13a-B13b). Survey indices were variable but relatively stable between 1963 and the early 1980s, then gradually declined until about 1995 and have remained low since that time.

Survey abundance indices for age 1 in the autumn survey indicate above-average recruitment of the 1966, 1971, 1975, 1977, 1980, 1983, 1985, 1988, and 2008 year classes (Figure B14). The

2008 is the first year class, as age 1, to be above the time series average in 20 years. As 2 year old fish, the 1993 year class was above average, and the 1996 year class was average. Although the 2006, 2007, 2008, and 2009 year classes as age 2 fish are each below average they are all about the same magnitude. The magnitude of an above-average year class has been declining over time, particularly noticeable in the recruits at age 1. Standardized catch per tow at age in numbers for NEFSC spring and autumn surveys are presented in Tables B15a-B15b and Figure B15).

#### Canadian Surveys

Canadian research bottom trawl surveys have been conducted in February-March on Georges Bank (strata 5Z1-5Z8, Figure 12b) since 1986. Survey abundance indices have fluctuated and generally declined during 1990-2004 and have been increasing until 2010 (Figure B13b). Both the 1999 and 2000 indices increased primarily due to the recruitment of the 1996 year class (Table 15c, Figure B16). Abundance indices for ages 1 and 2 indicate above average recruitment of the 1985, 1987,1988, 1990, and 2003 year classes (Figure B16). In 1993, 1994, and 2012 the DFO survey did not sample the western part of Georges Bank (DFO strata 5Z5 - 5Z7), therefore, the indices of stratified mean number per tow at age in those years were not used in the assessment model formulation. Standardized catch per tow at age in number for DFO spring surveys are presented in Table B15c and Figure B17.

#### Model-Based Abundance Indices

The WG considered a GLM model to investigate the utility of model-based survey indices of abundance for the NEFSC spring and autumn survey data compared to the design based indices described above. The factors included in the model were year, stratum, temperature, depth, and time of day (WP 7). The negative binominal model with factors of year, stratum, and time of day gave the best fit to the data for both spring and autumn.

Overall, the model and design – based abundance and biomass trends are very similar. The WG concluded that the GLM is acting as a time series smoother and thus to best reflect uncertainty in the survey data, the WG recommends use of the design-based indices. The CVs from the GLM are comparable to those generated during the stage two iterative re-weighting process (in the ASAP model diagnostics) as the latter incorporates both observation and process error, similar to what the GLM produces.

#### Ageing Precision

Details of the quality assurance and quality control for the aging of Atlantic cod by the Fishery Biology Program at the NEFSC Woods Hole Laboratory can be found at http://www.nefsc.noaa.gov/fbp/QA-QC/cod-results.html

The precision for aging of cod otoliths is high; During 2008-2011 the percent agreement ranged between 85.9%- 100% with CVs less than 5.5%.

# **Life-History**

#### Length-Weight Relationship

In 1992, NEFSC research survey protocols were modified thus enabling the collection of individual weight at length for all fish sampled for age structures and maturity. Prior to that time, the length-weight (LW) equation available for analyses was equation 10, described above. In 2008, seasonal LW equations of the form: weight= a\*Length<sup>b</sup> were estimated using cod survey data from Georges Bank (offshore strata 13-25) and SNE (offshore strata 5-10) with combined sexes and the years 1992-2007 combined (equations 1-4 above). These equations were applied to analyses in the 2008 benchmark assessment (O'Brien et al. 2008).

In this assessment, the LW equation has been updated through 2011 for GB and SNE, however, additional strata (offshore 5-10 plus offshore 61-76 and inshore 1-51, 53) have been included in the SNE estimation. The updated 1992-2011 LW equation is compared to the 1992-2007 and historical equations (Figure B18). In both the spring and the autumn, in both areas, the two equations are nearly identical, and the 95% confidence intervals for the 1992-2011 equations are slightly narrower or equivalent to the 95% confidence intervals of the 1992-2007 equations (Figure B18). For Georges Bank, the two contemporary equations show greater weight at length in the autumn, primarily for fish greater than 80 cm, whereas in the spring, the contemporary equations show smaller weight at length when compared to the historical equation (Figure B19). For the GB cod stock, with a truncated age structure and relatively few large fish in the population, these differences are not a concern for the short term. Also, the historical equation is within the confidence bounds of both contemporary equations in the two areas and two seasons.

Length-weight equations for each season and area were estimated by 5-year time blocks and compared to the two time series relationships (Figure B20). For GB in the spring the 1992-1996 time block had greater weight at length and the 2007-2011 time block had smaller weight at length relative to the 1997-2001 and 2002-2006 time blocks and the two times series relationships. In the autumn, all six relationships were very similar for GB (Figure B20). The differences between seasons is likely related to feeding and spawning condition during the spring spawning season compared to fish in the autumn that have been feeding throughout the summer. The SNE pattern was opposite to that of GB with the spring 5-year spring equations being very similar to the time series equations for lengths less than about 100 cm. In the autumn, the 1992-1995 5-year block had greater weight at length than the two time series relationships, whereas the other 5-year blocks had smaller weight at length (Figure B20). Spawning occurs in the latter part of the autumn in the SNE area, which may contribute to the variability between time blocks.

#### Growth

Age and length (cm) data from the spring and autumn NEFSC research bottom trawl survey were fit to the von Bertalanffy growth equation for three time periods : 1970-2011, and the earliest and latest decade in the time series, 1970-1979, and 2001-2011. The form of the equation (Ricker 1975) was:

$$L_t = L_{\infty} (1 - e^{-K(t-to)})$$

where  $L_t = \text{length at age t}$ ,  $L_{\infty} = \text{asymptotic length}$ , K = growth coefficient,

t = age.

Spring and autumn data were combined by assigning a decimal age to each record depending on the month the fish was captured, i.e. age = age + (month/12).

The asymptotic length  $(L_{\infty})$  was 114 cm for the time series, 118 cm for the first decade and 92 cm for the last decade (Figure B21). The growth coefficient, inversely proportional to  $L_{\infty}$ , was the highest at 0.28 in the 2001-2011 decade. The number of large fish in the sample for the last decade was minimal with only 2 fish in the 10+ age group, contributing to the low  $L_{\infty}$ .

| VB parameters | years     | Linf   | k    | to   | N 10+ fish |
|---------------|-----------|--------|------|------|------------|
| GB            | 1970-2011 | 114.10 | 0.22 | 0.17 | 149        |
| GB            | 1970-1979 | 117.50 | 0.21 | 0.19 | 101        |
| GB            | 2001-2011 | 91.63  | 0.28 | 0.32 | 2          |

# Mean Length and Weight at Age

Mean length and mean weight at age were estimated for ages 0-9 from the NEFSC spring and autumn research bottom trawl surveys during 1970-2011. Mean weights for data from 1970-1991 were estimated using the historical LW relationship (equation 10). Mean length and weight are variable over the time series but appear to be declining for ages 4 and older in both the spring and autumn (Figure B22a-B22b).

#### Condition

Fulton's condition factor ((K) Ricker 1975) was estimated from spring and autumn research bottom trawl survey data. Condition factor was estimated from individual length  $(l_i)$  and weight  $(w_i)$  data for females and sexes combined during 1992-2011 as :

$$K_i = ((w_i/l_i^3) \times 100)$$

(12).

Individual K estimates, averaged within a year indicate a decline in K over time for the spring, however, the decline was not observed for the autumn K (Figure B23). This seasonal difference was observed in the LW relationships, and suggests that food availability or spawning condition are influencing the weight of fish in the spring relative to the autumn.

# Maturity ogives

Logistic regression analysis was used to estimate female maturity ogives from NEFSC spring research survey data during 1970- 2012. The number of samples taken each year, by sex, over the time series is not consistently high and does not allow for reliable annual estimates, so the data was smoothed by using a 5-year moving average. For example, the 1990 ogive was estimated by combining data from 1988-1992 and estimating one ogive, and then the 1991 ogive was estimated by combining data from 1989-1993 and so forth, for the time series. This means

that the first year, 1970, only as three years of data (1970, 1971, and 1972) and the last year, 2012, has only 3 years of data (2010, 2011, and 2012). Confidence limits for proportion mature at age were estimated at the 95% level using the approximate variance for large samples (Ashton 1972, O'Brien et al. 1993) and inverse 95% confidence limits for  $A_{50}$  (median age at maturity) were estimated within the SAS PROBIT procedure (SAS) (Table B16, Figure B24).

Median maturity for females declined from about age 2.6 in the early 1970s to age 1.8 in 1988 and has since increased and is currently age 2.4 in 2011 (Table B16).

# Total Mortality

Estimates of instantaneous total mortality (Z) were derived from catch per tow abundance indices for the NEFSC spring and autumn surveys, and the DFO survey (Tables B15a-c). Annual mortality in each survey was estimated as:

```
ln (\Sigma age 4+ for years i to j/\Sigma age 5+ for years i+1 to j+1) (13).
```

To compare the estimates between surveys within a year, the time of year that each survey was conducted was added to each survey year (DFO = 0.16, spring=0.25, autumn =0.75) and a three year moving average was fit to the time series of combined survey mortality estimates (Figure B25). The estimates are highly variable throughout the time series but are without trend. The average total Z over each survey time series was 0.60 for DFO, 0.67 for NEFSC spring and 0.88 for NEFSC autumn (see text table below). During 1978-2011, which corresponds to the assessment model time series, the average total Z across all three surveys was 0.78. Comparison of Z for each survey with overlapping years indicates that Z increases from early winter to autumn.

| Average of Annual Z In(4+/5+) |      |        |        |       |
|-------------------------------|------|--------|--------|-------|
| Year                          | DFO  | Spring | Autumn | Total |
| 1964-2011                     |      |        | 0.88   |       |
| 1968-2011                     |      | 0.67   | 0.88   |       |
| 1986-2011                     | 0.60 | 0.75   | 0.99   |       |
| 1978-2011                     |      | 0.72   | 0.98   |       |
| 1978-2011                     |      |        |        | 0.78  |
| 1963-2011                     |      |        |        | 0.74  |

# Natural Mortality

Instantaneous natural mortality (M) has been assumed to be 0.2 in all previous assessments of Georges Bank cod e.g. Serchuk et al. (1977) as this was the convention for many stocks in the Northwest Atlantic (Paloheimo and Koehler 1968, Pinhorn 1975, Minet 1978). In this benchmark review, the WG investigated several life-history analyses and also tagging results to evaluate the M assumption.

Hoenig (1983) demonstrated that natural mortality can be estimated as a function of the maximum observed age  $(t_{max})$  in a population:

$$\ln(Z) = \exp(a + b^* \log(t_{max})), \qquad a = 1.46, b = -1.01, \tag{14}.$$

Using a maximum age =18 from early in the survey time series or age = 10 for the more recent survey years, results in  $e^{Z} = M = 0.23$  or 0.42.

Hewitt and Hoenig (2005) refined the Hoenig (1983) approach:

$$M = 4.22/t_{max}$$
(15)

which give the same results as above, of M = 0.42 and 0.23 for  $t_{max} = 18$  or 10, respectively. Maximum age in the commercial fishery in recent years has been between 12 and 15, resulting in M values of 0.35 and 0.28, respectively.

Given that the Georges Bank cod stock has been heavily exploited , i.e. overfished during the assessment times series (post 1978, O'Brien et al. 2012), and age samples are only available from the 1970s, M values in the range of 0.23 to 0.42 estimated from maximum age likely overestimate the true M for this stock.

An alternative approach relies on the gonadosomatic index (GSI), the ratio of gonad weight to somatic weight (Gunderson 1997) in the following relationship:

$$M=1.79 * GSI$$
 (16)

The general premise is that M is positively correlated with reproductive effort, specifically, female reproductive effort. Estimates of GSI were not readily available from NEFSC survey data for Georges Bank cod; however using a GSI value of 0.117 reported for Georges Bank cod by McIntyre and Hutchings (2003) results in an M estimate of 0.21. Pauly (1980) first showed that M is proportional to the von Bertalanffy growth parameter, K. Using a variant of the relationship (Jensen 1996):

$$M = gK \tag{17}$$

and an estimate of g=1.598 (Gunderson et al. 2003) results in estimates of M= 0.35, 0.34, or 0.45 depending on whether the K value is taken from the growth parameters estimated from data during 1970-2011, 1970-1979, or 2001-2011.

In this meta-analysis of life history-based estimates, M estimates range between 0.21 - 0.45. These variable estimates and the conflicting result of a decrease in condition in the spring but not the autumn, as evidenced by both the Fulton's K and the differences in seasonal LW equations make it difficult to make a definitive conclusion on a hypothesis for a shift in life history parameters. It should be noted that maximum age as high as 15 has been observed in the commercial fishery as recently as 2011, and age 12 in the last several years, which suggests comparable natural mortalities relative to earlier in the time series.

The method of Lorenzen (1996), that applies mean weight at age (Table B17a) in the following

relationship, was used to provide an aged-based estimate of M (Table B17b, Figure B26):

$$M_{\rm w} = M_{\rm u} W^{\rm b} \tag{18}$$

where  $M_w =$  natural mortality associated with fish of weight, W,

Mu = natural mortality at unit weight, (3.69, consistent with Lorenzen ocean ecosystem constant)

W = weight (g),

b = allometric scaling factor (-0.305, consistent with Lorenzen ocean ecosystem constant)

This method, which is based upon the relationship between body weight and M across a wide range of species, was used in SAW 54 to provide age-based estimates of M for Southern New England – Mid Atlantic Bight yellowtail flounder. The peer review panel of SAW 54 (O'Boyle 2012) considered that applying an inter-species relationship to infer within-species dynamics was an over-interpretation of the method. While M no doubt may be age-specific, the pattern estimated from the Lorenzen method may not be appropriate. Recent work performed by Jon Deroba (NEFSC) and Amy Shueller (SEFSC)

(*https://afs.confex.com/afs/2012/webprogram/Paper10183.html*) indicated that using constant or age varying mortality would have similar impacts on the assessment. The SAW 55 WG thus concluded that the parsimonious approach for the SAW 55 assessment models was to use a single M for all ages.

Two working papers considered the predator field of cod in the Gulf of Maine-Georges Bank area (Link 2012, Waring 2012). Link (2012) noted that directed piscivory of cod by other fish was not common, with less than 200 cod in over 550,000 stomachs observed the survey time series. Similarly, the evidence for cannibalism is weak with only 20 cod found in over 20,000 stomachs. Studies to date suggest that M due to fish predation is likely low and is focused on juvenile and smaller size groups (Smith and Link 2010). Waring (2012) considered marine mammals as a potential source of elevated M in the Gulf of Maine area. Four species of seals (harbor, grey, harp and hooded) are found in New England with harbor and grey seals being the most numerous. The harbor seal population, which was about 38,000 individuals in 2001, has been growing at an annual rate 6.6%. The grey seal herd has increased from tens of animals in the early 1980s to thousands of animals in the late 2000s. Firm estimates on the size of the current herds are not available. Notwithstanding this, the food habit research suggests that cod mortality due to seals is low. Additionally, while seals are known to prey on cod, they are generalist feeders and the importance of cod in the diet of Gulf of Maine area grey seals is unknown. There is limited information that suggests that cod represent only a minor component of harbor seal diet along the Maine coast (Wood 2001).

An analysis of tagging data collected during 2003 – 2006 to jointly estimate natural and fishing mortality was undertaken during GARM III (Miller and Tallack 2007). This analysis was updated for SAW 55 (Miller 2012). Contrary to the earlier work, this analysis was not length-based. Estimates of M ranged from 0.4 to 0.7 for Georges Bank cod tag returns of greater than 50 cm. The analysis provided evidence of significant cod movements between GM and GB and area 4X on the order of 4.1% to 29.7%. While M was relatively high compared to current estimates, F was comparatively low, prompting discussion on whether or not it was representative of the fishery due to local effects. The results were highly sensitive to the assumed

return rate of high-reward tags. High-reward return rates on the order of 50% were associated with Georges Bank cod M estimates of 0.4, with M increasing as the high-reward tag rate increased. Model preference (based on log-likelihood function) was for assumptions of near-100% on reporting rates of the high-reward tags. Estimates of fishing mortality, F, were inversely related to the M response with F declining with higher assumptions of high-reward tags reporting rates. Across all ranges total mortality (Z) was estimated about 0.8-0.9.

Concerns were raised with the tagging conducted in the Cape Cod area, which represented over 50% of the data in the database, which prompted the greater than 50 cm analysis. The tagging had been conducted employing a wide range of expertise with mostly small cod being tagged. This in combination with the warm water in the area may have resulted in higher tag induced mortality than assumed in the model. There were additional concerns with the assumed tag reporting rate (100%) for high reward tags. There is evidence to suggest differential reporting rates among some sectors of the commercial fishery, most notably the reporting rate by gillnet vessels was five times lower than that of trawl vessels (Tallack 2006). It is unknown if these same reporting trends also apply to the high-reward tags. There was also discussion on the age groups of cod represented by the study. Within the subset of greater than 50 cm fish, only about 10% of the released cod were greater than 80 cm. GB cod at 50 cm are 2 years old on average, implying that the estimates of M are for fish of ages 2 to 5 but weighted towards the younger ages.

The SAW 55 WG discussed how best to use these estimates of M. It was hesitant to conclude that M was in the range of 0.6 - 0.7 and to recommend that these estimates be directly included in the assessment models. Rather, the tagging analysis is another form of modeling that should be considered. The WG discussed the availability of historical tagging to which the current estimates could be compared. It was reported that tagging work conducted in the Gulf of Maine area (with a smaller percentage of tagging done on GB) during the 1970s and 1980s suggested M estimates in the order of 0.2 - 0.3 whereas tagging in the 1990s was suggestive of M similar to the more recent results. These observations are based upon unpublished work that could not be corroborated at the meeting. Much of the historical work (e.g. Hunt et al. 1999) had been focused on cod movements and did not provide estimates of natural, fishing or total mortality. Further, concerns were raised that there was no obvious mechanism (e.g. predation) that could explain a recent increase in M, although it was countered that no mechanism has been identified for the current M estimate of 0.2, though this estimate is supported by life history parameters. The SAW 55 WG recommended profiling natural mortality across both the historical and more recent periods of the assessment to inform the discussion as to whether or not there has been a longterm change in M. The WG agreed that an option (M-ramp) with an M change should be considered as an alternate to a base model which would assume no change in M (i.e. M = 0.2).

# **Assessment Model Formulation**

The Georges Bank cod stock assessment has historically been assessed as an age-based assessment employing virtual population analysis (VPA). Given the biased retrospective pattern observed in recent assessments (O'Brien et al. 2012) the 2012 benchmark assessment review presented the opportunity to explore a new model formulation to mitigate the retrospective bias. The WG chose to explore a forward projecting model, ASAP (Age Structured Assessment Program v3.0.6, Legault and Restrepo 1998), which can be obtained from the NOAA Fisheries

Toolbox (http://nft.nefsc.noaa.gov/).) To bridge between the previous VPA formulation and a proposed ASAP model formulation the following models are presented: comparisons of two VPA models with data modifications since February 2012, a VPA updated through 2012, a VPA-like ASAP formulation, and the final proposed ASAP formulation.

# Bridge VPA

Since the update assessment review in February 2012 (O'Brien et al. 2012), input data to the assessment has been modified by converting 1978-2003 MRFSS recreational statistics to MRIP equivalents and discard mortality rate of cod has changed to values less than 100%, the value previously applied (see text table above).

Comparing a VPA with the MRIP time series and 100% discard mortality to a VPA with both the MRIP time series and the Delphi mortality rates applied indicate minimal effect of changing the mortality rate (Figure B27). The SSB of the reduced mortality run is marginally greater in recent years and conversely, F is slightly less when compared to the MRIP only run.

Comparing the February 2012 run (O'Brien 2012) which used MRFSS data and 100% mortality rate to the MRIP only and MRIP+Delphi runs indicate an effect of the MRIP equivalents prior to about 1994. The SSB is estimated to be higher from 1978-1994 for the MRIP equivalent run compared to the February 2012 run (Figure B28). The effect on F is more variable, with F from the MRIP run being both above and below F compared to the February 2012 run (Figure B28). An examination of the retrospective bias indicated that the magnitude of the bias was similar for SSB and F across all three models.

The WG agreed to go forward with the MRIP equivalent time series and to apply the 'delphi' discard mortality rates in further model development.

# VPA

# Input data and Analyses

The ADAPT calibration method (Parrack 1986, Gavaris 1986, and Conser and Powers 1990) was used to derive estimates of instantaneous F in 2011 and beginning year stock sizes in 2012. A retrospective analysis was performed for terminal year F, SSB, and age 1 recruitment. The accepted benchmark model from GARM III (O'Brien et al. 2008) was applied in the February 2012 update through 2010 (O'Brien 2012), and in the current assessment to update the VPA through 2011. As described above the updated data includes the MRIP equivalents and the application of 'Delphi' discard mortality rates.

The base ADAPT formulation provided stock size estimates for ages 1-8 in 2012 and corresponding F estimates for ages 1-7 in 2011. Assuming full recruitment at age 5, the F on age 9 in the terminal year was estimated as the average of the F on ages 5-8. The F on age 9 in all years prior to the terminal year was derived from weighted estimates of Z for ages 5-8. For all years, the F on age 9 was applied to the 10+ age group. Spawning stock size estimates were estimated with female maturity ogives derived from NEFSC spring research survey data for 1978- 2012 as described above.

The catch at age (Table B12, Figure B9) includes combined USA and Canadian landings and discards, and USA recreational landings and discards from 1978-2011 for ages 1-10+. Sweptarea estimates (Appendix B2) were used to calibrate the VPA and were estimated from indices of abundance that included the NEFSC 1978-2012 spring survey indices for ages 1-8 (Table B15a), the NEFSC 1977-2011 autumn survey indices for ages 0-5 (Table B15b) and the Canadian DFO 1986-1992, and 1995-2011 survey indices for ages 1-8 (Table B15c). The DFO survey indices for 1993, 1994, and 2012 were not included in the model because the survey did not sample the entire GB area in those years. The NEFSC spring survey was dis-aggregated into two series based on the use of the Yankee #36 or Yankee #41 trawl. The NEFSC employed the #41 trawl during 1973 to 1981; the spring indices were split into a series from 1978-1981 for the #41 trawl and a series from 1982-2011 for the #36 trawl. The survey has been conducted by the Bigelow since 2009 and the survey abundance indices were converted to Albatross IV equivalents as described above. The NEFSC time series of survey indices have also been standardized for door and vessel changes prior to 2008, described above. The autumn survey abundance indices were shifted forward one age and one year to match cohorts in the spring survey in the subsequent year. In addition the survey time series were split between 1994 and 1995 for all three surveys (not Yankee #41). This 'split-run' was introduced in the 2008 assessment (O'Brien et al. 2008) to address the retrospective bias. While there was no reason to expect the survey catchability to have changed between those time periods, the split initially improved the retrospective pattern, and was understood to alias an unknown mechanism that introduced the retrospective bias (e.g. change in M, unaccounted for mortality from discards or landings).

The model results from the February 2012 VPA (O'Brien et al. 2012) are presented as run A in Table B18. Run B is an updated Run A that includes terminal year 2011 catch estimates and the NEFSC spring 2012 and autumn 2011 survey indices. In addition, the age 1 stock numbers for terminal year (t) + 1 are derived as the geometric mean of age 1 estimated for 2005-2009 rather than being estimated as in Run A. Results of Run B are presented Table B18.

The final 2012 VPA (Run B) compared to Run A resulted in a 53% increase in F from 0.45 in 2010 to an F= 0.69 in 2011 and an 11% increase in SSB from 11, 289 mt in 2010 to 12,532 in 2011 (Table B18). These results were not adjusted for retrospective bias.

#### Diagnostics – 2012 Split VPA (Run B)

The ADAPT calibration results for estimates of terminal year stock size and catchability (q) estimates, with corresponding standard error and CVs are presented in Table B18. Stock size estimates were more precise for ages 2-6, (CVs from 27% - 38%) than for age 7 (CV=59%), and age 8 (CV=74%). Comparison of precision estimates of catchability-at- age, pre- and post-split, generally showed higher CVs for the post-split indices (Table B18). The q estimates for post-split indices were higher than pre-split for all surveys. Estimates of q increased with age and were generally asymptotic, approaching a 'flat-top'.

# Results – 2012 Split Model (Run B)

Fully recruited fishing mortality (unweighted, ages 5-8) was estimated at 0.69 in 2011 (Table B19a, Figure B29), a 25% increase from 2010. SSB in 2011 was estimated at 12,531 mt, a 23% increase from 2010 (Table B19b, Figure B29). Recruitment (millions of age 1 fish) of the 2003 year class (6.5 million age 1 fish) is now estimated to be smaller than the 1998 year class (12.4 million age 1 fish) (Table B19b). The 2008 year class (6.2 million age 1 fish) is similar in size to

the 2003 year class. The last year class (1990-20.7 million age 1 fish) above the time series average (12.9 million age 1 fish) occurred over two decades ago.

#### Retrospective Analysis

A retrospective analysis was performed to evaluate how well the current ADAPT calibration would have estimated F, SSB, and recruits at age 1 for seven years prior to the terminal year, 2011.

Although there is no distinct mechanism (e.g. change in reporting and sampling systems, closed areas, life-history or environmental effect) to motivate splitting the survey time series, when the series are split in the mid-1990s (1994/1995), the result is a weaker retrospective pattern relative to a VPA with the surveys not split (Figure B30). This difference was more apparent in the 2008 benchmark (O'Brien et al. 2008) than it is now in the current assessment. The pattern of over estimating SSB and underestimating F relative to the terminal year continues as in the previous assessment (O'Brien 2012).

# ASAP

# Model description

The WG chose to use the forward projecting model ASAP (Age Structured Assessment Program, Legault and Restrepo 1998) as the basis for a proposed benchmark model for Georges Bank cod, rather than continuing with the VPA model. As described at the NFT software website (http://nft.nefsc.noaa.gov/), ASAP is an age-structured model that uses forward computations assuming separability of fishing mortality into year and age components to estimate population sizes given observed catches, catch-at-age, and indices of abundance. Discards can be treated explicitly. The separability assumption is partially relaxed by allowing for fleet-specific computations and by allowing the selectivity at age to change in blocks of years. Weights are input for different components of the objective function which allows for configurations ranging from relatively simple age-structured production models to fully parameterized statistical catch at age models.

The objective function is the sum of the negative log-likelihood of the fit to various model components. Catch at age composition is modeled assuming a multinomial distribution. Surveys can be treated as either "West Coast style" in the same manner as the catch data with a total survey time series and survey catch at age composition modeled assuming a multinomial distribution, or "East Coast style" with the survey indices at age entered as separate series. Most other model components are assumed to have lognormal error. Specifically, lognormal error is assumed for: total catch in weight by fleet, survey indices, stock recruit relationship, and annual deviations in fishing mortality. Recruitment deviations are also assumed to follow a lognormal distribution, with annual deviations estimated as a bounded vector to force them to sum to zero (this centers the predictions on the expected stock recruit relationship). For more detail, the reader is referred to the technical manual (Legault 2008).

# VPA-like ASAP

Input data for this ASAP model formulation was the same as described for the VPA except for the exclusion of the 2012 NEFSC spring survey. The survey calibration indices were split into two times series as in the VPA: 1978-1994 and 1995-2011. A multinomial distribution was

assumed for fishery catch at age and the survey indices at age were entered as separate series. The calibration indices at age for NEFSC spring and DFO surveys were compared to population numbers of the same age at the beginning of the same year. The NEFSC autumn calibration indices at age were compared to population numbers one year older at the beginning of the next year.

The model was formulated with four fishery selectivity blocks for the commercial fleet based on changes in codend mesh size regulations (text table below): 1978-1982, 1983-1993, 1994-1999, and 2000-2011.

| years     | codend mesh |
|-----------|-------------|
|           | inches      |
| 1973-1976 | 4.50        |
| 1977-1982 | 5.13        |
| 1983-1993 | 5.50        |
| 1994-1999 | 6.00        |
| 2000-2011 | 6.50        |

Survey selectivity was modeled by age with selectivity fixed at one for ages 8-10.

The final objective function and contribution of individual components are presented in Table B20. A comparison with the VPA results indicates a similar trend in SSB, whereas, the trend in F is similar but more variable (Figure 31). The retrospective pattern (Figure B32) did not improve in this formulation of ASAP compared to the split-survey VPA (Figure B30).

The WG agreed that further exploration of the ASAP model with a multinomial assumption for the survey age composition would be more beneficial than pursuing this VPA-like ASAP model with lognormal error for the age-specific survey time series.

# BASE ASAP

Input to the Base ASAP model is essentially the same as described for the VPA. The catch at age is for the combined landings and discards of USA and Canadian fishing fleets (Table B12, Figure B9) for ages 1-10+ during 1978-2011. Swept-area estimates derived from indices of abundance included additional ages: NEFSC 1978-2011 standardized estimates for ages 1- 10+ (Table B15a), NEFSC 1978-2011 standardized autumn estimates for ages 1-6 (Table B15b) and Canadian DFO 1986-1992, and 1995-2011 estimates for ages 1- 10+ (Table B15c). The DFO survey data for 1993 and 1994 were not included in the model because the survey did not sample the entire GB area in those years. The NEFSC spring survey was dis-aggregated into two series based on the use of the Yankee #36 or Yankee #41 otter trawl as described in the VPA section. A five-year moving average of age-specific and time varying maturity at age was used in the model as described in the VPA section. Natural mortality was age and time invariant and was assumed to be 0.2 as in previous assessments (O'Brien et al. 2012).

About 50 ASAP model formulations were explored to inform this final base model formulation, however, none of those model results will be presented, although they may be referenced.

A multinomial distribution was assumed for both fishery catch at age and survey age compositions. The survey time series were *not split* between 1994/1995 as in the VPA. Since exploratory runs indicated similar trends in SSB and F between formulations with the survey time series split or not split, the WG agreed to proceed with no split in the survey time series. The catch CV was set equal to 0.05 and the recruitment CV set equal to 0.5, however, the recruitment deviations were set with lambda = 0, so the deviations did not contribute to the objective function. The CV for each survey was initially set at the value generated from either the bootstrap analysis of the survey indices of abundance from the NEFSC SAGA (Survey Analysis Graphical Assistant) software package or from the DFO survey indices of abundance.

Model estimates of selectivity at age were initially freely estimated for the surveys and the fisheries with no restriction for flat-topped or dome-shaped results. Starting with the survey selectivity, the catchability (q) for each age was initially set based on values estimated by the VPA-like ASAP. Age 7 was fixed at 1 in the DFO survey, age 6 was fixed at age 1 in the NEFSC autumn, and age 8 was fixed at 1 in the NEFSC spring survey. The results of the fit indicated that the survey catchability was essentially 'flat-topped' (Table 21). The CVs associated with each estimate at age were high for ages 9 and 10+ in both the DFO and NEFSC spring survey, indicating a poor fit (Table B21). The CVs for all other ages were .25 or less for all three surveys. In each survey, selectivity was estimated at 1 for other ages in addition to the age that had been fixed at 1, i.e. ages 5 and 6 in DFO, age 4 in NEFSC autumn, and age 5 and 6 in the NEFSC spring. Given these results the NEFSC spring and DFO survey selectivities were fit using a single logistic. For the autumn survey, further comparison of selectivity at age vs. logistic fit indicated better diagnostics with selectivity for age 3 fixed at 1 (Figure B33).

For the fishery selectivity, when selectivity was freely estimated for both the survey and the fishery, each of the four fishery blocks appeared to have a moderate dome. Selectivity was fixed at age 1 for ages 3, 4, 5, and 5 in blocks 1978-1982, 1983-1993, 1994-1999, and 2000-2011. Examination of the fit statistics for the older ages indicated high CVs for ages 9 and 10+ (0.78-2.92) in all blocks and for age 8 (CV=0.79) in the 1978-1982 block. These results indicated that a flat-topped selectivity was more appropriate. When the survey selectivities were fit with a logistic and the fishery selectivity blocks were freely estimated, the fishery indicated flat-topped selectivity in the 3<sup>rd</sup> block (1994-1999) and a weak dome in the other 3 blocks, again with high CVs for the older ages. In each of the blocks selectivity was estimated at 1 for at least one other age (Table B22). Given these results, a logistic was fit to all 4 fishery blocks (Figure B34). Examination of the logistic fit of the four blocks clearly indicates only 2 blocks are appropriate given the similarities between blocks 1 and 2 (1978-1982, 1983-1993) and blocks 3 and 4 (1994-1999, and 2000-2011). A model with two fishery blocks (objective function (OF) = 2713, 91 parameters) is more parsimonious than a 4 block model (OF=2712, 95 parameters) with only 1 point increase in the OF with 4 less parameters (Figure B35).

The effective sample size (ESS) estimated for the catch at age data (treated as multinomial) was compared to the input ESS and was adjusted iteratively until the ESS specified generally matched the mean model estimated value. The final ESS was set at 64 based on the stage 2 multiplier as described by Francis (2011). An annual CV of 0.05 was assumed for the total catch.

The CV for each survey was initially set at the value from either the bootstrap analysis of the NEFSC survey abundance indices of abundance or the DFO estimate associated with the stratified mean abundance index. For the NEFSC spring the CVs averaged 0.43, with a range of 0.30-0.93, for the NEFSC autumn survey the CVs averaged 0.54, with a range of 0.34-0.86, and for the DFO survey the CVs averaged 0.38, with a range of 0.1-1.1. Further examination of the model fits to the survey indices resulted in adding the following constant to each survey CV vector: 0.2 (NEFSC spring and autumn) and 0.1 (DFO). The input ESS for the survey catch at age was manually adjusted until the model estimate was close to the input value. The final ESS was based on the stage 2 multiplier as described by Francis (2011) and was set for each of the surveys as: DFO = 9, NEFSC autumn = 14, NEFSC spring 41=40 and NEFSC spring 36 = 37.

# Base Model Results

Model results, including the objective function (OF), number of parameters, components to the OF, the root mean square error (RMSE), computed from standardized residuals, and the 2011 SSB and F estimates are summarized in Table B20.

# Catch

As a result of the small CVs assigned to the commercial catch, the model fit the observed catch very closely (Figure B36). The residuals of the catch age composition did not exhibit any strong patterning (Figure B37). The magnitude of the input ESS are appropriate given that the predicted mean age of the catch is generally within the 95% confidence interval (CI) of the observed mean ages (Figure B38) and the RMSE (0.98) is nearly 1.0 (Francis 2011).

# Indices

The fit of the predicted indices through the observed DFO survey indices was better during the period 1995-2000 than before or after that period (Figure B39). A pattern of negative residuals in the older age groups during 1986-1995 and in the younger ages during 2000-2011 is apparent in the age composition (Figure B40). The DFO ESS was the lowest of the 3 surveys, with the predicted mean age fitting well in the middle of the time series but above the observed mean age earlier and later in the time series (Figure B41, RMSE=0.92).

The fit of the predicted indices through the NEFSC autumn survey indices did not show any strong patterning (Figure B42). Although there is not a pattern of residuals in the age composition, age 1 residuals are large compared to the other age groups (Figure B43). The input ESS =14 is appropriate given that the predicted mean age fit well through almost all the observed mean age CIs (Figure B44, RMSE=1.04).

The model fit diagnostics for the NEFSC spring (Yankee #41) are presented in Figures B45-B47. With only 4 years of survey indices, no patterns are easily described or evaluated.

The fit of the predicted indices through the NEFSC spring (Yankee #36) survey indices during the late 1990s and early 2000s, similar to the DFO survey, showed a series of negative residuals in the late 1980s to 1994 and a series of positive residuals in the mid-2000s (Figure B48). This pattern does not appear strongly in the residuals of the age composition at age, however (Figure B49). The input ESS =37 is appropriate given that the predicted mean age fit well through almost all the observed mean age CIs (Figure B50, RMSE=0.97).

# Fishing mortality, SSB, and recruitment (not adjusted for retrospective bias)

Fully recruited F (unweighted, ages 5+) was estimated at 0.23 in 2011 (Tables B23a-b, Figure B51a), a 21% decrease from 2010. SSB in 2011 was estimated at 22,217 mt, a 29% increase from 2010 (Table B23a, Figure B51a-b). Recruitment (millions of age 1 fish) of the 2003 year class (7.0 million) is now estimated to be smaller than the 1998 year class (11.9 million) (Tables B23a-b, Figures B51a-b). The 2008 year class (8.0 million) and 2009 (8.1 million) are similar in size to the 2003 year class.

#### Retrospective analysis

A retrospective analysis was performed to evaluate how well ASAP calibration would have estimated F, SSB, and recruits at age 1 for seven years (2004-2010 prior to the terminal year, 2011. While the magnitude of the retrospective bias is slightly less than that of the VPA, the pattern of over estimating SSB and underestimating F relative to the terminal year continues in this model (Figure B52). The retrospective rho value, the average of the last 7 years of retrospective bias, was 0.681 for SSB and -0.459 for  $F_{5+}$  and 0.429 for recruitment.

The WG as well as the SAW 55 review panel agreed to address the retrospective bias in the BASE ASAP by adjusting the terminal year results by applying the 7-year average rho factor for SSB and F. Applying the retrospective bias adjustment results in  $SSB_{2011} = 13,216$  mt,  $F_{2011} = 0.43$  and 2011 age 1 recruitment, i.e. 2010 year classs = 5.131 million age 1 fish. These adjusted results will be used for GB cod status determination.

# МСМС

MCMC simulation was performed to obtain posterior probability distributions of the SSB and average  $F_{5+}$  time series. Two MCMC chains of initial length of 2.5 million were simulated with every 2,500<sup>th</sup> value saved. The trace of each chain's saved draws suggests good mixing (Figures B53 and B54). The lagged autocorrelations showed decreasing correlation with increased lag with correlations  $\leq 0.1$  beyond lag 1 (Figures B55 and B56). From the MCMC distributions, a 90% probability interval (PI) was calculated to provide a measure of uncertainty for the model point estimates for SSB and average  $F_{5+}$ . Time series plots of the 90% PIs as well as plots of the posterior probability distributions for SSB<sub>2011</sub> and average  $F_{5+}$  are shown in Figures B57 through B60. Prior to applying the retrospective bias adjustment, the 2011 SSB estimate of 22,217 mt has a 90% PI of 15,809 mt – 31,993 mt and the 2011 average  $F_{5+} = 0.23$  has a 90% PI of 0.15- 0.34.

# Envelope Analysis

An 'envelope analysis' was presented to the WG as a simple method to bound reasonable abundance estimates. Based on Baranov's catch equation, with swept area estimates of biomass from the NEFSC spring, NEFSC autumn, and DFO surveys, plausible assumptions are made on upper and lower bounds of catchability (q) and F to estimate population biomass for each survey. Specific details can be found in WP 26 (Rago 2012). The composite envelope results indicate that the ASAP results of the Base model are not unreasonable (Figure B51c).

#### Alternative ASAP Models

Given the continued retrospective bias in the ASAP model results and the discussion of possible shifts in M in recent years based on the tagging data, the WG agreed to explore two alternative

models. Both of the alternatives address the issue of losses due to unaccounted for mortality (i.e. 'missing catch'), either from unaccounted for natural mortality, or from unaccounted for removals from the fishery (undocumented discard mortality (e.g. mortality experienced by fish escaping the gear during commercial operations), mis-reported/unreported/missing dealer or logbook statistics, biased or underestimated commercial discards and/or recreational catch).

Given that the SARC 55 Panel chose the ASAP BASE model as new benchmark model, the alternative model formulations, 'M Ramp' and 'Catch Multiplier', are described in Appendix B3 along with the model results, yield-per-recruit analyses, support for and against alternative models, and consequence analysis.

#### Other Sensitivity Runs

A number of sensitivity analyses were considered by the WG. Assuming upper and lower bounds on the Bigelow / Albatross calibration changed post -2005 population estimates only marginally. Assuming 100% discards rates compared to those used in the Base model resulted in little change. In a run conducted with commercial LPUE included, biomass declined faster than that of the Base model until about 1994 after which it remained relatively flat but higher than in the Base model. Splitting the survey time series in 1994 did not improve the retrospective pattern. Splitting the NEFSC spring time series to account for the change in net type (Yankee 41 to 36) did result in a modest change in historical biomass, compared to the Base model and the WG agreed to include this split in the final formulation. A run which included two fleets (Canada and US) resulted in a stronger retrospective pattern and thus the one fleet model was retained for the final formulation. Runs using a range of CVs on the catch suggested a value of 0.1 which was initially accepted by the WG but later reduced to 0.05 after consideration of the CV used in the GOM cod model, which improved the fit to the GB 1978-1988 catch data.

# **Biological Reference Points**

The current non-parametric biological reference points (BRP) for GB cod, based on  $F_{40\%}$  were revised in February 2012 (O'Brien 2012), based on VPA model results and are as follows:

 $SSB_{MSY}$  proxy= 140,424 mt,  $F_{MSY}$  proxy ( $F_{40\%}$ ) = 0.23 and MSY proxy= 28,774 mt.

Based on the updated VPA model results, (not adjusted for retrospective bias), the stock is overfished (SSB<sub>2011</sub> = 12, 531 <  $\frac{1}{2}$  SSB<sub>MSY</sub>) and overfishing is occurring (F<sub>2011</sub> = 0.69 > F<sub>40%</sub>). MSY proxy BRPs continue to be appropriate for this model given that the relationship between stock and recruitment does not support the use of a parametric model.

#### Yield per Recruit Analysis Base Model

A YPR analysis was conducted using the methods of Thompson and Bell (1934). Input data (Table B24) for catch and stock weights (ages 1-10+) were derived from an average of the most recent five years (2007-2011). The partial recruitment (PR) was based on a normalized arithmetic mean of 2007-2011 total fishing mortality from the Base ASAP model. The maturity ogive is the 2010 vector, estimated in the 5-year moving average analysis as described above, thus the 2010 ogive is based on the combined data of 5 years: 2008-2012 (Table B16). Results

of the BASE ASAP YPR analysis are presented in Table B25 and Figure B61.

The GARM III BRP Panel (NEFSC 2008) selected  $F_{40\%}$  from the non-parametric YPR analysis as the basis for the estimation of BRPs for GB Atlantic cod. The SAW 55 WG evaluated various proxies for  $F_{MSY}$  to determine if  $F_{40\%}$  was still appropriate by comparing estimated SSB and recruitment ratios with expected spawning biomass per recruit over a range of fishing mortalities (F=20% to F80% in 5% increments) to investigate the potential for replacement under equilibrium assumptions (i.e. constant harvest rate and biology over the lifespan). An analysis of replacement lines under recent productivity (approximately last 10 years) indicated that 90% of the years were above the  $F_{40\%}$  replacement line for the Base ASAP model thus indicating that  $F_{40\%}$  was still an appropriate  $F_{MSY}$  proxy (Figure B62).

Non-parametric estimates of MSY and SSB<sub>MSY</sub> based on  $F_{40\%}$  were estimated using the 33-year time series mean recruitment (13.596 million age 1 fish), Y/R (1.28) and SSB/R (7.89) (Table B26 as:  $F_{40\%} = 0.18$ , MSY = 17,391 mt, SSBmsy = 107,291 mt.

# MSY Biological Reference Points

Long term (100 years) stochastic projections were run using the same input data as the YPR with  $F_{MSY} = 0.18$ . Following the GARM III benchmark recommendation (NEFSC 2008) recruitment was estimated from a 2 stage CDF based on either 21 low estimates or 12 high estimates of age 1 recruitment. When SSB is < 50,000 mt, recruitment is drawn from the low recruitment CDF, and when SSB > 50,000 mt then recruitment is drawn from the high recruitment CDF (Figure B63). The WG reviewed the stock –recruit data and agreed that the 50,000 mt cutpoint was still appropriate. The long term projection provided the following non-parametric biomass reference points (Table B26):

 $F_{40\%}$ = 0.18, MSY = 30,622 mt, (80% CI: 25,450- 36,302), SSB<sub>MSY</sub> = 186,535 mt (80% CI: 155,398-220,756)

# Status of Stock

Based on the WGs proposed BASE ASAP model as the new benchmark model, the model results, not adjusted for retrospective bias, indicate stock status as overfished ( $SSB_{2011} = 22,217$  mt <  $\frac{1}{2}$  SSB<sub>MSY</sub>) and overfishing is occurring ( $F_{2011} = 0.23 > F_{40\%}$ ) (Figure B64). The WG agreed that MSY proxy BRPs are appropriate for this model given that the relationship between stock and recruitment does not support the use of a parametric model.

The SARC 55 Panel chose the ASAP BASE Model (M=0.2) adjusted for retrospective bias as the new benchmark model for determination of stock status and catch projections. Based on this accepted benchmark model and applying retrospective bias adjustments, the stock is overfished (SSB<sub>2011</sub> = 13,216 mt <  $\frac{1}{2}$  SSB<sub>MSY</sub>) and overfishing is occurring (F<sub>2011</sub> = 0.43 > F<sub>40%</sub>) (Figure B64).

# Parametric Stock-Recruit Biological Reference Points

The relationship between stock and recruitment during 1978-2011 did not provide support for use of either a Ricker or Beverton-Holt (BH) function. When a BH was estimated within the BASE ASAP model, the relationship was relatively linear with unexploited SSB and unexploited

recruitment being estimated essentially to infinity. For this reason, the WG agreed that BRPs for GB cod continue to be based upon  $B_{MSY}$  proxies.

# Projections

Short term stochastic projections under  $F = 75\%F_{MSY}$  were performed from the BASE model results to estimate landings and SSB during 2013-2015. The input values for mean catch and stock weights, PR, and maturity are the same as described above for the YPR analysis. Recruitment was estimated from the 2-stage CDF described above and associated with a SSB breakpoint of 50,000 mt. Catch in 2012 was estimated based on year-to-date catch (commercial and recreational landings and discards) and assumed catch for the remainder of the year (pers. comm. Tom Nies, NEFMC).

The results of the short term projections (Table B27) indicate that for the BASE ASAP, the proposed new model, under an  $75\%F_{MSY} = 0.14$  catch is projected to initially decrease but then increase by 2015 to catch higher than 2012, and SSB is projected to increase in each year through 2015 (Table B27). The rebuilding plan for GB cod requires that the stock reach SSB<sub>MSY</sub> by 2026, however, the Frebuild projection was not conducted at this time.

# Recommendations

The WG reviewed the status of previous research recommendations and proposed new ones to address issues raised during the three WG meetings, indicating priorities (<u>High</u>, <u>Medium</u>, <u>Low</u>) as it felt appropriate. Some of these recommendations were felt to be common to both GOM and GB cod and are indicated as 'General'

# GARM III

The Panel recommended that historical data be used to hindcast recruitment estimates as far back in time as possible for use in the estimation of reference points and projections.

• Based upon the SAW 53 analysis on GOM cod, it was considered that taking the assessment back beyond the start of age data was not productive due to issues in the catch information

Continued exploration of retrospective pattern and methods to account for it are critical for this stock.

• Analyses to evaluate the impact of data and model formulations on status and RPs were conducted during SAW 55.

# Feb 2012 update

• Recommendations were made to investigate the effect of uncertainty in maturity at age in the estimation of SSBmsy. Research into incorporating trends in biological parameters (weights, maturity) into projection methodology was suggested.

There is currently a NOAA funded FATE (Fisheries and the Environment) proposal with NEFSC co-PIs that is attempting to model environmental effects on biological parameters utilized in

#### projections.

# SAW 55 WG

- Canadian discard information is available for its scallop fishery since 1978 while only since 1997 for the groundfish (mostly longline) fishery. There is a lack of observer data for both the mobile and fixed gear fleets prior to 1997. The WG queried whether or not hindcasting of discards could be conducted for 1978 1996 in a similar fashion as done for the US fishery. A request was made to the Transboundary Resource Assessment Committee (TRAC) through the US TRAC co-chair (L. O'Brien) to have this analysis undertaken as part of the spring 2013 benchmark assessment of eastern Georges Bank cod. For the SAW 55, the Canadian discards were used as presented. DFO replied that it didn't consider that there is a need to do an analysis of hindcasting prior to 1996.
- On the premise that retrospective bias is likely due to unaccounted for mortality, i.e. unaccounted 'catch' (from natural mortality, fishing mortality, underestimated / unobservable discard mortality) the following is recommended to address the retrospective pattern
  - Conduct 'forensic accounting' analysis of 'missing catch' i.e. lost/unreported VTRs, lost/unreported dealer data, underestimated discards. This would include summarization of such work done to date (re: Wigley, Palmer). Request/require formal involvement of NMFS regional office to further progress on this issue.
  - Require near 100% observer coverage (for 3-5 years) of the fisheries that either target GB cod or have cod as bycatch to ascertain potential underestimation of GB cod discards.
  - Conduct designed discard mortality study of cod that pass through the trawl via trouser trawl experiment, including blood analysis to determine stress levels compared to control group. (H – general)
- The WG noted that there may be advantages to inclusion of the tagging analysis formally within the stock assessment model. This would allow consideration of the factors affecting tagging estimates of F and M, including age/size based processes. This would be a longer-term project given the complexity of integrating the two analyses (H General)
- The WG discussed at length the appropriate means to weight the proportions at age data within the ASAP model. The current error assumption (multinomial) assumes that the standardized variance on the proportions at age is constant. Analyses were presented to the WG that indicated that the variance on the proportions at age was not constant and that in order to properly account for this in the model fitting process, it was necessary to employ an age-dependent weighting, as the adjusted log-normal and sqrt(p) SCAA formulations do. While use of the multinomial would not produce biased estimates, it would likely result in the variance being over-estimated. Further, the AIC criterion would not be valid in model selection, although it was countered that the ASAP uses a penalized likelihood. This issue
- could not be fully resolved by the WG and further work is required to explore the appropriate weighting of the proportions at age data (M General)
- The WG considered an approach that incorporated the Bigelow/Albatross calibration coefficients within the assessment model. This allowed re-estimation of the coefficients as data on year-classes was updated. While the effect in this assessment was small, the approach has merit and should be considered for incorporation into the ASAP software (M - General)
- The WG considered that exploration of a random errors approach to the internal fitting of stock recruitment relationships had merit. This would require extensive software changes to ASAP code (M General)
- The WG recommended that simulations (conditioned on data) of the internal estimation of stock recruitment functions be used to explore potential bias in the fitting of these relationships (M General)

## Summary

Based on model results of the proposed BASE ASAP, accepted by the 55<sup>th</sup> SAW with retrospective bias adjustments included, the Georges Bank Atlantic cod stock is overfished (SSB<sub>MSY</sub> =186,617) and overfishing is occurring ( $F_{40\%} = 0.18$ ). Fishing mortality (unweighted, ages 5-8) in 2011 was estimated to be about 0.23 and when adjusted for retrospective bias,  $F_{2011}$ = 0.43. SSB was estimated at 22,217 mt in 2011, 12% of SSB<sub>MSY</sub> and adjusted for retrospective bias SSB<sub>2011</sub> = 13,216 mt, 7% of SSB<sub>MSY</sub>. The last year class that was above the time series average (13.6 million age 1 fish) occurred almost 2 decades ago in 1990. The survey time series of biomass and abundance declined in the mid 1980s and has remained low and variable since the mid 1990s.

Productivity of the stock is low with two decades of poor recruitment and a truncated age structure. Natural mortality may have increased in recent years, thus accounting for low productivity; however, evidence for such an increase is lacking in the food habits data. The analysis of 2003-2006 tagging data suggests M was high during the years tagged cod were released, however, there is no similar tagging analysis of the earlier years. Cod have been shown to have a low hatching rate for 1<sup>st</sup> and 2<sup>nd</sup> time spawners (13% and 62%) (Trippel 1998), suggesting that an age structure of older repeat spawners would likely be more productive under favorable environmental conditions. Given the uncertainty in the magnitude of M and the overfished status, the stock is vulnerable to an allowable biological catch (ABC) quota that is too high.

## References

- Anthony, V., and S. A. Murawski. 1985. Rapporteur's Summary: First Northeast Fisheries Center Stock Assessment Workshop.28. Available at http://www.nefsc.noaa.gov/saw/archive.html
- Ashton, W. D. The logit transformation with special reference to its uses in bioassay. 88. 72. London, Griffin and Co.
- Azarovitz, T.R. 1981. A brief historical review of the Woods Hole Laboratory trawl survey time series. Can. Spec. Publ. Fish.. Aq. Sci 58: 62-67.
- Brooks, E. N., T. J. Miller, C. M. Legault, L. O'Brien, K.J.Clark, S.Gavaris, and L. V. Eeckhaute. 2010. Determining Length-Based Calibration Factors for Cod, Haddock and Yellowtail lounder. Transboundary Resource Assessment Committee Reference Document 2010/08:26.
- Conser, R.J. and J.E. Powers 1990. Extensions of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. Int. Comm. Conserv. Atlantic Tunas. Coll. Vol. Sci. Pap. **32**: 461-467.
- Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Phila. Soc. Ind. and Appl. Math. **34**: 92 p.
- Francis R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68:1124-1138.
- Gavaris, S., G. Robert, and L. V. Eeckhaute. 2007. Discards of Atlantic Cod, Haddock, and Yellowtail Flounder from the 2005-2006 Canadian Scallop Fishery on Georges Bank. Transboundary Resources Assessment Committee Reference Document **2007/03**:10.
- GARM (Groundfish Assessment Review Meeting). 2007. Report of the Groundfish Assessment Review Meeting (GARM) Part 1. Data Methods. R. O'Boyle [chair]. Available at <u>http://www.nefsc.noaa.gov/nefsc/saw/</u>
- Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res. Doc 88/29 12 p.
- Gunderson D.R. 1997. Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes. Can. J. Fish. Aquat. Sci. 54:990-998.
- Gunderson, D. R., M. Zimmermann, D.G.Nichol, and K.Pearson. 2003. Indirect estimates of natural mortality rate for arrowtooth flounder (Atheresthes stomias) and darkbolotched rockfish (*Sebastes crameri*). Fish. Bull. 101:175-182.
- Hewitt D.A, Hoenig J.M. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fish.Bull. 103(2):433-437.

- Hoenig J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull.. 82(1):898-903.
- Hunt J.J., Stobo W.T., Almeida F. 1999. Movement of Atlantic cod, Gadus morhua, tagged in the Gulf of Maine area. Fish. Bull. 97:842-860.
- Legault CM. 2008. Technical Documentation for ASAP Version 2.0 NOAA Fisheries Toolbox (http://nft.nefsc.noaa.gov/).

Legault, C. M., M.Palmer, and S.Wigley. 2008. Uncertainty in landings allocation algorithm at stock level is insignificant. GARM III Working Paper 4.6. 5p. Available at <a href="http://www.nefsc.noaa.gov/GARM-Public/3">http://www.nefsc.noaa.gov/GARM-Public/3</a>. BRP Meeting/TOR 4 BRPs/

- Legault, CM, Restrepo VR. 1998. A flexible forward age-structured assessment program. ICCAT. Col. Vol. Sci. Pap. 49:246-253.
- Link J. 2012. Observations on consumption of Georges Bank and Gulf of Maine cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 13. 3 p.
- Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology 49:627-647.
- Mayo, R. K., L.O'Brien, and N.Buxton. 1992. Discard Estimates of American plaice *Hippoglossoides platessoides* in the Gulf of Maine Norhern shrimp fishery and the Gulf of Maine-Georges Bank Large-Mesh otter trawl fishery. Appendix to CRD-92-07 Res. Doc SAW 14/3, 40 p. 92.
- Mayo, R. K., T. E. Helser, L.O'Brien, K.A.Sosebee, B.F.Figuerido, and D.Hayes. 1994a. Estimation of standardized otter trawl effort, landings per unit effort, and landings at age for Gulf of Maine and Georges Bank cod. NEFSC Ref. Doc. 94-12:17 p.
- Mayo, R. K., L. O'Brien, and F.M.Serchuk. 1994b. Assessment of the Georges Bank Cod Stock for 1993. NEFSC Ref. Doc. 94-10:75 p.
- McIntyre TM, Hutchings JA. 2003. Small-scale temporal and spatial variation in Atlantic cod (*Gadus morhua*) life history. Can. J. Fish. Aquat. Sci. 60:1111-1121.
- Miller, T. J., C. Das, P. J. Politis, A. S. Miller, S. M. Lucey, C. M. Legault, R. W. Brown, and P.J. Rago. 2010. Estimation of Albatross IV to Henry B. Bigelow Calibration Coefficients. NEFSC Ref. Doc. 10-05:236.
- Miller TJ. 2012. Regional migration and mortality of Atlantic cod in the Northwest Atlantic Ocean from tag-recovery data, accounting for short-term tagging-induced fatalities. SAW 55 Models Meeting. October 15-19, 2012. Working Paper 31. 21 p.

- Minet, J. P. 1978. Dynamics and yield assessment of the northeastern Gulf of St. Lawrence cod stock. Int. Comm. Northw. Atlant. Fish., Selected Papers 3: 7-16
- Northeast Fisheries Science Center 1991. Report of the 12th NE Regional Stock Assessment Workshop (12 SAW) Spring 1991. NEFSC Ref. Doc. 91-03 187 p
- NEFSC 2002. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. Northeast Fisheries Science Center Reference Document . 02-04 254 p.
- Northeast Fisheries Science Center. 2008. Assessment of 19 Northeast Groundfish Stocks through 2007: Report of the 3rd Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 4-8, 2008. US Dep Commer, NOAA FIsheries, Northeast Fish Sci Cent Ref Doc. 08-15; 884 p + xvii.
- O'Boyle, R. 2008. Panel Summary Report of the Groundfish Assessment Review Meeting (GARM III). Part 3. Biological Reference Points, see <u>http://www.nefsc.noaa.gov/saw/garm/</u>
- O'Boyle B, Francis C, Hall N, Klaer N. 2012. Stock Assessment Review Committee (SARC) 54 Panel Report. June 5-9, 2012. Woods Hole, MA. 45 p.
- O'Brien, L., J. Burnett, and R. K. Mayo. 1993. Maturation of nineteen species of finfish off the northeast coast of the United States, 1985-1990. NOAA Tech. Report NMFS 113 66 p.
- O'Brien, L., K.Clark, N.Shepherd, M.Traver, J.Tang, and B.Holmes. 2008. A.Georges Bank cod. In Northeast Fisheries Science Center. 2008. Assessment of 19 Northeast groundfish stocks through 2007: A report of the 3rd Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 4-8, 2008. Northeast Fish. Sci. Cent Ref. Doc. 08-15. [available at http://www.nefsc.noaa.gov/publications/crd/crd0815/garm3a.pdf]:70p.
- O'Brien, L. and C. Esteves 2001. Update Assessment of American plaice in the Gulf of Miane -Georges Bank Region for 2000. Northeast Fisheries Science Center Ref. Doc. 01-02 114.
- O'Brien, L., N.J. Munroe, and L. Col. 2002. A. Georges Bank Atlantic Cod *in*: Assessment of 20 Northeast groundfish stocks through 2001. A report of the groundfish assessment review meeting (GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts, October 8-11, 2002. NEFSC Ref. Doc. 02-16: 522 p.
- O'Brien, L., P. Rago, R. G. Lough, and P.Berrien. 2003. Incorporating early-life history parameters in the estimation of the stock-recruit relationship of Georges Bank Atlantic cod (Gadus morhua). J.Northw.Atl. Fish. Sci. **33**:191-205.
- O'Brien, L., Nina Shepherd, and Y. Wang. 2012. A. Georges Bank Atlantic Cod *in* Northeast Fisheries Science Center. 2012. Assessment or Data Updates of 13 Northeast Groundfish Stocks

through 2010. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 12-06; 789 p. http://www.nefsc.noaa.gov/nefsc/publications/.

- Palmer, M., L.O'Brien, S.Wigley, R.Mayo, P.Rago, and L.Hendrickson. 2008. A brief overview of discard estimation methods where observer coverage is unavailable. Working Paper 4.5 GARM 2008 Biological Reference Point Meeting. Woods Hole, Ma. 28 Apr- 2 May, 13 p.
- Paloheimo, J. E., and A. C. Koehler. 1968. Analysis of the southern Gulf of St. Lawrence cod populations. J. Fish. Res. Board Can. 25(3): 555-578.
- Pinhorn, A. T. 1975. Estimates of natural mortality for the cod stock complex in ICNAF Division 2J, 3K and 3L. Int. Comm. Northw. Atlant. Fish. Res. Bull. 11: 31-36.
- Parrack, M.L. 1986. A method of analyzing catches and abundance indices from a fishery. Int. Comm. Conserv. Atlantic Tunas. Coll. Vol. Sci. Pap. 24: 209-221.
- Power, G., K.Wilhelm, K.McGrath, and T.Theriault 1997. Commercial fisheries dependent data collection in the Northeastern United States. SAW-24 Working Paper Gen. 3.
- Rago, P. 2012. Envelope analysis for Georges Bank cod. WP 36 SAW 55 Model Meeting. October 15-19, 2012. Working Paper 36, 30 p.
- Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Canada:382 p.
- SAS /STAT User's Guide . www.technion.ac.il/docs/sas/.
- Serchuk, F. M., and S. E. Wigley. 1992. Assessment and management of the Georges Bank cod fishery : an historical review and evaluation. J. Northw. Atl. Fish. Sci. **13**:25-52.
- Serchuk, F. M., L. O'Brien, R.K.Mayo, and S.E.Wigley. 1993. Assessment of the Georges Bank Cod Stock for 1992. NEFC Ref. Doc 93-05:63 p.
- Serchuk, F. M., P. Wood, S.H.Clark, and B.E.Brown. 1977. Analysis of the Georges Bank and Gulf of Maine cod stocks. NEFC Ref. Doc. 77-24:26 p.
- Smith B.E., Link J.S. 2010. The trophic dynamics of 50 finfish and 2 squid species on the northeast US continental shelf. NOAA Tech. Memo. NMFS-NE-216. 640 p.
- Thompson, W.F. and F.H Bell. 1934. Biological statistics of the Pacific halibut fishery. (2) effect of changes in intensity upon total yield and yield per unit of gear. Rep. Inter. Fish. Comm. No. 8: 49 p.
- Trippel, E. A. 1998. Egg size and viability and seasonal offspring production of young Atlantic cod. Tran. Am. Fish. Soc. **127**:339-359.

- Van Eeckhaute, L., S.Gavaris, and H. H. Stone. 2005. Estimation of Cod, Haddock, and Yellowtail Flounder Discards from the Canadian Georges Bank Scallop Fishery for 1960-2004. Transboundary Resource Assessment Committee Reference Document 2005/02:17.
- Wang, Y., and L. O'Brien. 2012. Assessment of Eastern Georges Bank Atlantic Cod for 2012.TRAC Res. Doc. 2012/xx. *In review*
- Wang, Y., L. O'Brien, and S.Gavaris. 2009. 2009 Benchmark Assessment Review for Eastern Georges Bank Cod. Transboundary Resource Assessment Committee Reference Document 2009/07:108.
- Waring G. 2012. Observations on marine mammals in the Gulf of Maine area. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 19.
- Wigley S.E., P.J. Rago, K.A. Sosebee, and D.L. Palka. 2007b. The analytic component to the standardized bycatch reporting methodology omnibus amendment: sampling design, and estimation of precision and accuracy (2nd Edition). NEFSC Ref. Doc. 07-09. 156 p.
- Wigley, S. E., P. Hersey, and J.E.Palmer. 2008. A description of the allocation procedure applied to the 1994 to 2007 commercial landings data. NEFSC Ref. Doc. 08-18:61 p.
- Wood SA. 2001. <u>Report to MERI:Summary of Harbor Seal (*Phoca vitulina concolor*) Food <u>Habits in Mid-Coast Maine: Summer 2000</u>, Marine Environ. Research Institute, Blue Hill, ME, 12 pp.</u>
- Wood A. 2012. Standardized LPUE for Gulf of Maine and George's Bank cod. SAW 55 Data Meeting. August 27-31, 2012. Working Paper 11. 11 p.

## **B.** Tables

Table B1. Total commercial and recreational catch (metric tons, live) of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and 1 Subarea 6), 1960-2011.

|      |          |           | USA           |          |                |               | Canada   |               | Dis   | tant Wa | ter Fleet |       | Tota     | al    |
|------|----------|-----------|---------------|----------|----------------|---------------|----------|---------------|-------|---------|-----------|-------|----------|-------|
|      | Comme    | ercial    | Recreat       | tional   | Total          |               |          | Total         |       |         |           |       |          |       |
| Year | Landings | Discards  | Landings      | Discards | Catch          | Landings      | Discards | Catch         | USSR  | Spain   | Poland    | Other | Landings | Catch |
| 1960 | 10834    |           |               |          | 10834          | 19            |          | 19            | -     | -       | -         | -     | 10853    | 10853 |
| 1961 | 14453    |           |               |          | 14453          | 223           |          | 223           | 55    | -       | -         | -     | 14731    | 14731 |
| 1962 | 15637    |           |               |          | 15637          | 2404          |          | 2404          | 5302  | -       | 143       | -     | 23486    | 23486 |
| 1963 | 14139    |           |               |          | 14139          | 7832          |          | 7832          | 5217  | -       | -         | 1     | 27189    | 27189 |
| 1964 | 12325    |           |               |          | 12325          | 7108          |          | 7108          | 5428  | 18      | 48        | 238   | 25165    | 25165 |
| 1965 | 11410    |           |               |          | 11410          | 10598         |          | 10598         | 14415 | 59      | 1851      | -     | 38333    | 38333 |
| 1966 | 11990    |           |               |          | 11990          | 15601         |          | 15601         | 16830 | 8375    | 269       | 69    | 53134    | 53134 |
| 1967 | 13157    |           |               |          | 13157          | 8232          |          | 8232          | 511   | 14730   | -         | 122   | 36752    | 36752 |
| 1968 | 15279    |           |               |          | 15279          | 9127          |          | 9127          | 1459  | 14622   | 2611      | 38    | 43136    | 43136 |
| 1969 | 16782    |           |               |          | 16782          | 5997          |          | 5997          | 646   | 13597   | 798       | 119   | 37939    | 37939 |
| 1970 | 14899    |           |               |          | 14899          | 2583          |          | 2583          | 364   | 6874    | 784       | 148   | 25652    | 25652 |
| 1971 | 16178    |           |               |          | 16178          | 2979          |          | 2979          | 1270  | 7460    | 256       | 36    | 28179    | 28179 |
| 1972 | 13406    |           |               |          | 13406          | 2545          |          | 2545          | 1878  | 6704    | 271       | 255   | 25059    | 25059 |
| 1973 | 16202    |           |               |          | 16202          | 3220          |          | 3220          | 2977  | 5980    | 430       | 114   | 28923    | 28923 |
| 1974 | 18377    |           |               |          | 18377          | 1374          |          | 1374          | 476   | 6370    | 566       | 168   | 27331    | 27331 |
| 1975 | 16017    |           |               |          | 16017          | 1847          |          | 1847          | 2403  | 4044    | 481       | 216   | 25008    | 25008 |
| 1976 | 14906    |           |               |          | 14906          | 2328          |          | 2328          | 033   | 1633    | 90        | 36    | 19926    | 19926 |
| 1077 | 21138    |           |               |          | 21138          | 6173          |          | 6173          | 54    | 1000    | 30        | 50    | 27367    | 27367 |
| 1078 | 26570    | 223       | 5021          | 3        | 21100          | 8777          | 08       | 8875          | 54    | 2       | -         | _     | 35356    | 40700 |
| 1970 | 20079    | 403       | 5021          | 3        | 38068          | 5979          | 103      | 6082          |       | _       |           |       | 38624    | 40700 |
| 1080 | 40053    | 403       | 5021          | 3        | 45500          | 8066          | 83       | 8140          | -     | -       | -         | -     | 48110    | 53652 |
| 1001 | 33840    | 420       | 5021          | 26       | 40000          | 8508          | 00       | 8606          | -     | -       | -         | -     | 40119    | 48252 |
| 1001 | 20222    | 720       | JUZ 1<br>4112 | 2.0      | 39044<br>44195 | 17927         | 90<br>71 | 17000         | -     | -       | -         | -     | 42337    | 40202 |
| 1902 | 39333    | 100       | 4113          | 1.7      | 44100          | 17027         | 64       | 12106         | -     | -       | -         | -     | 37100    | 52069 |
| 1903 | 30/30    | 492       | 4017          | 1.0      | 41/00          | 12131<br>5761 | 69       | 12190<br>5920 | -     | -       | -         | -     | 40007    | 20300 |
| 1904 | 32915    | 74        | 1049<br>5414  | 1.5      | 34537          | 5/61          | 102      | 0029<br>10545 | -     | -       | -         | -     | 30070    | 40300 |
| 1900 | 20020    | 202       | 000           | 0.0      | 32304          | 10442         | 103      | 10545         | -     | -       | -         | -     | 37270    | 43055 |
| 1900 | 17490    | 343       | 900           | 2.2      | 10021          | 0504          | 51       | 0000          | -     | -       | -         | -     | 25994    | 2/3/0 |
| 1987 | 19035    | 200       | 13/3          | 11.5     | 20608          | 11844         | /0       | 11920         | -     | -       | -         | -     | 30879    | 32540 |
| 1988 | 20310    | 242       | 3103          | 11.0     | 29000          | 72741         | 83       | 12824         | -     | -       | -         | -     | 39051    | 42491 |
| 1909 | 20000    | 020       | 1209          | 19.5     | 20942          | 14364         | 70       | 14425         | -     | -       | -         | -     | 32951    | 34913 |
| 1990 | 20110    | 404       | 1409          | 19.2     | 30072          | 14304         | 70       | 14400         | -     | -       | -         | -     | 42474    | 44007 |
| 1991 | 24219    | 500       | 1203          | 7.5      | 20/00          | 13407         | CO<br>74 | 10002         | -     | -       | -         | -     | 3/00/    | 39320 |
| 1992 | 10099    | 505       | 041           | 15.9     | 10001          | 11007         | 71       | 11730         | -     | -       | -         | -     | 20000    | 29000 |
| 1993 | 14590    | 284       | 2570          | 73.3     | 1/51/          | 8526          | 63       | 8588          | -     | -       | -         | -     | 23116    | 20105 |
| 1994 | 9/3/     | 159       | 744           | 31.1     | 10670          | 5277          | 03       | 5339          | -     | -       | -         | -     | 15013    | 16009 |
| 1995 | 7020     | 84<br>400 | 1013          | 00.5     | 8/84           | 1102          | 38       | 1140          | -     | -       | -         | -     | 8128     | 9924  |
| 1996 | 7201     | 108       | 453           | 23.4     | 7845           | 1924          | 00       | 1980          | -     | -       | -         | -     | 9185     | 9825  |
| 1997 | 7548     | 100       | 1283          | 38.1     | 8969           | 2919          | 486      | 3404          | -     | -       | -         | -     | 10467    | 12373 |
| 1998 | 7041     | 99        | 859           | 62.0     | 8061           | 1907          | 305      | 2272          | -     | -       | -         | -     | 8948     | 10333 |
| 1999 | 8313     | 86        | 400           | 26.6     | 8825           | 1818          | 338      | 2156          | -     | -       | -         | -     | 10131    | 10982 |
| 2000 | 7600     | 137       | 832           | 53.6     | 8623           | 1572          | 69       | 1641          | -     | -       | -         | -     | 9172     | 10263 |
| 2001 | 10749    | 306       | 345           | 19.8     | 11420          | 2143          | 143      | 2286          | -     | -       | -         | -     | 12892    | 13705 |
| 2002 | 9472     | 168       | 311           | 34.4     | 9986           | 1278          | 94       | 1372          | -     | -       | -         | -     | 10750    | 11357 |
| 2003 | 6852     | 229       | 299           | 32.2     | 7413           | 1317          | 200      | 1517          | -     | -       | -         | -     | 8169     | 8930  |
| 2004 | 3509     | 130       | 262           | 12.3     | 3913           | 1112          | 145      | 1258          | -     | -       | -         | -     | 4621     | 5171  |
| 2005 | 2754     | 395       | 927           | 95.0     | 4171           | 630           | 228      | 859           | -     | -       | -         | -     | 3384     | 5030  |
| 2006 | 2700     | 230       | 56            | 3.9      | 2990           | 1096          | 349      | 1445          | -     | -       | -         | -     | 3796     | 4435  |
| 2007 | 3699     | 727       | 10            | 2.8      | 4439           | 1108          | 114      | 1221          | -     | -       | -         | -     | 4807     | 5660  |
| 2008 | 3255     | 308       | 66            | 1.0      | 3630           | 1390          | 139      | 1529          | -     | -       | -         | -     | 4645     | 5160  |
| 2009 | 2999     | 384       | 46            | 5.0      | 3434           | 1003          | 207      | 1210          | -     | -       | -         | -     | 4002     | 4643  |
| 2010 | 2688     | 253       | 146           | 22.6     | 3110           | 748           | 92       | 840           | -     | -       | -         | -     | 3436     | 3950  |
| 2011 | 3387     | 122       | 201           | 18.0     | 3728           | 702           | 42       | 744           | -     | -       | -         | -     | 4089     | 4472  |

|      |              |                  |              |                |                | La           | andings           | (metric            | tons, live         | e)          |       |            |              |                  |               |
|------|--------------|------------------|--------------|----------------|----------------|--------------|-------------------|--------------------|--------------------|-------------|-------|------------|--------------|------------------|---------------|
|      | (D           | Geo<br>ivision 5 | orges Ba     | ank<br>Subarea | a 6)           | SA 521       | Geor(<br>-522, 52 | ges Bar<br>25-526, | nk West<br>537-539 | & Subarea 6 |       | C          | George<br>SA | s Banl<br>561-56 | k East<br>62  |
| Year | 1            | 2                | Quarter<br>3 | 4              | TOTAL          | 1            | 2                 | Quarte<br>3        | er<br>4            | TOTAL       | 1     | 2          | Q<br>3       | uarter<br>4      | TOTAL         |
| 1070 | E404         | 0425             | 5005         | 5602           | 25456          | 2510         | 6500              | E120               | 4700               | 10055       | 1075  | 1010       | 705          | 000              | 5502          |
| 1970 | 5494         | 0430             | 5925         | 5003           | 20400          | 3519         | 0023              | 5130               | 4783               | 19955       | 19/0  | 1912       | 195          | 020              | 550Z          |
| 1979 | 4480         | 10067            | 10130        | 7074           | 31/50          | 2729         | 8019              | 8009               | 6032               | 25349       | 1/51  | 2048       | 1007         | 1042             | 0408          |
| 1980 | 7104         | 13078            | 12111        | 0/30<br>E474   | 39028          | 3/55         | 0170              | 7025               | 0388               | 32010       | 3349  | 1/12       | 1010         | 347<br>705       | 0418          |
| 1901 | 740Z         | 10026            | 9027         | 0471<br>9500   | 33020          | 4037         | 91/0              | 7035               | 4000               | 24930       | 3445  | 1009       | 1992         | 700<br>504       | 0091          |
| 1962 | 7655         | 10930            | 12204        | 6070           | 36443          | 3000         | 0/00              | 9091               | 7910               | 29077       | 2407  | 2100       | 2010         | 1115             | 0000          |
| 1900 | 2007         | 10793            | 0050         | 00/U           | 30930<br>20027 | 4020         | 7100              | 6206               | 2700               | 21303       | 50127 | 1971       | 2009         | 1115             | 0072<br>10550 |
| 1904 | 0907<br>6705 | 9020             | 0202<br>5750 | 5056           | 32037          | 2090         | 7100              | 4740               | 4200               | 21407       | 2510  | 2/20       | 2020         | 610              | 6644          |
| 1900 | 6720         | 0001<br>5506     | 2207         | 2200           | 20095          | 3200         | 2750              | 4/19               | 4400<br>0104       | 19404       | 2019  | 14/3       | 1057         | 125              | 5606          |
| 1900 | 10234        | 6226             | 3207         | 2009           | 10754          | 2020         | 3709              | 3012               | 2104               | 13061       | 1/20  | 2211       | 250          | 694              | 4704          |
| 1907 | 4009         | 7205             | 4334<br>5714 | 4000<br>5701   | 10/04          | 2001         | 4012              | 5255               | 3322<br>4002       | 10200       | 2504  | 2014       | 300<br>450   | 700              | 4794          |
| 1900 | 7233<br>5652 | 0011             | 6219         | 4260           | 20030          | 2707         | 4000              | 5200               | 4995               | 19604       | 1007  | 2000       | 254          | 020              | 6192          |
| 1909 | 5055         | 0014             | 7070         | 4009           | 20000          | 2616         | 5005              | 0009<br>6552       | 5405               | 10004       | 1907  | 2452       | 450          | 171              | 6415          |
| 1990 | 6454         | 9123             | 1070         | 2644           | 20110          | 3010<br>4275 | 505U              | 4120               | 2172               | 21429       | 2000  | 3432       | 409          | 1/1              | 0410<br>6252  |
| 1991 | 4562         | 9040<br>5561     | 4219         | 2/0/           | 16900          | 4273         | 2240              | 2069               | 2711               | 11602       | 2040  | 2170       | 144          | 403              | 5090          |
| 1992 | 4002         | 5301             | 3202<br>3556 | 2255           | 14500          | 20/4         | 2140              | 2214               | 2711               | 10412       | 1904  | 21/4       | 190          | 102              | 0000<br>4007  |
| 1995 | 2013         | 2454             | 2000         | 3200           | 0727           | 2242         | 3140              | 1000               | 2709               | 10413       | 107   | 199Z       | 200          | 491              | 4027          |
| 1994 | 2000         | 2265             | 2090         | 1000           | 7026           | 24/0         | 2927              | 2059               | 1400               | 6193        | 107   | 242        | 210<br>127   | 26.1             | 990<br>544    |
| 1995 | 1356         | 2000             | 10/5         | 1037           | 7020           | 1203         | 2023              | 2000               | 000                | 6585        | 153   | J4Z<br>1/6 | 40.7         | JU. 1            | 676           |
| 1990 | 1150         | 2323             | 1856         | 1037           | 7548           | 1203         | 3024              | 1842               | 1066               | 6999        | 92.6  | 425        | 13.7         | 17.8             | 549           |
| 1998 | 1335         | 2920             | 1493         | 1293           | 7041           | 1280         | 2370              | 1457               | 1255               | 6361        | 54.0  | 550        | 36.7         | 38               | 679           |
| 1999 | 1675         | 3807             | 1770         | 1061           | 8313           | 1463         | 2893              | 1743               | 1019               | 7118        | 212   | 914        | 26.3         | 41.8             | 1195          |
| 2000 | 1716         | 2798             | 1695         | 1391           | 7600           | 1502         | 2307              | 1665               | 1355               | 6829        | 214   | 491        | 29.9         | 36.2             | 772           |
| 2001 | 2350         | 3815             | 2418         | 2166           | 10749          | 2101         | 2733              | 2355               | 2073               | 9262        | 249   | 1082       | 63.3         | 93.1             | 1488          |
| 2002 | 2841         | 3834             | 1621         | 1175           | 9472           | 2408         | 2761              | 1513               | 1102               | 7784        | 434   | 1073       | 108          | 73.4             | 1688.1        |
| 2003 | 1751         | 2893             | 1308         | 900            | 6852           | 1304         | 1717              | 1234               | 746                | 5002        | 447   | 1175       | 74.1         | 154              | 1850.5        |
| 2004 | 912.9        | 1532             | 524.9        | 539            | 3509           | 679          | 797               | 497                | 529                | 2503        | 234   | 735        | 27.6         | 10.1             | 1006          |
| 2005 | 677.1        | 1191             | 528.9        | 358            | 2754           | 659          | 1076              | 492                | 357                | 2584        | 18.5  | 115        | 36.9         | 0.52             | 171           |
| 2006 | 449.4        | 821              | 548.5        | 881            | 2700           | 449          | 714               | 543                | 863                | 2569        | 0.68  | 107        | 5.15         | 18.4             | 131           |
| 2007 | 517.6        | 1255             | 1020         | 906            | 3699           | 494.1        | 1068              | 1014               | 878.67             | 3455        | 13.2  | 188        | 5.78         | 27.2             | 234           |
| 2008 | 711          | 1109             | 722.4        | 713            | 3255           | 706.8        | 1062              | 669.1              | 593.76             | 3031        | 4.2   | 47.6       | 53.3         | 119              | 224           |
| 2009 | 778.9        | 959.5            | 723.6        | 537            | 2999           | 702.2        | 778.5             | 589.6              | 480.56             | 2551        | 61.9  | 181        | 134          | 56.4             | 433           |
| 2010 | 642          | 923.8            | 411.2        | 711            | 2688           | 589.4        | 750.1             | 372.8              | 618.49             | 2331        | 52.5  | 174        | 38.5         | 92.4             | 357           |
| 2011 | 681          | 1133             | 801          | 773            | 3387           | 653.1        | 946.8             | 761.7              | 758.94             | 3120        | 27.9  | 186        | 39.3         | 13.7             | 267           |

Table B2a. Distribution of USA commercial Atlantic cod landings by quarter and area (Georges Bank, Georges Bank West, Georges Bank East) in metric tons, 1978-2011 (SA=statistical area).

| -    | -                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                      | Perc                                                   | entage                                                 | of Annua                                               | al Landi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ngs                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Geoi<br>(Div.                                                                                                                                                                                                                                                                                         | rges Ba<br>. 5Z and                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ank<br>d 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | SA 521-5                                               | Georg<br>522, 525                                      | es Bank<br>5-526, 53                                   | West<br>37-539 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd Div. 6                                              |                                                        | George<br>SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es Ban<br>561-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k East<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (                                                                                                                                                                                                                                                                                                     | Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        |                                                        | Quarter                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                        | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1    | 2                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL                                                  | 1                                                      | 2                                                      | 3                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL                                                  | 1                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21.6 | 33.1                                                                                                                                                                                                                                                                                                  | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 13.8                                                   | 25.6                                                   | 20.2                                                   | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.4                                                   | 7.8                                                    | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14.1 | 31.7                                                                                                                                                                                                                                                                                                  | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 8.6                                                    | 25.3                                                   | 27.0                                                   | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.8                                                   | 5.5                                                    | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18.2 | 33.5                                                                                                                                                                                                                                                                                                  | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 9.6                                                    | 29.1                                                   | 28.4                                                   | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83.6                                                   | 8.6                                                    | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22.7 | 33.4                                                                                                                                                                                                                                                                                                  | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 12.2                                                   | 27.8                                                   | 21.3                                                   | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.5                                                   | 10.4                                                   | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17.7 | 28.4                                                                                                                                                                                                                                                                                                  | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 9.1                                                    | 22.8                                                   | 25.2                                                   | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.7                                                   | 8.6                                                    | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21.3 | 30.0                                                                                                                                                                                                                                                                                                  | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 12.6                                                   | 24.6                                                   | 23.0                                                   | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.1                                                   | 8.7                                                    | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27.8 | 30.7                                                                                                                                                                                                                                                                                                  | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 12.2                                                   | 22.2                                                   | 19.4                                                   | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.1                                                   | 15.6                                                   | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25.8 | 32.7                                                                                                                                                                                                                                                                                                  | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 12.3                                                   | 27.1                                                   | 18.1                                                   | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.6                                                   | 13.5                                                   | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36.1 | 32.0                                                                                                                                                                                                                                                                                                  | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 15.2                                                   | 21.8                                                   | 17.4                                                   | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.0                                                   | 20.9                                                   | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21.8 | 33.7                                                                                                                                                                                                                                                                                                  | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 14.1                                                   | 21.4                                                   | 21.2                                                   | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.4                                                   | 7.7                                                    | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27.8 | 28.1                                                                                                                                                                                                                                                                                                  | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 14.0                                                   | 17.3                                                   | 20.2                                                   | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.6                                                   | 13.8                                                   | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22.6 | 35.2                                                                                                                                                                                                                                                                                                  | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 14.8                                                   | 22.7                                                   | 23.2                                                   | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.3                                                   | 7.6                                                    | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21.5 | 32.5                                                                                                                                                                                                                                                                                                  | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 12.9                                                   | 20.1                                                   | 23.3                                                   | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.2                                                   | 8.3                                                    | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26.6 | 40.6                                                                                                                                                                                                                                                                                                  | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 17.7                                                   | 25.1                                                   | 17.0                                                   | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.8                                                   | 8.5                                                    | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27.0 | 32.9                                                                                                                                                                                                                                                                                                  | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 15.2                                                   | 19.8                                                   | 18.2                                                   | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69.2                                                   | 11.6                                                   | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24.8 | 35.4                                                                                                                                                                                                                                                                                                  | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 15.4                                                   | 21.6                                                   | 15.9                                                   | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.4                                                   | 9.0                                                    | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26.6 | 35.5                                                                                                                                                                                                                                                                                                  | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 25.5                                                   | 30.1                                                   | 19.3                                                   | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.7                                                   | 1.1                                                    | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20.5 | 33.7                                                                                                                                                                                                                                                                                                  | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 18.7                                                   | 28.8                                                   | 29.3                                                   | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.3                                                   | 1.7                                                    | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18.7 | 40.3                                                                                                                                                                                                                                                                                                  | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 16.6                                                   | 34.1                                                   | 26.3                                                   | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.7                                                   | 2.1                                                    | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15.4 | 45.7                                                                                                                                                                                                                                                                                                  | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 14.1                                                   | 40.1                                                   | 24.4                                                   | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.7                                                   | 1.2                                                    | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19.0 | 41.5                                                                                                                                                                                                                                                                                                  | 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 18.2                                                   | 33.7                                                   | 20.7                                                   | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.4                                                   | 0.8                                                    | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20.2 | 45.8                                                                                                                                                                                                                                                                                                  | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 17.6                                                   | 34.8                                                   | 21.0                                                   | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.6                                                   | 2.6                                                    | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22.6 | 36.8                                                                                                                                                                                                                                                                                                  | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 19.8                                                   | 30.3                                                   | 21.9                                                   | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.8                                                   | 2.8                                                    | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21.9 | 35.5                                                                                                                                                                                                                                                                                                  | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 19.5                                                   | 25.4                                                   | 21.9                                                   | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.2                                                   | 2.3                                                    | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30.0 | 40.5                                                                                                                                                                                                                                                                                                  | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 25.4                                                   | 29.2                                                   | 16.0                                                   | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.2                                                   | 4.6                                                    | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25.6 | 42.2                                                                                                                                                                                                                                                                                                  | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 19.0                                                   | 25.1                                                   | 18.0                                                   | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.0                                                   | 6.5                                                    | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26.0 | 43.7                                                                                                                                                                                                                                                                                                  | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 19.4                                                   | 22.7                                                   | 14.2                                                   | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.3                                                   | 6.7                                                    | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24.6 | 43.2                                                                                                                                                                                                                                                                                                  | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 23.9                                                   | 39.1                                                   | 17.9                                                   | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.8                                                   | 0.7                                                    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16.6 | 30.4                                                                                                                                                                                                                                                                                                  | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 16.6                                                   | 26.4                                                   | 20.1                                                   | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.1                                                   | 0.0                                                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14.0 | 33.9                                                                                                                                                                                                                                                                                                  | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 13.4                                                   | 28.9                                                   | 27.4                                                   | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.4                                                   | 0.4                                                    | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21.8 | 34.1                                                                                                                                                                                                                                                                                                  | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 21.7                                                   | 32.6                                                   | 20.6                                                   | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.1                                                   | 0.1                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26.0 | 32.0                                                                                                                                                                                                                                                                                                  | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 23.4                                                   | 26.0                                                   | 19.7                                                   | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.1                                                   | 2.1                                                    | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23.9 | 34.4                                                                                                                                                                                                                                                                                                  | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 21.9                                                   | 27.9                                                   | 13.9                                                   | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.7                                                   | 2.0                                                    | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20.1 | 33.4                                                                                                                                                                                                                                                                                                  | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0                                                  | 19.3                                                   | 27.9                                                   | 22.5                                                   | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.1                                                   | 0.8                                                    | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | $\begin{array}{c} 1\\ 21.6\\ 14.1\\ 18.2\\ 22.7\\ 17.7\\ 21.3\\ 27.8\\ 25.8\\ 36.1\\ 21.8\\ 27.8\\ 22.6\\ 21.5\\ 26.6\\ 27.0\\ 24.8\\ 26.6\\ 20.5\\ 18.7\\ 15.4\\ 19.0\\ 20.2\\ 22.6\\ 21.9\\ 30.0\\ 25.6\\ 21.9\\ 30.0\\ 25.6\\ 26.0\\ 24.6\\ 16.6\\ 14.0\\ 21.8\\ 26.0\\ 23.9\\ 20.1\\ \end{array}$ | Geo<br>(Div.<br>1 2<br>21.6 33.1<br>14.1 31.7<br>18.2 33.5<br>22.7 33.4<br>17.7 28.4<br>21.3 30.0<br>27.8 30.7<br>25.8 32.7<br>36.1 32.0<br>21.8 33.7<br>27.8 28.1<br>22.6 35.2<br>21.5 32.5<br>26.6 40.6<br>27.0 32.9<br>24.8 35.4<br>26.6 35.5<br>20.5 33.7<br>18.7 40.3<br>15.4 45.7<br>19.0 41.5<br>20.2 45.8<br>21.9 35.5<br>30.0 40.5<br>25.6 42.2<br>26.0 43.7<br>24.6 33.2<br>15.6 43.2<br>16.6 30.4<br>14.0 33.9<br>21.8 34.1<br>26.0 32.0<br>23.9 34.4<br>20.1 33.4 | Georges Ba<br>(Div. 5Z and<br>Quarter       1     2     3       21.6     33.1     23.3       14.1     31.7     31.9       18.2     33.5     31.0       22.7     33.4     27.3       17.7     28.4     31.7       21.3     30.0     29.5       27.8     30.7     25.8       25.8     32.7     22.1       36.1     32.0     18.6       21.8     33.7     23.1       27.8     20.7     24.8       21.5     32.5     25.2       26.6     40.6     17.7       27.0     32.9     19.4       24.8     35.4     17.5       26.6     35.5     21.5       20.5     33.7     29.9       18.7     40.3     26.8       15.4     45.7     24.6       19.0     41.5     21.2       20.2     45.8     21.3       22.6     36.8     22.3       < | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Percentage of Annu-       Georges Bank<br>(Div. 5Z and 6)     Georges Bank<br>SA 521-522, 525-526, 53       Quarter     Quarter     Quarter     Quarter     Quarter       1     2     3     4     TOTAL     1     2     3       21.6     33.1     23.3     22.0     100.0     13.8     25.6     20.2       14.1     31.7     31.9     22.3     100.0     8.6     25.3     27.0       18.2     33.5     31.0     17.3     100.0     9.6     29.1     28.4       22.7     33.4     27.3     16.6     100.0     12.2     27.8     21.3       30.7     25.8     15.8     100.0     12.2     22.2     19.4       25.8     32.7     22.1     19.5     100.0     12.2     21.8     17.4       21.8     33.7     23.1     21.4     100.0     14.1     21.4     21.2       22.6     35.2     24.8     17.4     100.0     14.8     22.7     23 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Georges Bank<br>(Div. 5Z and 6)     Georges Bank West<br>SA 521-522, 525-526, 537-539 and Div. 6       Quarter     Quarter     Quarter       1     2     3     4     TOTAL     1     2     3     4     TOTAL     1       21.6     33.1     23.3     22.0     100.0     13.8     25.6     20.2     18.8     78.4     7.8       14.1     31.7     31.9     22.3     100.0     86     25.3     27.0     19.0     79.8     5.5       18.2     33.5     31.0     17.3     100.0     9.6     29.1     28.4     16.4     83.6     86       22.7     33.4     27.3     16.6     100.0     12.2     27.8     21.3     14.2     75.5     10.4       7.7     28.4     31.7     12.1     100.0     12.2     22.2     19.4     13.3     67.1     8.7       27.8     30.7     25.8     15.8     100.0     12.2     22.1     14.1     17.4     67.1     8.7 | Percentage of Anual Landings       Georges Bank<br>(Div. 5Z and 6)     Georges Bank West<br>SA 521-522, 525-526, 537-539 and Div. 6     Georges<br>A       Quarter     Quarter     Quarter     Quarter     Carter     Carter <th< td=""><td>Ceorges Bank<br/>(Div. 5Z and 6)     Ceorges Bank West<br/>SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank West<br/>SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank<br/>SA 561-5       Quarter     Quarter     Quarter     Quarter     Quarter       1     2     3     4     TOTAL     1     2     3       18.2     33.5     31.0     17.3     100.0     8.6     25.3     27.0     19.0     79.8     5.5     6.4     4.9       13.3     0.0     25.8     15.8     10.0     12.2     27.2     19.4     13.3     67.1     15.5     6.6       27.8     30.7     25.8     15.8</td><td>Percentage of Annual Landings       Georges Bank (Div. 5Z and 6)     Georges Bank West SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank West SA 561-562       Quarter     Quarter     Quarter     Quarter     Quarter       1     Quarter     Quarter     Quarter       Quarter     Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter    &lt;</td></th<> | Ceorges Bank<br>(Div. 5Z and 6)     Ceorges Bank West<br>SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank West<br>SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank<br>SA 561-5       Quarter     Quarter     Quarter     Quarter     Quarter       1     2     3     4     TOTAL     1     2     3       18.2     33.5     31.0     17.3     100.0     8.6     25.3     27.0     19.0     79.8     5.5     6.4     4.9       13.3     0.0     25.8     15.8     10.0     12.2     27.2     19.4     13.3     67.1     15.5     6.6       27.8     30.7     25.8     15.8 | Percentage of Annual Landings       Georges Bank (Div. 5Z and 6)     Georges Bank West SA 521-522, 525-526, 537-539 and Div. 6     Georges Bank West SA 561-562       Quarter     Quarter     Quarter     Quarter     Quarter       1     Quarter     Quarter     Quarter       Quarter     Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter     Quarter       Quarter    < |

Table B2b . Distribution of USA commercial Atlantic cod landings by quarter and area (Georges Bank, Georges Bank West, Georges Bank East) by percentage of total landings, 1978-2011 (SA=statistical area).

Table B3. Distribution of USA commercial landings (metric tons, live; percentage) of Georges Bank Atlantic cod (Division 5Z), by gear type,1965-2011. Data only reflect cod landings that could be identified by gear type.

| Landings (metric tons,live)     Percentage of Annual Landings       Otter<br>trawl     Sink<br>Gill net     Line<br>Trawl     Galactic<br>gear     Citer<br>trawl     Sink<br>Gill net     Line<br>Trawl     Handline<br>gear     Other<br>Total     Total<br>gear       1965     10251     0     582     505     9     11347     90.3     -     6.7     6.4     0.4     0.1     100       1966     10204     0     936     524     <1     13544     89.2     -     6.9     3.9     -     100       1970     11270     0     1676     404     13550     84.4     -     12.6     3     -     100       1971     11270     0     1676     40.4     1350     84.4     -     16.6     1.7     0.1     100       1971     12431     3     2185     206     2.1     14846     83.7     -     14.7     1.4     0.2     100       1975     12266     0.2     14846     83.7     -     10.5                                                                                                                                                      |      |                |                  |               |             |       | NOT A | LL LANI        | DINGS H          | HAVE          | A GEAR      | CODE  | Ē     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------------------|---------------|-------------|-------|-------|----------------|------------------|---------------|-------------|-------|-------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                | Land             | dings (m      | etric tons, | ive)  |       |                | Percen           | tage of A     | Annual Land | lings |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    |                |                  |               |             |       |       |                |                  |               |             |       |       |
| 1965102510361037103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331033103310331                                                                                                                                                                                                                                                                                                                                                                                       |      | Otter<br>trawl | Sink<br>Gill net | Line<br>Trawl | Handline    | Other | Total | Otter<br>trawl | Sink<br>Gill net | Line<br>Trawl | Handline    | Other | Total |
| 1966     10206     0     787     757     19     11769     86.7     -     6.7     6.4     0.2     100       1967     10915     0     894     704     9     12522     87.2     -     7.1     5.6     0.1     100       1969     13194     0     1371     387     14952     88.2     -     9.2     2.6     -     100       1970     11270     0     1676     404     13500     82.9     -     15.6     1.5     -     100       1971     12436     0     2334     230     2     15002     82.9     -     15.6     1.5     .     100       1973     12431     3     2185     206     21     14846     83.7     -     16.7     0.4     0.1     100       1974     14078     3     2485     84     4     4552     82.7     -     16.7     0.4     0.1     100       1977 </th <th>1965</th> <th>10251</th> <th>0</th> <th>582</th> <th>505</th> <th>9001</th> <th>11347</th> <th>90.3</th> <th>-</th> <th>5.1</th> <th>4.5</th> <th>0.1</th> <th>100</th>                                                                                      | 1965 | 10251          | 0                | 582           | 505         | 9001  | 11347 | 90.3           | -                | 5.1           | 4.5         | 0.1   | 100   |
| 1967     19915     0     894     704     9     12522     87.2     -     7.1     5.6     0.1     100       1968     12084     0     936     524     <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1966 | 10206          | 0                | 787           | 757         | 19    | 11769 | 86.7           | _                | 6.7           | 6.4         | 0.2   | 100   |
| 1968120840936524<113544892-6.93.9-10019691319401371387<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1967 | 10915          | 0                | 894           | 704         | 9     | 12522 | 87.2           | _                | 7.1           | 5.6         | 0.1   | 100   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1968 | 12084          | 0                | 936           | 524         | <1    | 13544 | 89.2           | -                | 6.9           | 3.9         | -     | 100   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1969 | 13194          | 0                | 1371          | 387         | <1    | 14952 | 88.2           | -                | 9.2           | 2.6         | -     | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1970 | 11270          | 0                | 1676          | 404         | <1    | 13350 | 84.4           | -                | 12.6          | 3           | -     | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1971 | 12436          | 0                | 2334          | 230         | 2     | 15002 | 82.9           | -                | 15.6          | 1.5         | -     | 100   |
| 1973   12431   3   2185   206   21   14846   83.7   -   14.7   1.4   0.2   100     1974   14078   3   2548   11   9   16649   84.6   -   15.3   0.1   -   100     1975   12257   4   1519   153   5   13938   88   -   10.9   1.1   -   100     1976   12257   4   1519   153   5   13938   88   -   10.9   1.1   -   100     1978   22412   141   1594   1184   126   25456   87.8   0.3   6.6   5   0.3   100     1980   33032   4612   1103   6   276   39028   84.7   11.7   2.9   -   0.7   100     1981   28216   3901   122   577   202   33028   86.2   10.9   1.4   1.8   0.6   100     1982   3405   383   447   89   35935   90.7 <td< td=""><td>1972</td><td>10179</td><td>0</td><td>2071</td><td>217</td><td>10</td><td>12477</td><td>81.6</td><td>-</td><td>16.6</td><td>1.7</td><td>0.1</td><td>100</td></td<>                                                                                                                                                                                                           | 1972 | 10179          | 0                | 2071          | 217         | 10    | 12477 | 81.6           | -                | 16.6          | 1.7         | 0.1   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1973 | 12431          | 3                | 2185          | 206         | 21    | 14846 | 83.7           | -                | 14.7          | 1.4         | 0.2   | 100   |
| 1975   12069   0   2435   84   4   14592   82.7   -   16.7   0.6   -   100     1976   12257   4   1519   153   5   13938   88   -   10.9   1.1   -   100     1977   18529   30   912   83   22   19576   94.7   0.4   0.1   100     1978   22412   141   1594   1184   126   25456   87.8   0.3   6.6   5   0.3   100     1980   33032   4612   1103   6   276   39028   84.7   11.7   2.9   -   0.7   100     1981   28216   3001   122   2567   202   33028   86.2   10.9   0.4   1.8   0.6   100     1982   34065   3149   385   627   216   38443   88.9   7.8   1   1.7   0.6   100     1983   32392   217   32037   87.1   8.6   1.2   2.5   0.6                                                                                                                                                                                                                                                                                                                                                                                  | 1974 | 14078          | 3                | 2548          | 11          | 9     | 16649 | 84.6           | -                | 15.3          | 0.1         | -     | 100   |
| 1976122574151915351393888-10.91.1-1001977185293091283221957694.70.24.70.40.1100197822412141159411841262545687.80.36.650.310019702724876927098701613175685.928.82.80.51001980330324612110362763902884.711.72.9-0.710019812821639011225872023302886.210.90.41.80.61001983323922174833447893593590.75.32.41.30.310019842747032033827552273203787.18.61.22.50.61001985207030944682981652609586.4101.81.10.710019861419818537993299617275831.34.21.90.610019871497616241757293105187547998.99.51.30.410019821262270113605183692811084.19.04.91.50.5100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1975 | 12069          | 0                | 2435          | 84          | 4     | 14592 | 82.7           | -                | 16.7          | 0.6         | -     | 100   |
| 1977185293091283221957694.70.24.70.40.1100197822412141159411841262545687.80.36.650.310019792724876927098701613175685.928.82.80.5100198030324612110362763002884.711.72.9-0.71001981282163901122587202302886.210.90.41.80.610019823406531493856272163844388.97.811.70.61001983323922174833447893593590.75.32.41.30.310019842747032033827552273203787.18.61.22.50.6100198614198185379932996172758310.34.21.90.6100198714976162417572931051875479.98.99.51.30.4100198821333205321582902022605678.41.86.90.5100198023162270113605183692811084.19.04.91.50.5100 </td <td>1976</td> <td>12257</td> <td>4</td> <td>1519</td> <td>153</td> <td>5</td> <td>13938</td> <td>88</td> <td>-</td> <td>10.9</td> <td>1.1</td> <td>-</td> <td>100</td>                                                                                                                                                                                                                                                                                                   | 1976 | 12257          | 4                | 1519          | 153         | 5     | 13938 | 88             | -                | 10.9          | 1.1         | -     | 100   |
| 1978224121411594118412625456 $87.8$ $0.3$ $6.6$ $5$ $0.3$ 1001979272487692709 $870$ 161 $31756$ $85.9$ $2$ $8.8$ $2.8$ $0.5$ 10019803030246121103 $6$ 27639028 $84.7$ $11.7$ $2.9$ $ 0.7$ 100198128216390112258720233028 $86.2$ 10.9 $0.4$ $1.8$ $0.6$ 1001982340653149385627216 $38443$ $88.9$ $7.8$ 1 $1.7$ $0.6$ 1001983323922174833447 $89$ 3593590.7 $5.3$ $2.4$ $1.3$ $0.3$ 100198427470320338275522732037 $87.1$ $8.6$ $1.2$ $2.5$ $0.6$ 100198514198185379932996 $17275$ $83$ $10.3$ $4.2$ $1.9$ $0.6$ 100198614198185379932920226036 $83$ $7.6$ $8$ $0.9$ $0.5$ 100198816222701136051836928110 $84.1$ $9.0$ $4.9$ $1.5$ $0.5$ 1001991188362614200335740924219 $79.7$ $9.7$ $8.5$ $1.3$ $0.8$ 1001992124752208 </td <td>1977</td> <td>18529</td> <td>30</td> <td>912</td> <td>83</td> <td>22</td> <td>19576</td> <td>94.7</td> <td>0.2</td> <td>4.7</td> <td>0.4</td> <td>0.1</td> <td>100</td>                                                                                                                                 | 1977 | 18529          | 30               | 912           | 83          | 22    | 19576 | 94.7           | 0.2              | 4.7           | 0.4         | 0.1   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978 | 22412          | 141              | 1594          | 1184        | 126   | 25456 | 87.8           | 0.3              | 6.6           | 5           | 0.3   | 100   |
| 1980330324612110362763902884.711.72.9-0.710019812821639011225872023302886.210.90.41.80.61001983323922174833447893593590.75.32.41.30.310019842747032033827552273203787.18.61.22.50.610019852207030944682981652609586.4101.81.10.7100198614198185379932996172758310.34.21.90.6100198714976162417572931051875479.98.99.51.30.41001988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.510019911886261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.710019931136615841460791021459079.79.79.60.40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1979 | 27248          | 769              | 2709          | 870         | 161   | 31756 | 85.9           | 2                | 8.8           | 2.8         | 0.5   | 100   |
| 1981 $28216$ $3901$ $122$ $587$ $202$ $33028$ $86.2$ $10.9$ $0.4$ $1.8$ $0.6$ $100$ 1982 $34065$ $3149$ $385$ $627$ $216$ $38443$ $88.9$ $7.8$ $1$ $1.7$ $0.6$ $100$ 1983 $32392$ $2174$ $833$ $447$ $89$ $35935$ $90.7$ $5.3$ $2.4$ $1.3$ $0.3$ $100$ 1984 $27470$ $3203$ $382$ $755$ $227$ $32037$ $87.1$ $8.6$ $1.2$ $2.5$ $0.6$ $100$ 1985 $22070$ $3094$ $468$ $298$ $165$ $26095$ $86.4$ $10$ $1.8$ $1.1$ $0.7$ $100$ 1986 $14198$ $1853$ $799$ $329$ $96$ $17275$ $83$ $10.3$ $4.2$ $1.9$ $0.6$ $100$ 1987 $14976$ $1624$ $1757$ $293$ $105$ $18754$ $79.9$ $8.9$ $9.5$ $1.3$ $0.4$ $100$ 1988 $21333$ $2053$ $2158$ $290$ $202$ $26036$ $83$ $7.6$ $8$ $0.9$ $0.5$ $100$ 1989 $19293$ $3549$ $1785$ $160$ $267$ $25056$ $78.4$ $13.8$ $6.9$ $0.5$ $100$ 1990 $23162$ $2701$ $1360$ $518$ $369$ $28110$ $84.1$ $9.0$ $4.9$ $1.5$ $0.5$ $100$ 1991 $18836$ $2614$ $2003$ $357$ $409$                                                                                                                                              | 1980 | 33032          | 4612             | 1103          | 6           | 276   | 39028 | 84.7           | 11.7             | 2.9           | -           | 0.7   | 100   |
| 19823406531493856272163844388.9 $7.8$ 11.70.61001983323922174833447893593590.7 $5.3$ 2.41.30.3100198427470320338275522732037 $87.1$ 8.61.22.50.610019852207030944682981652609586.4101.81.10.7100198614198185379932996172758310.34.21.90.6100198714976162417572931051875479.98.99.51.30.41001988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.50.4100199023162270113605183692811084.19.04.91.50.5100199118836261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.71001993136615841460791021459079.79.60.40.6 <td>1981</td> <td>28216</td> <td>3901</td> <td>122</td> <td>587</td> <td>202</td> <td>33028</td> <td>86.2</td> <td>10.9</td> <td>0.4</td> <td>1.8</td> <td>0.6</td> <td>100</td>                                                                                                                                                                                                                                                                           | 1981 | 28216          | 3901             | 122           | 587         | 202   | 33028 | 86.2           | 10.9             | 0.4           | 1.8         | 0.6   | 100   |
| 1983323922174833447893593590.7 $5.3$ $2.4$ $1.3$ $0.3$ $100$ 198427470320338275522732037 $87.1$ $8.6$ $1.2$ $2.5$ $0.6$ $100$ 1985220703094468298 $165$ 26095 $86.4$ $10$ $1.8$ $1.1$ $0.7$ $100$ 198614198 $1853$ 79932996 $17275$ $83$ $10.3$ $4.2$ $1.9$ $0.6$ $100$ 198714976 $1624$ $1757$ 293 $105$ $18754$ $79.9$ $8.9$ $9.5$ $1.3$ $0.4$ $100$ 1988 $21333$ 2053 $2158$ $290$ $202$ $26036$ $83$ $7.6$ $8$ $0.9$ $0.5$ $100$ 1989 $19293$ $3549$ $1785$ $160$ $267$ $25056$ $78.4$ $13.8$ $6.9$ $0.5$ $0.4$ $100$ 1990 $23162$ $2701$ $1360$ $518$ $369$ $28110$ $84.1$ $9.0$ $4.9$ $1.5$ $0.5$ $100$ 1991 $18836$ $2614$ $2003$ $357$ $409$ $24219$ $79.7$ $9.7$ $8.5$ $1.3$ $0.8$ $100$ 1992 $12475$ $2208$ $1851$ $206$ $158$ $16899$ $75.7$ $11.3$ $11.1$ $12.3$ $24$ $0.3$ $100$ 1993 $11366$ $1584$ $1460$ $79$ $102$ $14590$ $7$                                                                                                                                                                                         | 1982 | 34065          | 3149             | 385           | 627         | 216   | 38443 | 88.9           | 7.8              | 1             | 1.7         | 0.6   | 100   |
| 19842747032033827552273203787.18.61.22.50.610019852207030944682981652609586.4101.81.10.7100198614198185379932996172758310.34.21.90.6100198714976162417572931051875479.98.99.51.30.41001988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.50.4100199023162270113605183692811084.19.04.91.50.5100199118836261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.710019931136615841460791021459079.79.79.60.40.6100199468991375119323831973770.914.112.32.40.3100199538971380135336927702655.519.619.35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1983 | 32392          | 2174             | 833           | 447         | 89    | 35935 | 90.7           | 5.3              | 2.4           | 1.3         | 0.3   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1984 | 27470          | 3203             | 382           | 755         | 227   | 32037 | 87.1           | 8.6              | 1.2           | 2.5         | 0.6   | 100   |
| 198614198185379932996172758310.34.21.90.6100198714976162417572931051875479.98.99.51.30.41001988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.50.4100199023162270113605183692811084.19.04.91.50.510019911886261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.710019931136615841460791021459079.79.79.60.40.6100199468991375119323831973770.914.112.32.40.3100199538971380135336927702655.519.619.35.30.4100199541581611100746322726157.322.213.96.40.310019984035959137463341704157.313.619.59.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1985 | 22070          | 3094             | 468           | 298         | 165   | 26095 | 86.4           | 10               | 1.8           | 1.1         | 0.7   | 100   |
| 198714976162417572931051875479.9 $8.9$ 9.51.30.41001988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.50.4100199023162270113605183692811084.19.04.91.50.5100199118836261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.710019931136615841460791021459079.79.79.60.40.6100199468991375119323831973770.914.112.32.40.3100199538971380135336927702655.519.619.35.30.4100199641581611100746322726157.322.213.96.40.310019974475165290149723754859.321.911.96.60.310019984035959137463341704157.313.619.59.0 </td <td>1986</td> <td>14198</td> <td>1853</td> <td>799</td> <td>329</td> <td>96</td> <td>17275</td> <td>83</td> <td>10.3</td> <td>4.2</td> <td>1.9</td> <td>0.6</td> <td>100</td>                                                                                                                                                                                                                                                                            | 1986 | 14198          | 1853             | 799           | 329         | 96    | 17275 | 83             | 10.3             | 4.2           | 1.9         | 0.6   | 100   |
| 1988213332053215829020226036837.680.90.5100198919293354917851602672505678.413.86.90.50.4100199023162270113605183692811084.19.04.91.50.5100199118836261420033574092421979.79.78.51.30.8100199212475220818512061581689975.711.311.11.20.710019931136615841460791021459079.79.79.60.40.6100199468991375119323831973770.914.112.32.40.3100199538971380135336927702655.519.619.35.30.4100199641581611100746322726157.322.213.96.40.310019974475165290149723754859.321.911.96.60.310019984035959137463341704157.313.619.59.00.6100199847241556152846044831356.818.718.45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1987 | 14976          | 1624             | 1757          | 293         | 105   | 18754 | 79.9           | 8.9              | 9.5           | 1.3         | 0.4   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1988 | 21333          | 2053             | 2158          | 290         | 202   | 26036 | 83             | 7.6              | 8             | 0.9         | 0.5   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1989 | 19293          | 3549             | 1785          | 160         | 267   | 25056 | 78.4           | 13.8             | 6.9           | 0.5         | 0.4   | 100   |
| 199118836 $2614$ 2003 $357$ $409$ $24219$ $79.7$ $9.7$ $8.5$ $1.3$ $0.8$ $100$ 1992124752208185120615816899 $75.7$ $11.3$ $11.1$ $1.2$ $0.7$ $100$ 19931136615841460 $79$ $102$ 14590 $79.7$ $9.7$ $9.6$ $0.4$ $0.6$ $100$ 199468991375 $1193$ 238 $31$ $9737$ $70.9$ $14.1$ $12.3$ $2.4$ $0.3$ $100$ 1995389713801353 $369$ $27$ $7026$ $55.5$ $19.6$ $19.3$ $5.3$ $0.4$ $100$ 199641581611 $1007$ $463$ $22$ $7261$ $57.3$ $22.2$ $13.9$ $6.4$ $0.3$ $100$ 1997 $4475$ 1652 $901$ $497$ $23$ $7548$ $59.3$ $21.9$ $11.9$ $6.6$ $0.3$ $100$ 1998 $4035$ $959$ $1374$ $633$ $41$ $7041$ $57.3$ $13.6$ $19.5$ $9.0$ $0.6$ $100$ 1999 $4724$ 1556 $1528$ $460$ $44$ $8313$ $56.8$ $18.7$ $18.4$ $5.5$ $0.5$ $100$ 2001 $7134$ $1579$ $1089$ $890$ $57$ $10749$ $66.4$ $14.7$ $10.1$ $8.3$ $0.5$ $100$ 2002 $6683$ $1362$ $773$ $529$ $124$ $9472$ $70.6$ <td>1990</td> <td>23162</td> <td>2701</td> <td>1360</td> <td>518</td> <td>369</td> <td>28110</td> <td>84.1</td> <td>9.0</td> <td>4.9</td> <td>1.5</td> <td>0.5</td> <td>100</td> | 1990 | 23162          | 2701             | 1360          | 518         | 369   | 28110 | 84.1           | 9.0              | 4.9           | 1.5         | 0.5   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1991 | 18836          | 2614             | 2003          | 357         | 409   | 24219 | 79.7           | 9.7              | 8.5           | 1.3         | 0.8   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1992 | 12475          | 2208             | 1851          | 206         | 158   | 16899 | 75.7           | 11.3             | 11.1          | 1.2         | 0.7   | 100   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1993 | 11366          | 1584             | 1460          | 79          | 102   | 14590 | 79.7           | 9.7              | 9.6           | 0.4         | 0.6   | 100   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1994 | 6899           | 1375             | 1193          | 238         | 31    | 9737  | 70.9           | 14.1             | 12.3          | 2.4         | 0.3   | 100   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1995 | 3897           | 1380             | 1353          | 369         | 27    | 7026  | 55.5           | 19.6             | 19.3          | 5.3         | 0.4   | 100   |
| 19974475165290149723754859.321.911.96.60.310019984035959137463341704157.313.619.59.00.6100199947241556152846044831356.818.718.45.50.510020004545177083041542760059.823.310.95.50.51002001713415791089890571074966.414.710.18.30.5100200266831362773529124947270.614.48.25.61.310020035143120923123336685275.117.73.43.40.51002004277141010715467350979.011.73.04.41.9100200522732361305363275482.58.64.71.92.3100200621303116365130270078.911.52.32.44.810020072982585803418369980.615.82.20.90.5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1996 | 4158           | 1611             | 1007          | 463         | 22    | 7261  | 57.3           | 22.2             | 13.9          | 6.4         | 0.3   | 100   |
| 1998   4035   959   1374   633   41   7041   57.3   13.6   19.5   9.0   0.6   100     1999   4724   1556   1528   460   44   8313   56.8   18.7   18.4   5.5   0.5   100     2000   4545   1770   830   415   42   7600   59.8   23.3   10.9   5.5   0.5   100     2001   7134   1579   1089   890   57   10749   66.4   14.7   10.1   8.3   0.5   100     2002   6683   1362   773   529   124   9472   70.6   14.4   8.2   5.6   1.3   100     2003   5143   1209   231   233   36   6852   75.1   17.7   3.4   3.4   0.5   100     2004   2771   410   107   154   67   3509   79.0   11.7   3.0   4.4   1.9   100     2005   2273   236   130   53   63   <                                                                                                                                                                                                                                                                                                                                                                         | 1997 | 4475           | 1652             | 901           | 497         | 23    | 7548  | 59.3           | 21.9             | 11.9          | 6.6         | 0.3   | 100   |
| 199947241556152846044831356.818.718.45.50.510020004545177083041542760059.823.310.95.50.51002001713415791089890571074966.414.710.18.30.5100200266831362773529124947270.614.48.25.61.310020035143120923123336685275.117.73.43.40.51002004277141010715467350979.011.73.04.41.9100200522732361305363275482.58.64.71.92.3100200621303116365130270078.911.52.32.44.810020072982585803418369980.615.82.20.90.5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1998 | 4035           | 959              | 1374          | 633         | 41    | 7041  | 57.3           | 13.6             | 19.5          | 9.0         | 0.6   | 100   |
| 20004545177083041542760059.823.310.95.50.51002001713415791089890571074966.414.710.18.30.5100200266831362773529124947270.614.48.25.61.310020035143120923123336685275.117.73.43.40.51002004277141010715467350979.011.73.04.41.9100200522732361305363275482.58.64.71.92.3100200621303116365130270078.911.52.32.44.810020072982585803418369980.615.82.20.90.5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1999 | 4724           | 1556             | 1528          | 460         | 44    | 8313  | 56.8           | 18.7             | 18.4          | 5.5         | 0.5   | 100   |
| 2001713415791089890571074966.414.710.18.30.5100200266831362773529124947270.614.48.25.61.310020035143120923123336685275.117.73.43.40.51002004277141010715467350979.011.73.04.41.9100200522732361305363275482.58.64.71.92.3100200621303116365130270078.911.52.32.44.810020072982585803418369980.615.82.20.90.5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000 | 4545           | 1770             | 830           | 415         | 42    | 7600  | 59.8           | 23.3             | 10.9          | 5.5         | 0.5   | 100   |
| 2002   6683   1362   773   529   124   9472   70.6   14.4   8.2   5.6   1.3   100     2003   5143   1209   231   233   36   6852   75.1   17.7   3.4   3.4   0.5   100     2004   2771   410   107   154   67   3509   79.0   11.7   3.0   4.4   1.9   100     2005   2273   236   130   53   63   2754   82.5   8.6   4.7   1.9   2.3   100     2006   2130   311   63   65   130   2700   78.9   11.5   2.3   2.4   4.8   100     2007   2982   585   80   34   18   3699   80.6   15.8   2.2   0.9   0.5   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2001 | 7134           | 1579             | 1089          | 890         | 57    | 10749 | 66.4           | 14.7             | 10.1          | 8.3         | 0.5   | 100   |
| 2003   5143   1209   231   233   36   6852   75.1   17.7   3.4   3.4   0.5   100     2004   2771   410   107   154   67   3509   79.0   11.7   3.0   4.4   1.9   100     2005   2273   236   130   53   63   2754   82.5   8.6   4.7   1.9   2.3   100     2006   2130   311   63   65   130   2700   78.9   11.5   2.3   2.4   4.8   100     2007   2982   585   80   34   18   3699   80.6   15.8   2.2   0.9   0.5   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2002 | 6683           | 1362             | 773           | 529         | 124   | 9472  | 70.6           | 14.4             | 8.2           | 5.6         | 1.3   | 100   |
| 2004   2771   410   107   154   67   3509   79.0   11.7   3.0   4.4   1.9   100     2005   2273   236   130   53   63   2754   82.5   8.6   4.7   1.9   2.3   100     2006   2130   311   63   65   130   2700   78.9   11.5   2.3   2.4   4.8   100     2007   2982   585   80   34   18   3699   80.6   15.8   2.2   0.9   0.5   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2003 | 5143           | 1209             | 231           | 233         | 36    | 6852  | 75.1           | 17.7             | 3.4           | 3.4         | 0.5   | 100   |
| 2005   2273   236   130   53   63   2754   82.5   8.6   4.7   1.9   2.3   100     2006   2130   311   63   65   130   2700   78.9   11.5   2.3   2.4   4.8   100     2007   2982   585   80   34   18   3699   80.6   15.8   2.2   0.9   0.5   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2004 | 2771           | 410              | 107           | 154         | 67    | 3509  | 79.0           | 11.7             | 3.0           | 4.4         | 1.9   | 100   |
| 2006   2130   311   63   65   130   2700   78.9   11.5   2.3   2.4   4.8   100     2007   2982   585   80   34   18   3699   80.6   15.8   2.2   0.9   0.5   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2005 | 2273           | 236              | 130           | 53          | 63    | 2754  | 82.5           | 8.6              | 4.7           | 1.9         | 2.3   | 100   |
| 2007 2982 585 80 34 18 3699 80.6 15.8 2.2 0.9 0.5 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2006 | 2130           | 311              | 63            | 65          | 130   | 2700  | 78.9           | 11.5             | 2.3           | 2.4         | 4.8   | 100   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2007 | 2982           | 585              | 80            | 34          | 18    | 3699  | 80.6           | 15.8             | 22            | 0.9         | 0.5   | 100   |
| 2008 2568 583 63 25 16 3255 78.9 17.9 1.9 0.8 0.5 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2008 | 2568           | 583              | 63            | 25          | 16    | 3255  | 78.9           | 17.9             | 1.9           | 0.8         | 0.5   | 100   |
| 2009 2379 453 109 38 20 2999 79.3 15.1 3.6 1.3 0.7 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2009 | 2379           | 453              | 109           | 38          | 20    | 2999  | 79.3           | 15.1             | 3.6           | 1.3         | 0.7   | 100   |
| 2010 2103 242 115 18 210 2688 69.3 16.3 9.1 4.4 1.0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2010 | 2103           | 242              | 115           | 18          | 210   | 2688  | 69.3           | 16.3             | 9.1           | 4.4         | 1.0   | 100   |
| 2011 2763 189 102 28 305 3387 69.2 16.4 8.9 4.5 1.0 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2011 | 2763           | 189              | 102           | 28          | 305   | 3387  | 69.2           | 16.4             | 8.9           | 4.5         | 1.0   | 100   |

Otter trawl includes tonnage from pair trawls in 1990 (849 t), 1991 (1068 t), 1992 (1149 t) and 1993 (1352 t).

Table B4. Commercial discards (mt) of Atlantic cod in Georges Bank otter trawl, gill net, longline, and scallop fisheries with coefficient of variation (cv) and number of trips, 1989-2011. Delphi mortality rate not yet applied.

| WESTER | RN       |           |       |             |           |      |           |         |       |          |         |      |       |         |           |         | Geo  | orges l | Bank  |
|--------|----------|-----------|-------|-------------|-----------|------|-----------|---------|-------|----------|---------|------|-------|---------|-----------|---------|------|---------|-------|
|        | WGB larg | ge mesh t | trawl | WGB small m | nesh traw | WGE  | 3 gillnet | , large | WGB   | longline |         | WO   | B Sca | lop     | Western G | B Total |      | Total   |       |
| Year   | mt       | cv #      | trips | mt          | cv        | mt   | CV        | # trips | mt    | CV 7     | # trips | mt   | CV    | # trips | mt        | cv      | Year | mt      | . cv  |
| 1989   | 606.7    | 0.28      | 25    | 31.1        | 0.53      |      |           |         |       |          |         |      |       |         | 637.9     | 0.27    | 1989 | 837.1   | 0.212 |
| 1990   | 431.8    | 0.35      | 23    | 1.6         | 0.49      |      |           |         |       |          |         |      |       |         | 433.4     | 0.35    | 1990 | 605.8   | 0.534 |
| 1991   | 302.8    | 0.48      | 28    | 0.8         | 0.73      |      |           |         | 55.2  | 0.84     | 16      |      |       | 1       | 358.8     | 0.42    | 1991 | 508.1   | 0.368 |
| 1992   | 147.5    | 0.52      | 26    | 0.1         | 3.94      |      |           |         | 580.6 | 0.18     | 23      | 33.9 | 0.84  | 10      | 762.0     | 0.17    | 1992 | 998.7   | 0.164 |
| 1993   | 254.5    | 0.31      | 14    | 11.5        | 1.13      |      |           |         |       |          |         | 15.9 | 0.35  | 11      | 281.9     | 0.29    | 1993 | 372.0   | 0.245 |
| 1994   | 87.1     | 0.86      | 19    | 11.7        | 0.00      | 71.9 | 0.42      | 13      |       |          | 1       | 30.0 | 1.01  | 6       | 200.7     | 0.43    | 1994 | 207.7   | 0.415 |
| 1995   | 52.9     | 0.48      | 41    | 1.2         | 1.33      | 54.0 | 0.35      | 39      |       |          |         | 0.3  | 0.71  | 6       | 108.4     | 0.29    | 1995 | 108.7   | 0.293 |
| 1996   | 20.4     | 0.42      | 16    | 0.8         | 0.00      | 89.8 | 0.71      | 17      |       |          |         | 24.7 | 0.48  | 13      | 135.6     | 0.49    | 1996 | 137.4   | 0.486 |
| 1997   | 19.1     | 0.30      | 16    | 0.5         | 0.00      | 77.0 | 0.45      | 13      |       |          |         | 23.6 | 0.54  | 10      | 120.2     | 0.31    | 1997 | 127.0   | 0.292 |
| 1998   | 6.6      | 0.56      | 5     | 6.0         | 0.00      | 57.5 | 0.80      | 33      |       |          |         | 43.3 | 0.40  | 9       | 113.4     | 0.43    | 1998 | 126.4   | 0.389 |
| 1999   | 35.3     | 0.56      | 11    | 0.0         |           | 44.2 | 0.44      | 30      |       |          |         | 24.9 | 0.45  | 36      | 104.4     | 0.29    | 1999 | 117.4   | 0.256 |
| 2000   | 66.7     | 1.04      | 20    | 7.5         | 0.42      | 77.6 | 0.30      | 44      |       |          |         | 3.3  | 0.15  | 179     | 155.1     | 0.47    | 2000 | 176.7   | 0.419 |
| 2001   | 150.8    | 0.59      | 34    | 8.0         | 0.42      | 41.9 | 0.52      | 27      |       |          |         | 7.3  | 0.28  | 17      | 207.9     | 0.44    | 2001 | 402.7   | 0.408 |
| 2002   | 75.5     | 0.33      | 68    | 15.0        | 0.34      | 61.4 | 0.63      | 22      | 113.7 | 0.56     | 7       | 5.1  | 0.43  | 11      | 270.7     | 0.29    | 2002 | 282.5   | 0.281 |
| 2003   | 116.9    | 0.21      | 140   | 20.1        | 0.72      | 43.9 | 0.24      | 88      | 6.5   | 4.68     | 5       | 4.5  | 0.31  | 12      | 191.9     | 0.22    | 2003 | 299.5   | 0.222 |
| 2004   | 51.1     | 0.19      | 192   | 5.2         | 0.35      | 32.1 | 0.32      | 174     | 12.1  | 0.36     | 111     | 0.4  | 0.73  | 25      | 100.9     | 0.15    | 2004 | 170.9   | 0.218 |
| 2005   | 225.2    | 0.12      | 645   | 8.0         | 0.19      | 6.3  | 0.44      | 161     | 37.4  | 0.51     | 224     | 2.0  | 0.32  | 81      | 278.9     | 0.12    | 2005 | 535.4   | 0.085 |
| 2006   | 155.7    | 0.18      | 342   | 2.5         | 0.47      | 11.0 | 0.43      | 45      | 15.1  | 0.60     | 57      | 4.3  | 0.23  | 102     | 188.6     | 0.16    | 2006 | 314.3   | 0.132 |
| 2007   | 563.9    | 0.11      | 345   | 8.2         | 0.97      | 12.8 | 0.37      | 106     | 5.2   | 0.61     | 51      | 4.4  | 0.21  | 177     | 594.3     | 0.11    | 2007 | 953.3   | 0.132 |
| 2008   | 354.8    | 0.10      | 445   | 3.1         | 0.63      | 19.8 | 0.52      | 61      | 4.7   | 0.46     | 54      | 2.1  | 0.19  | 210     | 384.5     | 0.09    | 2008 | 411.7   | 0.088 |
| 2009   | 250.6    | 0.13      | 379   | 1.9         | 1.16      | 33.0 | 0.35      | 48      | 3.3   | 0.23     | 44      | 0.7  | 0.37  | 59      | 289.5     | 0.12    | 2009 | 511.6   | 0.105 |
| 2010   | 160.8    | 0.11      | 435   | 3.8         | 0.66      | 9.1  | 0.25      | 434     | 2.6   | 0.29     | 112     | 2.4  | 0.33  | 93      | 178.7     | 0.10    | 2010 | 361.0   | 0.244 |
| 2011   | 95.2     | 0.10      | 537   | 0.3         | 0.95      | 5.1  | 0.34      | 367     | 13.1  | 0.37     | 33      | 2.3  | 0.20  | 117     | 116.1     | 0.09    | 2011 | 190.4   | 0.093 |

| EASTER | N        |        |         |             |        |       |         |           |            |         | SOUTH | IERN NE | W ENGL   | AND     |         |              |       |      |
|--------|----------|--------|---------|-------------|--------|-------|---------|-----------|------------|---------|-------|---------|----------|---------|---------|--------------|-------|------|
|        | EGB larg | e mesł | h trawl | EGB scallop | dredge | EGB s | mall me | esh otter | Eastern Gl | 3 Total |       | SNE I   | arge mes | h trawl | EGB sca | allop dredge | SNE T | otal |
| Year   | mt       | CV     | # trips | mt          | CV     | mt    | CV      | # trips   | mt         | cv      | Year  | mt      | CV       | # trips | mt      | CV           | mt    | C۷   |
| 1989   | 100.2    | 0.45   | 12      | 0.00        |        | 12.4  | 0.00    | 3         | 112.6      | 0.40    | 1989  | 41.9    | 0.00     | 12      | 44.7    | 0.56         | 86.6  | 0.29 |
| 1990   | 91.8     | 0.38   | 10      | 0.00        |        | 0.0   |         | 1         | 91.8       | 0.38    | 1990  | 28.8    | 0.61     | 10      | 51.7    | 5.48         | 80.6  | 3.53 |
| 1991   | 148.7    | 0.74   | 4       | 0.00        |        | 0.0   |         |           | 148.7      | 0.74    | 1991  | 0.0     |          | 4       | 0.6     | 0.61         | 0.6   | 0.61 |
| 1992   | 231.9    | 0.42   | 11      | 3.34        | 0.00   | 0.0   |         |           | 235.3      | 0.41    | 1992  | 0.9     | 0.83     | 11      | 0.5     | 1.05         | 1.4   | 0.65 |
| 1993   | 66.6     | 0.62   | 13      | 2.28        | 0.00   | 0.0   |         |           | 68.9       | 0.60    | 1993  | 7.4     | 0.00     | 13      | 13.8    | 0.67         | 21.2  | 0.44 |
| 1994   | 5.0      | 1.17   | 15      | 1.24        | 0.00   | 0.0   |         | 1         | 6.3        | 0.94    | 1994  | 0.0     |          | 15      | 0.8     | 1.00         | 0.8   | 1.00 |
| 1995   | 0.3      | 0.61   | 15      | 0.00        |        | 0.0   |         |           | 0.3        | 0.61    | 1995  | 0.0     |          | 15      | 0.0     |              | 0.0   |      |
| 1996   | 1.5      | 0.38   | 9       | 0.00        |        | 0.0   |         |           | 1.5        | 0.38    | 1996  | 0.3     | 0.51     | 9       | 0.0     |              | 0.3   | 0.51 |
| 1997   | 0.0      |        |         | 6.40        | 0.00   | 0.0   |         |           | 6.4        | 0.00    | 1997  | 0.4     | 0.75     |         | 0.0     | 15.34        | 0.4   | 1.09 |
| 1998   | 1.6      | 0.00   | 2       | 5.76        | 0.00   | 0.0   |         |           | 7.3        | 0.00    | 1998  | 0.0     |          | 2       | 5.6     | 0.00         | 5.6   | 0.00 |
| 1999   | 11.7     | 0.00   | 4       | 1.29        | 0.86   | 0.0   |         |           | 13.0       | 0.09    | 1999  | 0.0     |          | 4       | 0.0     |              | 0.0   |      |
| 2000   | 20.9     | 0.45   | 9       | 0.69        | 0.22   | 0.0   |         | 2         | 21.6       | 0.43    | 2000  | 0.0     |          | 9       | 0.0     |              | 0.0   |      |
| 2001   | 194.8    | 0.70   | 11      | 0.00        |        | 0.5   | 0.00    | 2         | 195.3      | 0.70    | 2001  | 0.0     |          | 11      | 0.0     |              | 0.0   |      |
| 2002   | 11.8     | 0.49   | 21      | 0.00        |        | 0.5   | 1.37    | 6         | 12.3       | 0.47    | 2002  | 0.0     |          | 21      | 0.0     |              | 0.0   |      |
| 2003   | 103.8    | 0.51   | 68      | 1.82        | 0.00   | 6.4   | 0.00    | 4         | 112.1      | 0.47    | 2003  | 0.0     |          | 68      | 1.9     | 0.45         | 1.9   | 0.45 |
| 2004   | 69.0     | 0.51   | 67      | 0.28        | 0.43   | 7.2   | 0.66    | 7         | 76.5       | 0.47    | 2004  | 0.4     | 0.68     | 67      | 0.3     | 0.46         | 0.7   | 0.42 |
| 2005   | 253.8    | 0.13   | 93      | 0.52        | 0.70   | 11.0  | 0.60    | 14        | 265.4      | 0.12    | 2005  | 1.1     | 0.60     | 93      | 1.1     | 0.57         | 2.2   | 0.41 |
| 2006   | 125.0    | 0.23   | 40      | 0.56        | 0.59   | 0.0   |         | 5         | 125.5      | 0.23    | 2006  | 0.2     | 1.04     | 40      | 0.0     |              | 0.2   | 1.04 |
| 2007   | 354.2    | 0.31   | 48      | 0.73        | 0.49   | 17.2  | 1.02    | 11        | 372.1      | 0.30    | 2007  | 2.2     | 1.11     | 48      | 1.8     | 0.54         | 4.0   | 0.66 |
| 2008   | 25.8     | 0.19   | 122     | 0.90        | 0.26   | 0.2   | 0.76    | 5         | 26.9       | 0.18    | 2008  | 0.1     | 0.95     | 122     | 0.4     | 0.48         | 0.5   | 0.43 |
| 2009   | 193.7    | 0.19   | 116     | 1.10        | 0.43   | 0.5   | 0.53    | 14        | 195.3      | 0.19    | 2009  | 25.8    | 0.79     | 116     | 1.5     | 0.44         | 27.3  | 0.74 |
| 2010   | 141.1    | 0.52   | 87      | 0.07        | 0.00   | 0.3   | 0.77    | 22        | 141.4      | 0.51    | 2010  | 41.2    | 1.12     | 43      | 0.0     | 1.28         | 41.2  | 1.12 |
| 2011   | 36.2     | 0.15   | 136     | 1.08        | 0.54   | 0.0   | 0.33    | 19        | 37.3       | 0.15    | 2011  | 36.7    | 0.36     | 36      | 0.3     | 0.64         | 37.0  | 0.35 |

Table B5a. Estimated numbers (000s) of Atlantic cod recreational catch as estimated by the Marine Recreational Information Program (MRIP) from the Georges Bank and South stock during 1981-2011. Catch from 1981-2003 are Marine Recreational Fisheries Statistics Survey (MRFSS) estimates adjusted to MRIP estimates. Delphi mortality of 30% applied.

|      | Catch | Landi   | ngs     | Disca   | ards    |
|------|-------|---------|---------|---------|---------|
| Year |       | Jan-Jun | Jul-Dec | Jan-Jun | Jul-Dec |
| 1981 | 1761  | 1322    | 420     | 15      | 4       |
| 1982 | 1521  | 1145    | 363     | 10      | 3       |
| 1983 | 1746  | 1292    | 410     | 35      | 9       |
| 1984 | 475   | 349     | 111     | 12      | 3       |
| 1985 | 1943  | 1451    | 461     | 24      | 6       |
| 1986 | 306   | 226     | 72      | 7       | 2       |
| 1987 | 488   | 354     | 112     | 18      | 5       |
| 1988 | 1181  | 868     | 276     | 30      | 8       |
| 1989 | 433   | 302     | 96      | 28      | 7       |
| 1990 | 492   | 349     | 111     | 25      | 6       |
| 1991 | 399   | 287     | 91      | 17      | 4       |
| 1992 | 231   | 157     | 50      | 20      | 5       |
| 1993 | 884   | 584     | 185     | 90      | 23      |
| 1994 | 365   | 222     | 70      | 57      | 15      |
| 1995 | 612   | 392     | 125     | 76      | 20      |
| 1996 | 183   | 115     | 36      | 26      | 7       |
| 1997 | 407   | 255     | 81      | 56      | 15      |
| 1998 | 353   | 208     | 66      | 63      | 16      |
| 1999 | 166   | 97      | 31      | 31      | 8       |
| 2000 | 376   | 222     | 70      | 67      | 17      |
| 2001 | 124   | 76      | 24      | 19      | 5       |
| 2002 | 126   | 71      | 23      | 26      | 7       |
| 2003 | 126   | 72      | 23      | 24      | 6       |
| 2004 | 90    | 33      | 38      | 10      | 10      |
| 2005 | 378   | 222     | 38      | 97      | 20      |
| 2006 | 20    | 3       | 11      | 1       | 4       |
| 2007 | 6     | 1       | 2       | 2       | 1       |
| 2008 | 23    | 17      | 4       | 1       | 0       |
| 2009 | 23    | 14      | 1       | 7       | 0       |
| 2010 | 73    | 42      | 6       | 24      | 1       |
| 2011 | 86    |         | 19      | 17      | 4       |

| VA    | RI   | NC   | NY   | NJ    | MA   | MD    | DE    | СТ   | Year |
|-------|------|------|------|-------|------|-------|-------|------|------|
|       | 25.2 |      | 15.6 |       | 23.4 |       |       | 100  | 1981 |
|       | 29.1 |      | 29.2 |       | 39.1 |       |       |      | 1982 |
|       | 29.8 |      | 29.6 |       | 13.6 |       | 58    |      | 1983 |
|       | 22.4 |      | 28.3 |       | 13.9 |       |       | 60.8 | 1984 |
|       | 70.8 |      | 26   |       | 23.3 |       | 64.3  | 32.5 | 1985 |
|       | 24.7 |      | 31.8 | 44.6  | 22.6 |       | 46.2  | 45.2 | 1986 |
|       | 25.9 |      | 26.6 | 75    | 14.3 |       |       | 63.3 | 1987 |
|       | 23.4 | 75.9 | 19.4 | 47.1  | 10.6 |       | 91.3  | 46.3 | 1988 |
|       | 28   |      | 16.3 | 40.1  | 14.6 |       |       |      | 1989 |
|       | 18.3 |      | 14.8 | 69.3  | 11.2 |       |       | 40.2 | 1990 |
|       | 24   |      | 21   | 100   | 9.5  |       | 100.5 | 64.7 | 1991 |
| 31    | 43.2 |      | 16.6 | 33    | 13.5 |       |       | 54.6 | 1992 |
| 70.1  | 37   |      | 15.4 | 40.2  | 13.1 |       | 71    | 62.9 | 1993 |
|       | 34.9 |      | 23.6 | 44.6  | 9.2  |       | 100   |      | 1994 |
|       | 15.8 |      | 19.6 | 100   | 11.2 |       |       | 62.3 | 1995 |
| 100.6 | 32.8 |      | 33.2 | 36.7  | 13.2 | 105.9 |       |      | 1996 |
|       | 28.4 |      | 21.9 | 63.6  | 17.6 |       | 100   |      | 1997 |
|       | 20.7 |      | 45.1 | 34.1  | 17.4 | 77.7  | 100   | 63.1 | 1998 |
|       | 34.8 |      |      | 100   | 17.7 |       |       | 72.1 | 1999 |
|       | 18.9 |      | 33   |       | 14.5 |       | 100.2 |      | 2000 |
|       | 23.2 |      | 43.8 | 102.8 | 8    |       |       |      | 2001 |
|       | 35.7 |      |      |       | 9.1  |       |       | 100  | 2002 |
|       | 48.1 |      | 52.4 | 100   | 9.5  |       | 100   | 60.6 | 2003 |
|       | 26.7 |      | 31.8 | 90.9  | 19.7 |       |       | 14.3 | 2004 |
|       | 22   |      | 66   | 30.2  | 15.1 | 117.1 |       |      | 2005 |
|       | 17.6 |      | 70.2 | 23.9  | 13.9 |       | 100.5 | 2.2  | 2006 |
|       | 42.8 |      | 67.2 | 97.5  | 16.8 |       |       |      | 2007 |
|       | 3    |      | 52.1 | 113.5 | 17.7 |       |       |      | 2008 |
| 117.4 | 14.8 |      | 51.3 | 38.3  | 18   | 83.7  | 99.3  |      | 2009 |
| 100   | 90.9 |      | 15.6 | 53.3  | 17.6 | 57.2  | 38.4  |      | 2010 |
| 80.2  | 69.5 |      | 13.1 | 27.8  | 12   | 33.6  | 53    |      | 2011 |
|       | 85.9 |      | 57.9 | 83.3  | 22   | 101.1 |       |      | 2012 |

Table B5b. Percent standard error of estimated numbers (000s) of Atlantic cod recreational catch as estimated by the Marine Recreational Information Program from the Georges Bank and South stock during 1981-2011.

Table B6a. USA sampling of commercial Atlantic cod landings, by market category, for the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      |          |    |       | Ν  | umber | of Sam | ples, ł | oy Ma | rket C | ategor | y & Quar | ter |       |    |    | Annı   | ual Sam          | pling Inte | ensity   |
|------|----------|----|-------|----|-------|--------|---------|-------|--------|--------|----------|-----|-------|----|----|--------|------------------|------------|----------|
|      |          |    | Scroo | ł  |       |        |         | Marke | t      |        |          |     | Large | 9  |    | No. of | Tons L           | anded/Sa   | ampled   |
| Year | Q1       | Q2 | Q3    | Q4 | Σ     | Q1     | Q2      | Q3    | Q4     | Σ      | Q1       | Q2  | Q3    | Q4 | Σ  | Scrd   | Mkt              | Lge        | Σ        |
| 1978 | 17       | 15 | 6     | 3  | 41    | 9      | 12      | 13    | 9      | 43     | 1        | 0   | 1     | 2  | 4  | 69     | 374              | 1922       | 302      |
| 1979 | 2        | 5  | 14    | 8  | 29    | 6      | 19      | 11    | 8      | 44     | 2        | õ   | 4     | 1  | 7  | 88     | 407              | 1742       | 408      |
| 1980 | 7        | 10 | 13    | 4  | 34    | 12     | 14      | 5     | 1      | 32     | 3        | 0   | 0     | 0  | 3  | 136    | 588              | 5546       | 580      |
| 1981 | 4        | 10 | 11    | 3  | 28    | 6      | 9       | 10    | 2      | 27     | 2        | 0   | 0     | 0  | 2  | 149    | 634              | 6283       | 594      |
| 1982 | 5        | 9  | 32    | 9  | 55    | 6      | 20      | 27    | 13     | 66     | 8        | 8   | 9     | 5  | 30 | 156    | 279              | 410        | 260      |
| 1983 | 4        | 12 | 17    | 10 | 43    | 12     | 19      | 22    | 14     | 67     | 2        | 15  | 16    | 3  | 36 | 185    | 291              | 259        | 252      |
| 1984 | 6        | 8  | 8     | 7  | 29    | 8      | 15      | 8     | 11     | 42     | 18       | 5   | 3     | 3  | 29 | 138    | 441              | 358        | 329      |
| 1985 | 6        | 7  | 16    | 5  | 34    | 11     | 11      | 12    | 8      | 42     | 4        | 8   | 7     | 5  | 24 | 201    | 299              | 310        | 268      |
| 1986 | 6        | 7  | 7     | 6  | 26    | 8      | 10      | 10    | 11     | 39     | 6        | 5   | 10    | 8  | 29 | 142    | 215              | 186        | 186      |
| 1987 | 7        | 8  | 6     | 8  | 29    | 6      | 8       | 9     | 10     | 33     | 6        | 6   | 4     | 2  | 18 | 240    | 220              | 267        | 238      |
| 1988 | 8        | 6  | 7     | 5  | 26    | 13     | 7       | 9     | 9      | 38     | 4        | 4   | 3     | 1  | 12 | 283    | 331              | 532        | 346      |
| 1989 | 2        | 7  | 9     | 9  | 27    | 7      | 8       | 8     | 7      | 30     | 3        | 4   | 1     | 1  | 9  | 210    | 450              | 660        | 380      |
| 1990 | 8        | 9  | 10    | 4  | 31    | 10     | 13      | 9     | 8      | 40     | 4        | 4   | 4     | 0  | 12 | 295    | 315              | 538        | 340      |
| 1991 | 6        | 11 | 7     | 5  | 29    | 12     | 13      | 8     | 8      | 41     | 4        | 6   | 3     | 5  | 18 | 158    | 293              | 423        | 275      |
| 1992 | 6        | 7  | 7     | 10 | 30    | 8      | 10      | 6     | 9      | 33     | 5        | 5   | 3     | 1  | 14 | 149    | 215              | 377        | 219      |
| 1993 | 5        | 16 | 7     | 6  | 34    | 10     | 10      | 7     | 9      | 36     | 6        | 1   | 3     | 2  | 12 | 126    | 173              | 339        | 178      |
| 1994 | 3        | 9  | 8     | 2  | 22    | 5      | 11      | 7     | 4      | 27     | 1        | 4   | 3     | 1  | 9  | 92     | 187              | 290        | 167      |
| 1995 | 2        | 3  | 13    | 2  | 20    | 2      | 4       | 10    | 2      | 18     | 0        | 1   | 0     | 1  | 2  | 83     | 181              | 880        | 167      |
| 1996 | 6        | 2  | 12    | 3  | 23    | 5      | 6       | 11    | 6      | 28     | 0        | 2   | 1     | 1  | 4  | 59     | 143              | 400        | 127      |
| 1997 | 3        | 11 | 3     | 10 | 27    | 5      | 16      | 9     | 9      | 39     | 3        | 6   | 0     | 5  | 14 | 50     | 105              | 148        | 94       |
| 1998 | 3        | 7  | 23    | 5  | 38    | 10     | 10      | 15    | 3      | 38     | 1        | 2   | 1     | 0  | 3  | 44     | 92               | 573        | 88       |
| 1999 | 5        | 3  | 10    | 3  | 21    | 7      | 14      | 10    | 7      | 38     | 2        | 5   | 2     | 0  | 9  | 80     | 118              | 205        | 121      |
| 2000 | 21       | 19 | 16    | 27 | 83    | 20     | 14      | 13    | 16     | 63     | 2        | 2   | 2     | 2  | 8  | 18     | 72               | 192        | 49       |
| 2001 | 11       | 9  | 13    | 3  | 36    | 9      | 10      | 8     | 10     | 37     | 6        | 12  | 6     | 10 | 34 | 72     | 163              | 55         | 99       |
| 2002 | 5        | 7  | 7     | 1  | 20    | 8      | 10      | 11    | 6      | 35     | 14       | 8   | 6     | 3  | 31 | 80     | 153              | 63         | 109      |
| 2003 | 4        | 8  | 6     | 10 | 28    | 7      | 16      | 10    | 6      | 39     | 5        | 11  | 10    | 4  | 30 | 21     | 113              | 52         | 70       |
| 2004 | 8        | 11 | 4     | 10 | 33    | 14     | 6       | 8     | 13     | 41     | 25       | 13  | 2     | 11 | 51 | 8      | 53               | 20         | 28       |
| 2005 | 6        | 12 | 4     | 5  | 27    | 5      | 10      | 12    | 8      | 35     | 7        | 11  | 7     | 11 | 36 | 7      | 52               | 19         | 27       |
| 2006 | 11       | 16 | 8     | 14 | 49    | 13     | 15      | 10    | 13     | 51     | 25       | 28  | 7     | 18 | 78 | 6      | 38               | 6          | 15       |
| 2007 | 14       | 10 | 10    | 11 | 45    | 22     | 18      | 9     | 10     | 59     | 20       | 27  | 15    | 15 | 77 | 10     | 47               | 6          | 20       |
| 2008 | 13       | 11 | 10    | 16 | 50    | 21     | 12      | q     | 11     | 53     | _0<br>_0 | 20  | 17    | 18 | 95 | , e    | 44               | 4          | _0<br>16 |
| 2000 | 15       | 21 | 16    | 12 | 65    | 19     | 20      | 13    | 5      | 56     |          | 25  | 11    | 10 | 77 | 5      | /2               | -<br>/     | 15       |
| 2009 | 10       | 21 | 10    | 10 | 00    | 20     | 20      | 11    | 10     | 00     | 20       | 10  | 10    | 10 | 60 | 5<br>4 | + <u>-</u><br>22 | 4          | 10       |
| 2010 | ა2<br>იი | 2Z | 15    | 23 | 92    | 3Z     | 21      |       | 19     | 69     | 30       | 12  | 10    | 17 | 69 | 4      | 20               | 4          | 11       |
| 2011 | 28       | 18 | 8     | 10 | 64    | 29     | 21      | 6     | 6      | 62     | 34       | 9   | 6     | 13 | 62 | 8      | 39               | 1          | 18       |

|      |           | ι                  | JSA |        |                |    |          | C                  | Canada |         |                |
|------|-----------|--------------------|-----|--------|----------------|----|----------|--------------------|--------|---------|----------------|
|      | Length Sa | mples              | _   | Age Sa | mples          | _  | Length S | Samples            |        | Age Sar | nples          |
| Year | No.<br>M  | # Fish<br>leasured |     | No.    | # Fish<br>Aged |    | No.      | # Fish<br>Measured |        | No.     | # Fish<br>Aaed |
|      |           |                    |     |        |                |    |          |                    |        |         |                |
| 1978 | 88        | 6841               |     | 76     | 1463           |    | 28       | 7684               |        | 27      | 1364           |
| 1979 | 80        | 6973               |     | 79     | 1647           |    | 11       | 3103               |        | 11      | 591            |
| 1980 | 69        | 4990               |     | 67     | 1119           |    | 10       | 2784               |        | 10      | 536            |
| 1981 | 57        | 4304               |     | 57     | 1231           |    | 17       | 4147               |        | 16      | 897            |
| 1982 | 151       | 11970              |     | 147    | 2579           |    | 17       | 4705               |        | 17      | 858            |
| 1983 | 146       | 12544              |     | 138    | 2945           |    | 15       | 3822               |        | 14      | 604            |
| 1984 | 100       | 8721               |     | 100    | 2431           |    | 7        | 1889               |        | 7       | 385            |
| 1985 | 100       | 8366               |     | 100    | 2321           |    | 27       | 7031               |        | 20      | 958            |
| 1986 | 94        | 7515               |     | 94     | 2222           |    | 22       | 5890               |        | 19      | 888            |
| 1987 | 80        | 6395               |     | 79     | 1704           |    | 31       | 9133               |        | 24      | 1236           |
| 1988 | 76        | 6483               |     | 76     | 1576           |    | 40       | 11350              |        | 36      | 1927           |
| 1989 | 66        | 5547               |     | 66     | 1350           |    | 32       | 8726               |        | 30      | 1561           |
| 1990 | 83        | 7158               |     | 83     | 1700           |    | 109      | 31974              |        | 35      | 1672           |
| 1991 | 88        | 7708               |     | 88     | 1865           |    | 98       | 27869              |        | 37      | 1782           |
| 1992 | 77        | 6549               |     | 77     | 1631           |    | 89       | 29082              |        | 44      | 1856           |
| 1993 | 82        | 6636               |     | 82     | 1598           |    | 99       | 31588              |        | 47      | 2146           |
| 1994 | 58        | 4688               |     | 54     | 1064           |    | 111      | 27972              |        | 27      | 1268           |
| 1995 | 40        | 2879               |     | 40     | 778            |    | 33       | 6660               |        | 13      | 548            |
| 1996 | 55        | 4600               |     | 54     | 1080           |    | 125      | 26069              |        | 20      | 828            |
| 1997 | 80        | 6638               |     | 80     | 1581           |    | 103      | 31617              |        | 29      | 1216           |
| 1998 | 80        | 7076               |     | 81     | 1545           |    | 115      | 26180              |        | 53      | 1643           |
| 1999 | 68        | 5987               |     | 67     | 1503           |    | 85       | 26232              |        | 29      | 880            |
| 2000 | 154       | 12421              |     | 154    | 3043           |    | 97       | 20582              |        | 41      | 1374           |
| 2001 | 108       | 8389               |     | 108    | 2421           |    | 98       | 19055              |        | 39      | 1505           |
| 2002 | 86        | 6400               |     | 86     | 2179           |    | 80       | 16119              |        | 32      | 1252           |
| 2003 | 92        | 6116               |     | 90     | 2135           |    | 94       | 19757              |        | 29      | 1070           |
| 2004 | 125       | 8749               |     | 107    | 2755           |    | 132      | 18392              |        | 37      | 1357           |
| 2005 | 98        | 4705               |     | 86     | 1681           |    | 153      | 23937              |        | 42      | 786            |
| 2006 | 178       | 9431               |     | 2798   | 163            |    | 307      | 44708              |        | 31      | 812            |
| 2007 | 181       | 9200               |     | 171    | 2697           |    | 521      | 141607             |        | 48      | 1191           |
| 2008 | 198       | 9747               |     | 160    | 2493           |    | 257      | 64387              |        | 48      | 1214           |
| 2009 | 198       | 9447               |     | 174    | 2595           |    | 188      | 48335              |        | 54      | 1479           |
| 2010 | 250       | 12289              |     | 239    | 3549           |    | 151      | 30647              |        | 27      | 1022           |
| 2011 | 188       | 10678              | 57  | 163    | 2374           | 15 | 193      | 40936              | 212    | 32      | 1119           |

Table B6b. USA and Canadian sampling of commercial Atlantic cod landings from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978 - 2011.

| Table | e B7. ( | Coefficient of | variation for   | · USA wester  | n and eastern  | Georges Bank c   | ommercial    | Atlantic c | od landings a | t age estimated for |
|-------|---------|----------------|-----------------|---------------|----------------|------------------|--------------|------------|---------------|---------------------|
| 1996  | - 2011  | . Values for a | earlier years a | are estimable | but not readil | y available; 199 | 7 for wester | rn Georges | s Bank not av | ailable.            |

| GB cod We | st ( 521,5  | 22,525,52 | 6,537,538 | ,539,600+ | )    |      |      |      |       |      |       |      |      |      |      |
|-----------|-------------|-----------|-----------|-----------|------|------|------|------|-------|------|-------|------|------|------|------|
| ages      | 1           | 2         | 3         | 4         | 5    | 6    | 7    | 8    | 9     | 10   | 11    | 12   | 13   | 14   | 15   |
| 1996      |             | 0.17      | 0.09      | 0.06      | 0.17 | 0.18 | 0.61 | 0.50 | 0.43  |      |       |      |      |      |      |
| 1997      |             |           |           |           |      |      |      |      |       |      |       |      |      |      |      |
| 1998      | 0.98        | 0.07      | 0.08      | 0.10      | 0.12 | 0.16 | 0.40 | 0.97 | 1.25  |      |       |      |      |      |      |
| 1999      |             | 0.20      | 0.06      | 0.08      | 0.18 | 0.22 | 0.20 | 0.54 | 1.12  |      |       |      |      |      |      |
| 2000      | 0.42        | 0.04      | 0.06      | 0.04      | 0.11 | 0.16 | 0.21 | 0.20 | 1.11  |      |       |      |      |      |      |
| 2001      | 1.38        | 0.18      | 0.06      | 0.12      | 0.14 | 0.22 | 0.27 | 0.30 | 0.25  | 0.87 | 1.38  |      |      |      |      |
| 2002      |             | 0.41      | 0.09      | 0.05      | 0.13 | 0.12 | 0.18 | 0.38 | 0.35  | 0.42 | 0.81  | 1.61 |      |      |      |
| 2003      |             | 0.26      | 0.10      | 0.08      | 0.06 | 0.14 | 0.17 | 0.29 | 0.50  | 0.85 | 1.29  |      |      |      |      |
| 2004      |             | 0.16      | 0.04      | 0.10      | 0.07 | 0.08 | 0.14 | 0.13 | 0.28  | 0.33 | 0.52  | 0.65 | 0.81 |      |      |
| 2005      |             | 0.24      | 0.14      | 0.06      | 0.16 | 0.12 | 0.16 | 0.18 | 0.25  | 0.51 | 0.34  | 1.38 |      |      |      |
| 2006      |             | 0.32      | 0.04      | 0.08      | 0.06 | 0.15 | 0.14 | 0.14 | 0.29  | 0.29 | 0.69  | 0.87 | 1.01 | 0.86 |      |
| 2007      |             | 0.14      | 0.11      | 0.03      | 0.16 | 0.14 | 0.29 | 0.29 | 0.46  | 0.88 | 1.11  |      |      |      |      |
| 2008      |             | 0.10      | 0.05      | 0.13      | 0.07 | 0.22 | 0.27 | 0.36 | 0.39  | 0.49 | 1.24  | 1.05 | 1.01 |      |      |
| 2009      |             | 0.18      | 0.05      | 0.04      | 0.13 | 0.12 | 0.28 | 0.36 | 0.60  | 0.60 | 1.28  | 0.84 |      |      |      |
| 2010      |             | 0.21      | 0.06      | 0.04      | 0.09 | 0.22 | 0.12 | 0.97 | 0.57  | 0.92 | 0.88  |      |      |      |      |
| 2011      |             | 0.07      | 0.06      | 0.03      | 0.03 | 0.03 | 0.05 | 0.05 | 0.18  | 0.31 | 0.43  | 0.38 | 0.60 | 0.55 | 1.05 |
| GB cod Ea | st ( 561-50 | 62)       |           |           |      |      |      |      |       |      |       |      |      |      |      |
| ages      | 1           | 2         | 3         | 4         | 5    | 6    | 7    | 8    | 9     | 10   | 11    | 12   | 13   |      |      |
| 1996      | 3.41        | 0.38      | 0.15      | 0.08      | 0.22 | 0.24 | 0.90 | 0.56 | 0.39  |      | 1.95  |      |      |      |      |
| 1997      |             | 0.40      | 0.40      | 0.28      | 0.11 | 0.22 | 0.30 | 0.15 | 0.23  | 0.29 | 0.32  | 0.90 |      |      |      |
| 1998      |             | 0.40      | 0.22      | 0.20      | 0.17 | 0.18 | 0.40 | 0.99 | 1.18  |      |       |      |      |      |      |
| 1999      |             | 0.28      | 0.15      | 0.20      | 0.30 | 0.57 | 0.38 | 0.95 | 1.28  | 1.73 |       |      |      |      |      |
| 2000      |             | 0.11      | 0.15      | 0.12      | 0.33 | 0.48 | 0.83 | 5.60 | 5.65  |      |       |      |      |      |      |
| 2001      |             | 0.22      | 0.12      | 0.19      | 0.20 | 0.35 | 0.77 | 0.58 | 0.61  | 1.11 | 3.85  | 9.78 |      |      |      |
| 2002      |             | 0.30      | 0.16      | 0.10      | 0.21 | 0.26 | 0.31 | 0.36 | 0.72  | 0.57 | 0.75  | 2.36 |      |      |      |
| 2003      |             | 0.15      | 0.24      | 0.14      | 0.08 | 0.24 | 0.22 | 0.52 | 0.47  | 0.86 | 1.33  |      |      |      |      |
| 2004      |             | 0.23      | 0.19      | 0.25      | 0.15 | 0.14 | 0.33 | 0.22 | 0.50  |      |       |      |      |      |      |
| 2005      |             | 0.29      | 1.32      | 0.22      | 0.20 | 0.36 | 0.31 | 0.20 | 0.26  | 0.35 |       |      | 0.91 |      |      |
| 2006      |             | 0.32      | 0.26      | 0.14      | 0.28 | 0.41 | 0.32 |      | 31.62 |      | 31.62 |      |      |      |      |
| 2007      |             | 0.90      | 0.32      | 0.07      | 0.41 | 0.29 | 0.46 | 0.60 | 0.75  | 1.14 | 1.87  |      |      |      |      |
| 2008      |             | 0.22      | 0.12      | 0.27      | 0.12 | 0.57 | 0.38 | 1.00 | 1.11  | 1.13 |       |      |      |      |      |
| 2009      |             | 0.15      | 0.22      | 0.26      | 0.29 | 0.40 | 0.38 | 0.37 | 0.96  |      |       |      |      |      |      |
| 2010      |             | 0.54      | 0.16      | 0.14      | 0.17 | 0.54 | 0.23 | 0.95 | 1.25  |      |       |      |      |      |      |
| 2011      |             | 0.07      | 0.06      | 0.06      | 0.03 | 0.06 | 0.12 | 0.15 |       |      |       |      |      |      |      |

| Year     1     2     3     4     5     6     7     8     9     10+     To       USA Commercial Landings in Numbers (000's) at Age       1978     0     291     6012     1767     687     102     185     11     30     4     90       1979     48     1542     611     3809     903     395     142     295     9     32     77       1980     102     3092     4761     328     2045     858     386     59     125     4     117       1981     39     2853     3725     2016     171     902     295     90     135     43     102       1982     428     7565     2817     1750     1228     130     447     95     50     59     145       1982     92     2461     5638     130     447     95     50     59     145 | Age   |  |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|--|--|--|--|
| USA Commercial Landings in Numbers (000's) at Age     1978   0   291   6012   1767   687   102   185   11   30   4   90     1979   48   1542   611   3809   903   395   142   295   9   32   77     1980   102   3092   4761   328   2045   858   386   59   125   4   117     1981   39   2853   3725   2016   171   902   295   90   135   43   102     1982   428   7565   2817   1750   1228   130   447   95   50   59   145     1982   98   2461   5638   1374   881   658   85   155   56   93   126                                                                                                                                                                                                                | Total |  |  |  |  |  |  |  |  |  |  |  |  |
| 1978   0   291   6012   1767   687   102   185   11   30   4   90     1979   48   1542   611   3809   903   395   142   295   9   32   77     1980   102   3092   4761   328   2045   858   386   59   125   4   117     1981   39   2853   3725   2016   171   902   295   90   135   43   102     1982   428   7565   2817   1750   1228   130   447   95   50   59   145     1982   98   2461   5638   1374   881   658   85   155   56   23   124                                                                                                                                                                                                                                                                      |       |  |  |  |  |  |  |  |  |  |  |  |  |
| 1978   0   291   6012   1767   687   102   185   11   30   4   90     1979   48   1542   611   3809   903   395   142   295   9   32   77     1980   102   3092   4761   328   2045   858   386   59   125   4   117     1981   39   2853   3725   2016   171   902   295   90   135   43   102     1982   428   7565   2817   1750   1228   130   447   95   50   59   145     1982   98   2461   5638   1374   981   658   85   155   50   59   145                                                                                                                                                                                                                                                                      |       |  |  |  |  |  |  |  |  |  |  |  |  |
| 1979   48   1542   611   3809   903   395   142   295   9   32   77     1980   102   3092   4761   328   2045   858   386   59   125   4   117     1981   39   2853   3725   2016   171   902   295   90   135   43   102     1982   428   7565   2817   1750   1228   130   447   95   50   59   145     1982   98   2461   5638   1374   981   658   95   155   56   232   126                                                                                                                                                                                                                                                                                                                                           | 9088  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980     102     3092     4761     328     2045     858     386     59     125     4     117       1981     39     2853     3725     2016     171     902     295     90     135     43     102       1982     428     7565     2817     1750     1228     130     447     95     50     59     145       1982     98     2461     5638     1374     981     658     95     155     56     93     127                                                                                                                                                                                                                                                                                                                      | 7785  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1981     39     2853     3725     2016     171     902     295     90     135     43     102       1982     428     7565     2817     1750     1228     130     447     95     50     59     145       1982     428     7565     2817     1750     1228     130     447     95     50     59     145       1982     4461     5638     1374     881     658     85     155     56     33     1374                                                                                                                                                                                                                                                                                                                           | 1760  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1982     428     7565     2817     1750     1228     130     447     95     50     59     145       1982     98     2461     5638     1374     981     658     95     155     56     93     134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0269  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4568  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1903 00 3401 3030 1374 001 030 03 135 30 82 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2477  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1984 70 1342 3275 2864 571 422 374 39 145 84 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9186  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1985 126 4159 1636 1032 1343 314 191 154 16 75 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9045  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1986 134 1142 3194 467 375 390 56 50 44 24 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5877  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1987 19 4873 814 1380 204 163 154 34 21 18 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7679  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1988 0 1679 5492 695 1059 149 88 90 17 24 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9293  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1989 0 1649 2633 3291 254 352 49 28 23 3 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8283  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1990 0 4647 3313 1279 1401 126 122 16 9 8 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0920  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1991 43 1164 2842 1841 830 562 65 42 12 6 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7406  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1992 1 2307 1333 761 939 256 177 19 15 3 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5811  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1993 0 769 3118 608 288 283 83 71 16 3 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5238  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1994 0 226 1108 1345 201 59 96 29 14 4 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3081  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1995 0 341 1006 570 310 27 19 19 5 1 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2299  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1996 0 211 753 947 191 137 8 9 10 0 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2267  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1997 0 399 539 674 566 75 60 11 6 3 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2332  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1998 8 693 979 349 258 190 24 8 2 0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2510  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1999 0 256 1663 606 211 86 112 15 2 0 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2951  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2000 9 721 627 865 205 58 30 29 2 0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2546  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2001 1 508 2302 616 457 111 34 15 11 1 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4056  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2002 0 32 1001 1293 310 285 68 13 8 5 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3016  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 0 74 279 650 707 117 94 17 4 2 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1944  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2004 0 30 272 153 228 158 34 26 6 3 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 912   |  |  |  |  |  |  |  |  |  |  |  |  |
| 2005 0 22 96 358 100 77 55 8 4 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 721   |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 0 12 441 129 185 29 15 13 2 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 827   |  |  |  |  |  |  |  |  |  |  |  |  |
| 2007 0 114 168 793 43 65 6 4 3 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1198  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 0 162 521 112 301 6 16 0 1 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1118  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2009 0 36 360 355 72 96 4 4 0 0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 927   |  |  |  |  |  |  |  |  |  |  |  |  |
| 2010 0 21 295 401 102 13 47 1 2 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 881   |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 0 33 376 340 228 67 10 16 3 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1073  |  |  |  |  |  |  |  |  |  |  |  |  |

Table B8a. USA commercial landings (thousands of fish; metric tons), mean weight (kg) and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Year12345678910+TotaUSA Commercial Landings in Weight (Tons) at Age197603771484763552804546122976304412657197942220212621676645502886137330428943532641980844610116601236116615825324456611125440055198141428588957035847653425588931960801338451982283106167596654366048644299959667902393319839451191377347924312428272216686451350367651984722151800610435288728233279396161411783291419851185857347540516910200915631603194104826826198612616387325160620362796508510594351174919871668492014555611471290130933824027519031988027505861119371286227440626224137250561990070977638 <th></th> <th colspan="13">Age<br/>Year 1 2 3 4 5 6 7 8 9 10+ Total</th>                                                                                                                                                             |      | Age<br>Year 1 2 3 4 5 6 7 8 9 10+ Total |       |       |           |              |                          |             |      |      |      |       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|-------|-------|-----------|--------------|--------------------------|-------------|------|------|------|-------|--|--|
| USA Commercial Landings in Weight (Tons) at Age       1978     0     377     14847     6355     2804     546     1229     76     304     41     26573       1979     42     2202     1262     16766     4550     2886     1373     3042     89     435     32644       1980     84     4610     11660     1236     11661     5825     3244     566     1112     54     40053       1981     41     4285     8895     7035     847     6534     2558     893     1960     801     3383       1983     94     5119     13773     4792     4312     4282     722     1668     645     1350     36756       1984     72     2151     8080     10435     2887     2823     3279     396     1614     1178     3291       1985     0     2533     12755     2313     5556     1021     733     851     2013     347     26056  < | Year | 1                                       | 2     | 3     | 4         | 5            | 6                        | 7           | 8    | 9    | 10+  | Total |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                         |       | USA   | Commercia | I Landings   | in Weight ( <sup>-</sup> | Tons) at Ag | je   |      |      |       |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1078 | 0                                       | 377   | 14847 | 6355      | 2804         | 546                      | 1220        | 76   | 304  | 41   | 26570 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1979 | 42                                      | 2202  | 1262  | 16766     | 2004<br>4550 | 2886                     | 1373        | 3042 | 89   | 435  | 32645 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1980 | 84                                      | 4610  | 11660 | 1236      | 11661        | 5825                     | 3244        | 566  | 1112 | 54   | 40053 |  |  |
| 198228310616759666436604864429995966790233331983945119137734792431242827221668645135036766198472215180801043528872823327939616141178329161985118585734754051691020091563160319410482682219861261638732516062036279650851059435117490198716684920145556114712901309338240275190331988027505861119371288227440626224137265051990070877638448867237821013175101102281101991501799699066164246341249838313788242161992134233094296142021571125117416559168919930511200521511627638629150431459019940306230645939654276702611406797371995051120052151162763366277026                                                                                                                                                                                                                                                            | 1981 | 41                                      | 4285  | 8895  | 7035      | 847          | 6534                     | 2558        | 893  | 1960 | 801  | 33849 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1982 | 283                                     | 10616 | 7596  | 6543      | 6604         | 864                      | 4299        | 959  | 667  | 902  | 39333 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1983 | 94                                      | 5119  | 13773 | 4792      | 4312         | 4282                     | 722         | 1668 | 645  | 1350 | 36756 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1984 | 72                                      | 2151  | 8080  | 10435     | 2887         | 2823                     | 3279        | 396  | 1614 | 1178 | 32915 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1985 | 118                                     | 5857  | 3475  | 4051      | 6910         | 2009                     | 1563        | 1603 | 194  | 1048 | 26828 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1986 | 126                                     | 1638  | 7325  | 1606      | 2036         | 2796                     | 508         | 510  | 594  | 351  | 17490 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1987 | 16                                      | 6849  | 2014  | 5556      | 1147         | 1290                     | 1309        | 338  | 240  | 275  | 19035 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1988 | 0                                       | 2533  | 12755 | 2313      | 5556         | 1021                     | 733         | 851  | 201  | 347  | 26310 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1989 | 0                                       | 2750  | 5861  | 11937     | 1288         | 2274                     | 406         | 262  | 241  | 37   | 25056 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1990 | 0                                       | 7087  | 7638  | 4488      | 6723         | 782                      | 1013        | 175  | 101  | 102  | 28110 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1991 | 50                                      | 1799  | 6990  | 6616      | 4246         | 3412                     | 498         | 383  | 137  | 88   | 24219 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1992 | 1                                       | 3423  | 3094  | 2961      | 4202         | 1571                     | 1251        | 174  | 165  | 59   | 16899 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1993 | 0                                       | 1171  | 6787  | 2020      | 1526         | 1625                     | 638         | 629  | 150  | 43   | 14590 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1994 | 0                                       | 306   | 2306  | 4593      | 965          | 427                      | 670         | 261  | 140  | 67   | 9737  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1995 | 0                                       | 511   | 2005  | 2151      | 1627         | 231                      | 175         | 234  | 66   | 27   | 7026  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1996 | 0                                       | 320   | 1821  | 3022      | 910          | 900                      | 79          | 94   | 113  | 2    | 7261  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1997 | 0                                       | 629   | 1260  | 2378      | 2219         | 429                      | 447         | 83   | 68   | 34   | 7548  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1998 | 4                                       | 1020  | 2203  | 1240      | 1240         | 1059                     | 192         | 57   | 23   | 2    | 7041  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999 | 0                                       | 394   | 3525  | 1995      | 987          | 503                      | 758         | 126  | 22   | 2    | 8313  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000 | 10                                      | 1225  | 1534  | 3029      | 977          | 340                      | 225         | 242  | 18   | 0    | 7600  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2001 | 0                                       | 782   | 5198  | 1810      | 1909         | 599                      | 220         | 118  | 101  | 13   | 10749 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2002 | 0                                       | 60    | 2167  | 3847      | 1226         | 1486                     | 439         | 105  | 80   | 63   | 9472  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2003 | 0                                       | 152   | 663   | 1944      | 2783         | 570                      | 560         | 123  | 37   | 22   | 6852  |  |  |
| 2005   0   41   246   1226   410   386   313   65   40   29   2754     2006   0   24   1112   465   749   139   89   89   14   18   2700     2007   0   232   419   2515   171   281   31   27   17   5   3699     2008   0   335   1330   344   1107   39   84   5   7   4   3255     2009   0   70   883   1222   300   466   26   26   4   2   2999     2010   0   42   726   1240   393   52   218   6   10   2   2688     2011   0   65   932   1043   843   311   55   91   31   17   3387                                                                                                                                                                                                                                                                                                                           | 2004 | 0                                       | 61    | 745   | 507       | 922          | 791                      | 196         | 197  | 56   | 34   | 3509  |  |  |
| 2006   0   24   1112   465   749   139   89   89   14   18   2700     2007   0   232   419   2515   171   281   31   27   17   5   3699     2008   0   335   1330   344   1107   39   84   5   7   4   3255     2009   0   70   883   1222   300   466   26   26   4   2   2999     2010   0   42   726   1240   393   52   218   6   10   2   2688     2011   0   65   932   1043   843   311   55   91   31   17   3387                                                                                                                                                                                                                                                                                                                                                                                                  | 2005 | 0                                       | 41    | 246   | 1226      | 410          | 386                      | 313         | 65   | 40   | 29   | 2754  |  |  |
| 2007   0   232   419   2515   171   281   31   27   17   5   3699     2008   0   335   1330   344   1107   39   84   5   7   4   3255     2009   0   70   883   1222   300   466   26   26   4   2   2999     2010   0   42   726   1240   393   52   218   6   10   2   2688     2011   0   65   932   1043   843   311   55   91   31   17   3387                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2006 | 0                                       | 24    | 1112  | 465       | 749          | 139                      | 89          | 89   | 14   | 18   | 2700  |  |  |
| 2008   0   335   1330   344   1107   39   84   5   7   4   3255     2009   0   70   883   1222   300   466   26   26   4   2   2999     2010   0   42   726   1240   393   52   218   6   10   2   2688     2011   0   65   932   1043   843   311   55   91   31   17   3387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2007 | 0                                       | 232   | 419   | 2515      | 171          | 281                      | 31          | 27   | 17   | 5    | 3699  |  |  |
| 2009     0     70     883     1222     300     466     26     26     4     2     2999       2010     0     42     726     1240     393     52     218     6     10     2     2688       2011     0     65     932     1043     843     311     55     91     31     17     3387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2008 | 0                                       | 335   | 1330  | 344       | 1107         | 39                       | 84          | 5    | 7    | 4    | 3255  |  |  |
| 2010     0     42     726     1240     393     52     218     6     10     2     2688       2011     0     65     932     1043     843     311     55     91     31     17     3387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2009 | 0                                       | 70    | 883   | 1222      | 300          | 466                      | 26          | 26   | 4    | 2    | 2999  |  |  |
| 2011 0 65 932 1043 843 311 55 91 31 17 3387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010 | 0                                       | 42    | 726   | 1240      | 393          | 52                       | 218         | 6    | 10   | 2    | 2688  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2011 | 0                                       | 65    | 932   | 1043      | 843          | 311                      | 55          | 91   | 31   | 17   | 3387  |  |  |

Table B8a - continued. USA commercial landings (thousands of fish; metric tons), mean weight (kg) and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

Table B8a - continued. USA commercial landings (thousands of fish; metric tons), mean weight (kg) and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      |       |       |       |            | Age        | ;                  |              |        |        |        |       |
|------|-------|-------|-------|------------|------------|--------------------|--------------|--------|--------|--------|-------|
| Year | 1     | 2     | 3     | 4          | 5          | 6                  | 7            | 8      | 9      | 10+    | Mean  |
|      |       |       | USA C | Commercial | Landings N | <i>v</i> lean Weig | ht (kg) at A | lge    |        |        |       |
| 1078 | 0 582 | 1 207 | 2 470 | 3 507      | 4 078      | 5 331              | 6 651        | 7 086  | 10 130 | 11 288 | 2 025 |
| 1970 | 0.302 | 1.207 | 2.470 | 4 402      | 5.041      | 7 300              | 9 702        | 10 310 | 9 874  | 13 568 | 4 104 |
| 1980 | 0.000 | 1 491 | 2.000 | 3 766      | 5 703      | 6 789              | 8 403        | 9.517  | 8 918  | 12.946 | 3 406 |
| 1981 | 1 071 | 1.502 | 2.388 | 3 489      | 4 958      | 7 247              | 8 662        | 9 881  | 14 572 | 18 590 | 3 296 |
| 1982 | 0.661 | 1.403 | 2.697 | 3.738      | 5.378      | 6.624              | 9.625        | 10.108 | 13.254 | 15.415 | 2.700 |
| 1983 | 1.066 | 1.479 | 2.442 | 3.487      | 4.895      | 6.506              | 8.544        | 10.774 | 11.586 | 16.505 | 2.945 |
| 1984 | 1.026 | 1.603 | 2.468 | 3.643      | 5.056      | 6.689              | 8.759        | 10.099 | 11.168 | 14.101 | 3.583 |
| 1985 | 0.935 | 1.408 | 2.124 | 3.926      | 5.147      | 6.406              | 8.190        | 10.423 | 12.459 | 14.012 | 2.966 |
| 1986 | 0.945 | 1.434 | 2.293 | 3.440      | 5.434      | 7.160              | 9.020        | 10.099 | 13.347 | 14.863 | 2.976 |
| 1987 | 0.857 | 1.406 | 2.474 | 4.027      | 5.634      | 7.910              | 8.507        | 9.888  | 11.670 | 14.828 | 2.479 |
| 1988 | 0.000 | 1.508 | 2.322 | 3.329      | 5.245      | 6.853              | 8.350        | 9.452  | 11.541 | 14.755 | 2.831 |
| 1989 | 0.000 | 1.668 | 2.226 | 3.627      | 5.066      | 6.454              | 8.260        | 9.348  | 10.640 | 10.811 | 3.025 |
| 1990 | 0.000 | 1.525 | 2.305 | 3.509      | 4.799      | 6.200              | 8.317        | 11.255 | 11.547 | 12.581 | 2.574 |
| 1991 | 1.174 | 1.546 | 2.460 | 3.594      | 5.116      | 6.073              | 7.667        | 9.080  | 11.005 | 14.979 | 3.270 |
| 1992 | 1.016 | 1.484 | 2.321 | 3.893      | 4.477      | 6.127              | 7.070        | 9.323  | 10.818 | 17.028 | 2.908 |
| 1993 | 0.866 | 1.523 | 2.177 | 3.323      | 5.303      | 5.741              | 7.671        | 8.813  | 9.617  | 15.320 | 2.785 |
| 1994 | 0.000 | 1.354 | 2.081 | 3.415      | 4.809      | 7.280              | 6.983        | 9.174  | 9.972  | 18.039 | 3.160 |
| 1995 | 0.000 | 1.499 | 1.992 | 3.773      | 5.253      | 8.397              | 9.268        | 12.303 | 12.152 | 19.118 | 3.056 |
| 1996 | 0.896 | 1.517 | 2.418 | 3.192      | 4.755      | 6.555              | 10.069       | 10.166 | 11.114 | 9.283  | 3.203 |
| 1997 | 0.000 | 1.577 | 2.337 | 3.529      | 3.919      | 5.727              | 7.473        | 7.856  | 11.241 | 12.006 | 3.236 |
| 1998 | 0.536 | 1.473 | 2.250 | 3.558      | 4.799      | 5.581              | 7.884        | 7.587  | 12.382 | 10.299 | 2.804 |
| 1999 | 0.000 | 1.542 | 2.119 | 3.291      | 4.686      | 5.851              | 6.739        | 8.700  | 10.792 | 10.671 | 2.817 |
| 2000 | 1.177 | 1.699 | 2.447 | 3.504      | 4.755      | 5.853              | 7.488        | 8.271  | 7.890  | 10.789 | 2.985 |
| 2001 | 0.727 | 1.539 | 2.258 | 2.938      | 4.174      | 5.407              | 6.479        | 7.785  | 9.334  | 10.907 | 2.650 |
| 2002 | 0.000 | 1.834 | 2.165 | 2.974      | 3.948      | 5.221              | 6.510        | 8.076  | 9.425  | 12.166 | 3.141 |
| 2003 | 0.000 | 2.048 | 2.378 | 2.992      | 3.937      | 4.879              | 5.927        | 7.079  | 8.708  | 10.994 | 3.524 |
| 2004 | 0.000 | 2.020 | 2.735 | 3.306      | 4.037      | 4.998              | 5.673        | 7.655  | 8.668  | 11.827 | 3.847 |
| 2005 | 0.000 | 1.811 | 2.569 | 3.426      | 4.118      | 5.033              | 5.737        | 8.174  | 9.189  | 12.260 | 3.821 |
| 2006 | 0.000 | 2.080 | 2.524 | 3.594      | 4.048      | 4.706              | 6.129        | 7.039  | 8.013  | 10.370 | 3.264 |
| 2007 | 0.000 | 2.027 | 2.495 | 3.169      | 3.947      | 4.299              | 5.363        | 7.038  | 6.646  | 7.777  | 3.088 |
| 2008 | 0.000 | 2.074 | 2.552 | 3.075      | 3.682      | 6.351              | 5.387        | 10.318 | 8.839  | 13.714 | 2.910 |
| 2009 | 0.000 | 1.924 | 2.451 | 3.447      | 4.158      | 4.860              | 7.296        | 6.649  | 8.818  | 13.092 | 3.235 |
| 2010 | 0.000 | 2.010 | 2.463 | 3.097      | 3.855      | 4.155              | 4.587        | 5.649  | 4.890  | 14.043 | 3.052 |
| 2011 | 0.000 | 1.957 | 2.480 | 3.072      | 3.703      | 4.661              | 5.487        | 5.609  | 11.422 | 15.053 | 3.158 |

Table B8a - continued. USA commercial landings (thousands of fish; metric tons), mean weight (kg) and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|       |      |      |       |             | Age       |              |             |            |       |       |      |
|-------|------|------|-------|-------------|-----------|--------------|-------------|------------|-------|-------|------|
| Vear  | 1    | 2    | 3     | 4           | 5         | 6            | 7           | 8          | 0     | 10+   | Mean |
| i cai | I    | 2    |       | ommercial I | andings M | ean Length   | ) (cm) at A | ue 0       | 5     | 101   | wear |
|       |      |      | 00/10 |             | Lanango n | iouri Loriga | r (only acr | <u>.go</u> |       |       |      |
| 1978  | 39.0 | 50.2 | 61.5  | 69.2        | 71.6      | 78.8         | 85.3        | 87.7       | 97.7  | 100.7 | 64.2 |
| 1979  | 44.3 | 51.9 | 57.7  | 74.2        | 77.9      | 88.2         | 97.8        | 99.6       | 98.5  | 108.8 | 71.0 |
| 1980  | 43.3 | 52.5 | 61.3  | 70.9        | 81.4      | 86.6         | 92.5        | 95.1       | 94.5  | 107.7 | 66.0 |
| 1981  | 47.4 | 52.4 | 60.9  | 69.0        | 77.7      | 88.3         | 94.0        | 97.9       | 111.7 | 120.7 | 64.9 |
| 1982  | 39.7 | 51.6 | 63.2  | 70.1        | 79.6      | 85.3         | 97.1        | 98.5       | 107.9 | 113.1 | 60.5 |
| 1983  | 47.5 | 52.5 | 61.4  | 68.6        | 77.1      | 84.9         | 93.1        | 100.6      | 103.0 | 116.0 | 63.2 |
| 1984  | 46.9 | 53.7 | 61.7  | 70.1        | 78.0      | 86.0         | 94.0        | 98.6       | 102.0 | 109.5 | 67.7 |
| 1985  | 45.4 | 51.6 | 58.5  | 72.0        | 78.7      | 84.7         | 91.8        | 99.7       | 105.5 | 109.7 | 62.5 |
| 1986  | 45.6 | 51.7 | 60.2  | 68.1        | 79.6      | 88.0         | 95.0        | 98.6       | 108.1 | 111.8 | 63.2 |
| 1987  | 44.2 | 51.6 | 61.6  | 72.5        | 81.3      | 91.3         | 93.1        | 97.9       | 103.4 | 111.7 | 59.4 |
| 1988  |      | 53.0 | 60.6  | 67.4        | 78.9      | 86.5         | 92.4        | 96.4       | 102.8 | 111.3 | 63.1 |
| 1989  |      | 54.7 | 59.8  | 69.9        | 77.9      | 84.2         | 91.3        | 96.6       | 100.6 | 101.3 | 64.8 |
| 1990  |      | 53.2 | 60.2  | 68.9        | 76.4      | 83.1         | 91.8        | 102.2      | 103.3 | 106.4 | 61.1 |
| 1991  | 49.0 | 53.3 | 61.7  | 69.3        | 78.1      | 82.5         | 89.5        | 93.3       | 100.8 | 111.3 | 66.1 |
| 1992  | 46.8 | 52.7 | 60.9  | 72.1        | 75.5      | 83.5         | 88.7        | 96.3       | 102.8 | 119.1 | 63.6 |
| 1993  | 45.0 | 53.0 | 59.7  | 68.5        | 79.9      | 82.1         | 91.7        | 95.7       | 98.5  | 112.2 | 63.2 |
| 1994  |      | 51.3 | 58.6  | 69.0        | 77.7      | 89.2         | 89.0        | 97.6       | 100.0 | 121.4 | 66.0 |
| 1995  |      | 52.7 | 57.9  | 71.0        | 80.8      | 93.3         | 97.6        | 106.5      | 106.8 | 121.9 | 64.8 |
| 1996  |      | 53.1 | 61.5  | 67.5        | 76.9      | 87.2         | 96.9        | 100.9      | 103.0 | 99.0  | 66.5 |
| 1997  |      | 53.6 | 60.9  | 69.6        | 72.2      | 83.3         | 91.2        | 92.5       | 104.6 | 107.2 | 66.7 |
| 1998  | 38.1 | 52.4 | 60.3  | 70.8        | 78.5      | 82.9         | 93.1        | 92.0       | 107.8 | 102.3 | 63.5 |
| 1999  |      | 53.4 | 59.3  | 69.0        | 77.9      | 83.8         | 88.3        | 95.7       | 102.5 | 103.6 | 64.2 |
| 2000  | 48.9 | 54.8 | 62.1  | 70.1        | 77.6      | 83.6         | 90.8        | 94.6       | 93.7  |       | 65.2 |
| 2001  | 42.0 | 53.1 | 60.3  | 65.8        | 74.0      | 81.2         | 86.4        | 91.9       | 98.4  | 103.3 | 62.8 |
| 2002  |      | 56.4 | 59.4  | 66.4        | 72.8      | 80.0         | 86.3        | 92.6       | 97.6  | 107.2 | 66.6 |
| 2003  |      | 58.3 | 61.4  | 66.5        | 73.1      | 78.3         | 84.0        | 89.1       | 94.9  | 103.2 | 69.7 |
| 2004  |      | 58.2 | 64.0  | 68.9        | 73.9      | 79.5         | 82.9        | 92.0       | 95.5  | 106.2 | 71.6 |
| 2005  |      | 56.1 | 63.0  | 69.6        | 74.7      | 79.7         | 83.1        | 93.9       | 96.9  | 106.7 | 71.6 |
| 2006  |      | 58.7 | 62.3  | 70.6        | 73.8      | 77.4         | 85.0        | 89.0       | 90.8  | 97.8  | 67.6 |
| 2007  |      | 58.1 | 62.5  | 67.7        | 72.5      | 74.7         | 80.3        | 87.9       | 86.2  | 89.6  | 66.8 |
| 2008  |      | 58.6 | 63.2  | 67.4        | 71.5      | 85.8         | 79.7        | 100.1      | 95.2  | 103.2 | 65.6 |
| 2009  |      | 57.6 | 62.4  | 70.1        | 74.6      | 78.6         | 89.2        | 87.4       | 94.9  | 110.4 | 68.0 |
| 2010  |      | 58.0 | 62.4  | 67.4        | 72.6      | 74.0         | 76.8        | 80.6       | 76.5  | 108.9 | 66.8 |
| 2011  |      | 57.6 | 62.3  | 66.9        | 71.6      | 77.4         | 81.5        | 82.0       | 105.5 | 115.5 | 67.2 |

Table B8b. Canadian commercial landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |      |        |           |            |          |           |          |           |      |      |       |
|------|------|--------|-----------|------------|----------|-----------|----------|-----------|------|------|-------|
| Year | 1    | 2      | 3         | 4          | 5        | 6         | 7        | 8         | 9    | 10+  | Total |
|      |      | 0      | andian Cr | mmoreiel   | andiner  | in Nimela | ara (000 |           |      |      |       |
|      |      | Ca     | hadian Co | mmercial I | _andings | in inump  | ers (000 | s) at Age | -    |      |       |
| 1978 | 1.4  | 71.4   | 2341.1    | 719.5      | 216.2    | 76.1      | 56.8     | 11.7      | 10.7 | 6.1  | 3511  |
| 1979 | 4.5  | 553.3  | 532.1     | 793.7      | 267.2    | 57.3      | 15.2     | 11.9      | 1.9  | 2.7  | 2240  |
| 1980 | 0.7  | 705.1  | 1078.5    | 200.6      | 499.1    | 135.3     | 31.3     | 14.1      | 26.3 | 16.5 | 2707  |
| 1981 | 2.8  | 272.1  | 888.3     | 637.3      | 183.9    | 278.4     | 93.1     | 42.6      | 27.7 | 10.6 | 2437  |
| 1982 | 6.8  | 2200.4 | 1455.2    | 900.5      | 689.5    | 154.0     | 233.9    | 104.6     | 29.9 | 32.5 | 5807  |
| 1983 | 15.5 | 411.3  | 1429.8    | 863.2      | 290.3    | 218.8     | 89.8     | 126.6     | 70.0 | 24.1 | 3539  |
| 1984 | 0.0  | 25.1   | 133.5     | 379.8      | 257.7    | 156.3     | 95.3     | 18.1      | 35.2 | 27.9 | 1129  |
| 1985 | 2.5  | 2162.4 | 960.2     | 403.5      | 553.8    | 155.1     | 45.9     | 50.1      | 12.9 | 11.7 | 4358  |
| 1986 | 9.6  | 244.3  | 1358.7    | 395.7      | 156.8    | 239.7     | 37.6     | 22.0      | 11.9 | 3.6  | 2480  |
| 1987 | 20.1 | 3057.2 | 604.6     | 764.2      | 98.9     | 81.9      | 115.5    | 24.8      | 15.2 | 6.7  | 4789  |
| 1988 | 18.4 | 229.1  | 2726.3    | 344.7      | 410.7    | 62.6      | 71.5     | 129.0     | 43.3 | 27.9 | 4064  |
| 1989 | 1.2  | 389.6  | 340.0     | 927.7      | 135.6    | 200.3     | 35.0     | 26.4      | 41.4 | 23.5 | 2121  |
| 1990 | 8.4  | 429.1  | 2108.1    | 702.0      | 834.1    | 88.2      | 92.9     | 7.0       | 9.5  | 25.7 | 4305  |
| 1991 | 34.5 | 688.2  | 654.3     | 1301.1     | 582.1    | 480.5     | 67.1     | 49.1      | 15.4 | 23.6 | 3896  |
| 1992 | 43.7 | 1747.3 | 917.6     | 293.4      | 549.7    | 204.2     | 216.3    | 38.3      | 27.6 | 9.8  | 4048  |
| 1993 | 4.9  | 269.3  | 1158.9    | 624.4      | 192.9    | 247.0     | 97.4     | 73.2      | 19.2 | 16.8 | 2704  |
| 1994 | 2.7  | 148.8  | 357.8     | 640.2      | 228.7    | 37.7      | 50.0     | 25.0      | 17.0 | 1.9  | 1510  |
| 1995 | 0.7  | 40.9   | 163.2     | 62.5       | 56.6     | 11.8      | 4.7      | 2.5       | 2.0  | 0.0  | 345   |
| 1996 | 1.3  | 27.6   | 170.0     | 282.9      | 55.4     | 38.1      | 10.7     | 2.6       | 1.6  | 0.2  | 590   |
| 1997 | 3.3  | 104.5  | 148.0     | 273.1      | 244.5    | 61.2      | 26.4     | 9.5       | 2.9  | 1.0  | 874   |
| 1998 | 0.3  | 57.6   | 209.6     | 101.5      | 94.8     | 80.3      | 15.7     | 8.7       | 2.9  | 1.7  | 573   |
| 1999 | 4.3  | 41.4   | 263.2     | 177.0      | 48.3     | 28.4      | 25.9     | 7.4       | 1.1  | 0.5  | 597   |
| 2000 | 0.0  | 30.0   | 59.3      | 238.2      | 94.9     | 23.4      | 14.2     | 8.1       | 2.1  | 0.6  | 471   |
| 2001 | 0.0  | 8.8    | 185.5     | 113.6      | 212.7    | 61.1      | 18.1     | 8.9       | 2.8  | 0.3  | 612   |
| 2002 | 0.0  | 2.7    | 34.9      | 144.6      | 42.3     | 76.4      | 14.0     | 4.7       | 2.1  | 1.5  | 323   |
| 2003 | 0.0  | 4.7    | 55.7      | 72.6       | 141.6    | 28.5      | 39.5     | 9.2       | 2.1  | 1.1  | 355   |
| 2004 | 0.0  | 2.6    | 60.5      | 64.4       | 53.8     | 73.0      | 17.5     | 18.7      | 4.1  | 1.6  | 296   |
| 2005 | 0.0  | 5.8    | 12.4      | 83.4       | 23.7     | 18.3      | 20.8     | 8.4       | 4.1  | 1.2  | 178   |
| 2006 | 0.0  | 2.6    | 112.0     | 43.9       | 124.2    | 32.2      | 13.5     | 13.7      | 1.8  | 1.5  | 345   |
| 2007 | 0.0  | 17.2   | 28.8      | 235.6      | 19.2     | 56.4      | 10.0     | 6.2       | 6.0  | 0.4  | 380   |
| 2008 | 0.0  | 17.6   | 96.2      | 47.9       | 201.0    | 13.3      | 28.6     | 3.8       | 1.9  | 0.8  | 411   |
| 2009 | 0.0  | 12.5   | 87.2      | 67.8       | 22.6     | 91.9      | 7.5      | 8.4       | 1.1  | 0.6  | 300   |
| 2010 | 0.0  | 1.1    | 46.8      | 129.5      | 45.4     | 10.3      | 20.4     | 2.4       | 1.4  | 0.4  | 264   |
| 2011 | 0.0  | 19.8   | 49.9      | 57.0       | 81.5     | 16.9      | 9.9      | 5.5       | 0.2  | 0.2  | 241   |

Table B8b continued. Canadian commercial landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |      |        |          |         |             |            |            |        |       |       |       |
|------|------|--------|----------|---------|-------------|------------|------------|--------|-------|-------|-------|
| Year | 1    | 2      | 3        | 4       | 5           | 6          | 7          | 8      | 9     | 10+   | Total |
|      |      |        | o "      | •       |             |            |            |        |       |       |       |
|      |      |        | Canadian | Commerc | ial Landing | gs in Weig | ght (Tons) | at Age |       |       |       |
| 1978 | 10   | 88.4   | 4997 5   | 1908 2  | 735.9       | 425 7      | 336.9      | 109.3  | 894   | 84 6  | 8777  |
| 1979 | 5.8  | 815.8  | 814.3    | 2590.4  | 1117.5      | 317.8      | 135.0      | 125.0  | 19.0  | 38.3  | 5979  |
| 1980 | 0.0  | 876.8  | 2461.0   | 611.6   | 2370.4      | 844.2      | 210.5      | 173.3  | 294.2 | 223.6 | 8066  |
| 1981 | 2.3  | 346.8  | 1840.9   | 2037.2  | 869.1       | 1824.0     | 744.3      | 388.2  | 280.8 | 174.4 | 8508  |
| 1982 | 3.8  | 2971.8 | 3100.5   | 3322.7  | 3491.3      | 1038.2     | 1992.9     | 1041.0 | 350.8 | 513.8 | 17827 |
| 1983 | 14.1 | 570.1  | 3026.7   | 2673.2  | 1388.9      | 1338.0     | 716.3      | 1282.1 | 800.9 | 320.9 | 12131 |
| 1984 | 0.0  | 36.5   | 335.7    | 1446.6  | 1275.5      | 946.9      | 775.4      | 175.0  | 380.1 | 389.0 | 5761  |
| 1985 | 1.7  | 2836.2 | 1751.2   | 1312.1  | 2507.3      | 923.0      | 351.0      | 462.1  | 134.9 | 162.8 | 10442 |
| 1986 | 7.1  | 376.2  | 3623.5   | 1425.4  | 810.2       | 1621.2     | 298.6      | 195.6  | 109.9 | 36.2  | 8504  |
| 1987 | 12.4 | 4559.0 | 1482.5   | 3089.9  | 552.5       | 592.0      | 1034.8     | 240.3  | 177.9 | 102.6 | 11844 |
| 1988 | 12.7 | 260.6  | 6023.5   | 1153.8  | 2040.0      | 395.6      | 628.9      | 1333.1 | 494.7 | 398.5 | 12741 |
| 1989 | 0.9  | 451.8  | 677.9    | 3467.6  | 709.6       | 1284.2     | 247.0      | 264.0  | 457.0 | 334.9 | 7895  |
| 1990 | 6.3  | 731.7  | 5465.8   | 2387.4  | 3975.4      | 540.5      | 722.4      | 73.1   | 108.6 | 353.1 | 14364 |
| 1991 | 28.1 | 1084.3 | 1627.1   | 4184.5  | 2418.2      | 2664.4     | 497.2      | 478.9  | 147.9 | 336.8 | 13467 |
| 1992 | 40.3 | 2525.2 | 2150.6   | 1022.1  | 2416.2      | 1199.3     | 1508.5     | 335.8  | 319.2 | 149.7 | 11667 |
| 1993 | 3.9  | 388.7  | 2511.7   | 1797.1  | 822.4       | 1360.7     | 647.4      | 624.3  | 169.3 | 200.2 | 8526  |
| 1994 | 2.2  | 202.5  | 800.4    | 2276.9  | 1030.7      | 245.1      | 364.7      | 201.6  | 130.4 | 21.9  | 5277  |
| 1995 | 0.3  | 54.6   | 367.4    | 214.3   | 295.0       | 76.4       | 47.6       | 25.3   | 20.4  | 0.4   | 1102  |
| 1996 | 1.2  | 40.4   | 380.0    | 887.6   | 275.1       | 228.0      | 70.2       | 22.7   | 16.4  | 2.5   | 1924  |
| 1997 | 3.0  | 152.3  | 314.2    | 823.9   | 963.1       | 336.1      | 200.8      | 81.7   | 33.3  | 10.4  | 2919  |
| 1998 | 0.2  | 81.6   | 467.8    | 304.9   | 381.5       | 442.1      | 104.4      | 70.9   | 30.5  | 23.7  | 1907  |
| 1999 | 2.5  | 57.3   | 566.1    | 579.7   | 190.2       | 168.2      | 175.1      | 59.8   | 12.3  | 7.2   | 1818  |
| 2000 | 0.0  | 43.9   | 125.6    | 721.1   | 396.9       | 114.6      | 84.1       | 58.9   | 19.0  | 7.6   | 1572  |
| 2001 | 0.0  | 13.3   | 432.3    | 340.9   | 852.5       | 310.7      | 92.7       | 70.1   | 26.0  | 4.1   | 2143  |
| 2002 | 0.0  | 3.7    | 80.3     | 450.8   | 184.2       | 389.3      | 96.3       | 38.3   | 18.8  | 16.4  | 1278  |
| 2003 | 0.0  | 6.2    | 124.1    | 203.4   | 543.2       | 125.2      | 224.6      | 64.8   | 16.0  | 9.6   | 1317  |
| 2004 | 0.0  | 3.5    | 121.6    | 182.1   | 182.5       | 333.7      | 96.8       | 137.7  | 37.5  | 16.8  | 1112  |
| 2005 | 0.0  | 7.2    | 20.7     | 209.9   | 89.3        | 88.8       | 108.4      | 59.7   | 34.1  | 11.8  | 630   |
| 2006 | 0.0  | 2.9    | 211.2    | 107.6   | 435.8       | 147.7      | 85.8       | 80.8   | 13.1  | 11.4  | 1096  |
| 2007 | 0.0  | 21.2   | 52.6     | 579.2   | 62.8        | 238.5      | 63.3       | 43.7   | 42.0  | 4.4   | 1108  |
| 2008 | 0.0  | 22.4   | 204.3    | 133.3   | 741.7       | 66.7       | 168.7      | 29.9   | 15.1  | 7.7   | 1390  |
| 2009 | 0.0  | 14.3   | 166.3    | 203.5   | 78.6        | 421.5      | 43.1       | 57.6   | 11.6  | 6.5   | 1003  |
| 2010 | 0.0  | 9.3    | 89.4     | 322.5   | 150.8       | 35.7       | 108.6      | 14.5   | 13.0  | 4.0   | 748   |
| 2011 | 0.0  | 24.5   | 88.8     | 146.6   | 286.9       | 74.5       | 41.9       | 34.0   | 2.1   | 2.3   | 702   |

Table B8b continued. Canadian commercial landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |       |       |          |          |            |            |                |                |        |          |       |  |
|------|-------|-------|----------|----------|------------|------------|----------------|----------------|--------|----------|-------|--|
| Year | 1     | 2     | 3        | 4        | 5          | 6          | 7              | 8              | 9      | 10+      | Total |  |
|      |       |       |          | 0        |            |            |                |                |        |          |       |  |
|      |       |       | Canadiar | n Commei | rcial Land | aings ivie | an vveigni     | t (kg) at A    | ge     |          |       |  |
| 1978 | 0.688 | 1.237 | 2.135    | 2.652    | 3.403      | 5.595      | 5.933          | 9.311          | 8.358  | 13.840 🗖 | 2.500 |  |
| 1979 | 1.299 | 1.474 | 1.530    | 3.264    | 4.182      | 5.543      | 8.908          | 10.535         | 9.766  | 14.313 🗖 | 2.669 |  |
| 1980 | 0.552 | 1.244 | 2.282    | 3.049    | 4.750      | 6.237      | 6.717          | 12.312         | 11.195 | 13.581   | 2.979 |  |
| 1981 | 0.831 | 1.275 | 2.072    | 3.197    | 4.727      | 6.553      | 7.996          | 9.118          | 10.138 | 16.498   | 3.492 |  |
| 1982 | 0.563 | 1.351 | 2.131    | 3.690    | 5.064      | 6.742      | 8.520          | 9.947          | 11.734 | 15.805 🏴 | 3.070 |  |
| 1983 | 0.912 | 1.386 | 2.117    | 3.097    | 4.784      | 6.114      | 7.979          | 10.126         | 11.443 | 13.292 🗖 | 3.427 |  |
| 1984 | 0.000 | 1.457 | 2.515    | 3.809    | 4.949      | 6.058      | 8.136          | 9.675          | 10.800 | 13.926 🗖 | 5.103 |  |
| 1985 | 0.649 | 1.312 | 1.824    | 3.252    | 4.527      | 5.950      | 7.653          | 9.219          | 10.438 | 13.934   | 2.396 |  |
| 1986 | 0.742 | 1.540 | 2.667    | 3.602    | 5.168      | 6.764      | 7.933          | 8.905          | 9.270  | 9.952 🗖  | 3.429 |  |
| 1987 | 0.614 | 1.491 | 2.452    | 4.043    | 5.588      | 7.231      | 8.956          | 9.697          | 11.682 | 15.420 🗖 | 2.473 |  |
| 1988 | 0.692 | 1.138 | 2.209    | 3.348    | 4.967      | 6.319      | 8.789          | 10.330         | 11.429 | 14.257 🍢 | 3.136 |  |
| 1989 | 0.802 | 1.159 | 1.994    | 3.738    | 5.233      | 6.410      | 7.050          | 10.005         | 11.041 | 14.282   | 3.723 |  |
| 1990 | 0.758 | 1.705 | 2.593    | 3.401    | 4.766      | 6.132      | 7.779          | 10.437         | 11.470 | 13.750   | 3.337 |  |
| 1991 | 0.814 | 1.576 | 2.487    | 3.216    | 4.154      | 5.545      | 7.413          | 9.761          | 9.621  | 14.288 🗖 | 3.457 |  |
| 1992 | 0.923 | 1.445 | 2.344    | 3.484    | 4.395      | 5.872      | 6.973          | 8.759          | 11.556 | 15.243 🗖 | 2.882 |  |
| 1993 | 0.795 | 1.443 | 2.167    | 2.878    | 4.263      | 5.508      | 6.646          | 8.523          | 8.829  | 11.902 🍢 | 3.153 |  |
| 1994 | 0.793 | 1.361 | 2.237    | 3.556    | 4.507      | 6.500      | 7.295          | 8.062          | 7.666  | 11.354   | 3.494 |  |
| 1995 | 0.435 | 1.334 | 2.250    | 3.430    | 5.214      | 6.480      | 10.218         | 10.055         | 10.251 | 13.004   | 3.194 |  |
| 1996 | 0.918 | 1.464 | 2.235    | 3.137    | 4.963      | 5.982      | 6.563          | 8.874          | 10.395 | 11.747 🗖 | 3.259 |  |
| 1997 | 0.907 | 1.457 | 2.123    | 3.017    | 3.938      | 5.492      | 7.621          | 8.567          | 11.644 | 10.833 🗖 | 3.338 |  |
| 1998 | 0.693 | 1.418 | 2.232    | 3.003    | 4.024      | 5.505      | 6.656          | 8.109          | 10.351 | 14.082   | 3.328 |  |
| 1999 | 0.590 | 1.383 | 2.151    | 3.275    | 3.938      | 5.928      | 6.770          | 8.084          | 11.187 | 15.055   | 3.044 |  |
| 2000 | 0.710 | 1.465 | 2.119    | 3.027    | 4.181      | 4.900      | 5.940          | 7.288          | 8.921  | 13.228   | 3.339 |  |
| 2001 | 0.000 | 1.507 | 2.331    | 3.001    | 4.007      | 5.085      | 5.128          | 7.857          | 9.344  | 14.642   | 3.502 |  |
| 2002 | 0.692 | 1.361 | 2.299    | 3.118    | 4.359      | 5.096      | 6.879          | 8.092          | 8.742  | 11.070   | 3.953 |  |
| 2003 | 0.000 | 1.326 | 2.227    | 2.801    | 3.835      | 4.397      | 5.686          | 7.063          | 7.698  | 8.664    | 3.710 |  |
| 2004 | 0.704 | 1.360 | 2.011    | 2.827    | 3.391      | 4.571      | 5.527          | 7.354          | 9.040  | 10.328   | 3.753 |  |
| 2005 | 0.000 | 1.248 | 1.676    | 2.517    | 3.766      | 4.842      | 5.215          | 7.114          | 8.407  | 9.796    | 3.539 |  |
| 2006 | 0.048 | 1.105 | 1.886    | 2.449    | 3.509      | 4.579      | 6.342          | 5.919          | 7.278  | 7.543    | 3.174 |  |
| 2007 | 0.175 | 1.236 | 1.825    | 2.459    | 3.264      | 4.226      | 6.321          | 7.007          | 7.008  | 10.101   | 2.916 |  |
| 2008 | 0.000 | 1.276 | 2.123    | 2.784    | 3.691      | 5.011      | 5.895          | 7.955          | 7.961  | 9.092    | 3.381 |  |
| 2009 | 0.000 | 1.144 | 1.908    | 3.000    | 3.4/4      | 4.588      | 5.781          | 6.846<br>6.075 | 10.220 | 10.840   | 3.348 |  |
| 2010 | 0.551 | 1.199 | 1.912    | 2.490    | 3.321      | 3.450      | 5.321<br>4.046 | 0.075          | 9.451  | 0.620    | 2.829 |  |
| 2011 | 0.348 | 1.242 | 1.779    | 2.373    | 3.32 I     | 4.401      | 4.210          | 0.108          | 10.038 | 9.029    | 2.912 |  |

Table B8b continued. Canadian commercial landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |      |              |          |              |               |              |              |              |              |       |              |
|------|------|--------------|----------|--------------|---------------|--------------|--------------|--------------|--------------|-------|--------------|
| Year | 1    | 2            | 3        | 4            | 5             | 6            | 7            | 8            | 9            | 10+   | Total        |
|      |      | 0            |          |              | L and allow a | - 14         | l            | A            |              |       |              |
|      |      | Cana         | adian Co | mmerciai     | Landing       | siviean      | Length (     | cm) at A     | ge           |       |              |
| 1978 | 39.5 | 48.1         | 58.4     | 62.6         | 67.9          | 79.7         | 80.5         | 97.1         | 93.2         | 110.9 | 60.7         |
| 1979 | 49.0 | 51.6         | 52.7     | 68.0         | 74.3          | 80.8         | 95.8         | 101.7        | 99.4         | 113.6 | 61.8         |
| 1980 | 36.7 | 48.9         | 59.8     | 66.3         | 77.1          | 83.9         | 86.3         | 106.9        | 103.4        | 110.7 | 63.1         |
| 1981 | 42.6 | 49.2         | 58.1     | 67.4         | 77.2          | 86.6         | 92.2         | 96.4         | 98.8         | 112.7 | 66.9         |
| 1982 | 36.8 | 49.9         | 58.1     | 70.3         | 78.6          | 86.8         | 94.3         | 98.6         | 105.4        | 116.3 | 62.8         |
| 1983 | 43.7 | 50.7         | 58.7     | 66.8         | 77.4          | 84.5         | 92.7         | 100.3        | 104.7        | 110.3 | 66.4         |
| 1984 | 0.0  | 52.1         | 62.5     | 72.0         | 78.3          | 84.2         | 92.8         | 98.5         | 102.5        | 111.2 | 77.7         |
| 1985 | 39.1 | 49.6         | 55.5     | 67.7         | 75.7          | 83.5         | 91.1         | 96.3         | 100.2        | 111.1 | 58.4         |
| 1986 | 40.8 | 52.6         | 63.6     | 70.5         | 79.2          | 86.8         | 92.3         | 95.9         | 96.4         | 99.6  | 67.7         |
| 1987 | 38.4 | 52.0         | 61.5     | 72.8         | 81.5          | 89.0         | 95.9         | 98.6         | 105.6        | 115.3 | 59.3         |
| 1988 | 39.8 | 47.7         | 59.6     | 68.6         | 78.2          | 85.0         | 95.8         | 101.1        | 104.6        | 112.8 | 64.7         |
| 1989 | 41.6 | 48.6         | 57.7     | 71.2         | 79.7          | 85.5         | 88.0         | 100.3        | 103.5        | 113.2 | 68.5         |
| 1990 | 41.0 | 54.3         | 62.9     | 68.7         | 77.0          | 83.5         | 91.1         | 101.8        | 105.1        | 111.7 | 67.2         |
| 1991 | 41.2 | 53.0         | 62.0     | 67.3         | 73.4          | 80.5         | 89.7         | 99.2         | 97.7         | 112.9 | 67.4         |
| 1992 | 43.7 | 51.6         | 60.5     | 69.2         | 74.8          | 82.8         | 87.3         | 94.3         | 104.6        | 115.7 | 62.4         |
| 1993 | 41.3 | 51.1         | 59.1     | 65.0         | 73.6          | 81.1         | 86.5         | 94.6         | 94.2         | 106.1 | 65.2         |
| 1994 | 42.9 | 50.1         | 59.5     | 69.7         | 75.2          | 85.0         | 89.2         | 91.8         | 89.4         | 103.9 | 67.8         |
| 1995 | 33.0 | 50.5         | 59.7     | 68.5         | 79.5          | 85.4         | 100.6        | 99.5         | 99.8         | 109.1 | 65.4         |
| 1996 | 43.9 | 51.2         | 59.2     | 66.5         | 77.5          | 83.2         | 84.8         | 93.4         | 100.7        | 105.9 | 66.3         |
| 1997 | 43.7 | 51.4         | 58.6     | 65.7         | 72.1          | 80.7         | 91.0         | 94.6         | 105.4        | 102.2 | 66.8         |
| 1998 | 40.0 | 50.7         | 59.3     | 65.4         | 72.5          | 80.9         | 86.3         | 92.4         | 101.1        | 111.8 | 66.3         |
| 1999 | 37.7 | 50.4         | 58.5     | 67.6         | 71.6          | 82.7         | 87.0         | 92.1         | 103.7        | 114.6 | 64.5         |
| 2000 | 40.0 | 51.3         | 58.4     | 65.6         | 73.1          | 76.9         | 82.3         | 88.2         | 94.6         | 109.1 | 66.9         |
| 2001 | 0.0  | 51.7         | 59.8     | 65.2         | 72.1          | 78.0         | 77.9         | 90.6         | 96.8         | 111.4 | 67.9         |
| 2002 | 40.0 | 49.8         | 59.3     | 66.0         | 74.2          | 78.1         | 86.6         | 90.9         | 93.7         | 101.0 | 70.7         |
| 2003 | 0.0  | 48.8         | 58.9     | 63.7         | 71.0          | 74.4         | 81.2         | 87.5         | 90.3         | 92.5  | 69.3         |
| 2004 | 40.1 | 49.8         | 56.9     | 64.1         | 67.9          | 75.1         | 80.3         | 88.6         | 95.0         | 99.3  | 69.0         |
| 2005 | 0.0  | 48.4         | 53.9     | 61.4         | 70.5          | 77.4         | 78.8         | 86.6         | 93.1         | 97.9  | 67.5         |
| 2006 | 16.0 | 46.0         | 55.7     | 60.8         | 68.7          | 75.4         | 84.8         | 82.9         | 89.2         | 90.2  | 65.3         |
| 2007 | 25.0 | 48.1         | 55.1     | 60.9         | 67.0          | 73.2         | 84.2         | 87.7         | 87.5         | 99.4  | 63.6         |
| 2008 | 0.0  | 49.0         | 58.2     | 63.7         | 70.0          | 77.0         | 82.1         | 91.1<br>00 F | 91.6         | 95.9  | 67.1         |
| 2009 | 0.0  | 40.9<br>47.0 | 50.2     | 00.J<br>61.2 | 00.J<br>67.6  | 15.2<br>69 E | 01.2<br>70.5 | 02.4         | 99.9<br>07.6 | 102.3 | 00.3         |
| 2010 | 31.0 | 47.9<br>78.3 | 50.Z     | 01.3<br>61 7 | 60.1          | 7/ /         | 79.0<br>72.0 | 00.1<br>83.3 | 0.18<br>00 1 | 06 /  | 00.2<br>63 6 |
| 2011 | 31.2 | 40.3         | 54.7     | 01.7         | 09.1          | /4.4         | 12.9         | 03.3         | 99.1         | 90.4  | 03.0         |

|      |      |             |         |      |     |      |         |           | Numbe | r of ler | igths sar | npled        |     |        |     |         |        |     |
|------|------|-------------|---------|------|-----|------|---------|-----------|-------|----------|-----------|--------------|-----|--------|-----|---------|--------|-----|
|      |      | <del></del> |         |      |     |      |         |           |       |          |           |              |     |        |     |         |        |     |
|      | Otte | r I rawl    | Large M | esh  |     | Otte | er Iraw | I Small I | vlesh | _        | Gill Net  | - Large Mesh | Lo  | ngline |     | Scallop | Dredge | 3   |
|      | West | /sne        | Ea      | st   | W   | est  | E       | ast       | SN    | E        |           | West         | V   | Vest   | W   | est     | Ea     | ist |
|      | Q12  | Q34         | Q12     | Q34  | Q12 | Q34  | Q12     | Q34       | Q12   | Q34      | Q12       | Q34          | Q12 | Q34    | Q12 | Q34     | Q12    | Q34 |
|      |      |             |         |      |     |      |         |           |       |          |           |              |     |        |     |         |        |     |
| 1989 | 1095 | 699         | 135     | 66   | 486 | 131  |         |           | 447   |          |           |              |     |        |     |         |        |     |
| 1990 | 776  | 399         | 285     | 63   |     | 18   |         |           | 200   |          |           |              |     |        |     |         |        |     |
| 1991 | 178  | 6           | 170     |      |     |      |         |           |       |          |           |              |     |        |     |         |        |     |
| 1992 | 46   | 160         | 202     | 327  | 2   |      |         |           |       |          |           |              | 627 |        |     |         |        |     |
| 1993 | 46   | 298         | 216     |      |     | 6    |         |           |       |          |           |              |     |        | 3   |         | 1      |     |
| 1994 | 70   | 1           | 149     | 4    |     |      |         |           |       |          |           | 16           |     |        | 21  | 25      | 2      |     |
| 1995 | 134  | 40          | 5       | 1    | 1   | 4    |         |           |       |          | 26        | 36           |     |        |     |         |        |     |
| 1996 | 35   | 7           | 10      |      |     |      |         |           | 1     |          | 37        | 8            |     |        | 1   | 3       |        |     |
| 1997 | 6    | 66          |         |      |     |      |         |           |       |          | 25        | 12           |     |        |     | 1       | 21     | 7   |
| 1998 | 9    | 2           | 1       | 5    |     |      |         |           |       |          | 29        | 45           |     |        | 3   | 21      | 25     |     |
| 1999 | 0    | 49          | 9       |      |     |      |         |           |       |          | 56        | 2            |     |        | 1   | 56      | 4      | 2   |
| 2000 | 42   | 10          | 9       | 9    | 1   | 7    | 7       |           |       |          | 59        | 110          |     |        |     | 8       |        |     |
| 2001 | 17   | 0           | 42      |      | 61  |      |         |           |       |          | 104       | 22           |     |        |     |         |        |     |
| 2002 | 69   | 598         | 52      | 40   | 2   | 358  | 10      | 5         |       |          | 32        |              |     | 28     |     | 7       |        |     |
| 2003 | 810  | 813         | 406     | 75   | 1   | 165  | 61      | 3         | 1     | 5        | 181       | 311          | 5   |        | 7   | 2       |        |     |
| 2004 | 396  | 1112        | 461     | 119  | 78  | 30   | 205     | 3         | 9     |          | 831       | 122          |     | 306    |     | 8       | 4      | 2   |
| 2005 | 6197 | 3370        | 1456    | 241  | 158 | 295  | 5       | 93        | 5     | 15       | 21        | 129          | 306 | 242    | 8   | 18      |        |     |
| 2006 | 2344 | 2472        | 717     | 17   | 15  | 2    | 16      |           |       | 1        | 44        | 70           | 34  | 65     | 22  | 17      | 5      | 2   |
| 2007 | 6015 | 4523        | 1622    | 176  | 11  | 17   | 6       |           |       |          | 15        | 55           |     | 34     | 19  | 29      |        | 1   |
| 2008 | 6058 | 4119        | 29      | 1161 | 19  | 13   |         | 4         | 3     |          | 159       | 317          | 53  | 178    | 15  | 3       | 6      | 1   |
| 2009 | 3926 | 998         | 380     | 1015 | 9   | 27   |         |           |       |          | 53        | 410          | 383 | 64     | 8   | 5       | 3      | 13  |
| 2010 | 3322 | 633         | 344     | 123  | 1   | 9    |         | 10        | 1     | 2        | 130       | 1176         | 72  | 273    | 28  | 13      | 2      |     |
| 2011 | 2866 | 2151        | 604     | 261  |     | 7    |         |           | 15    |          | 32        | 105          | 29  | 366    | 15  | 12      |        | 5   |

Table B9. Number of length samples, by gear of discarded Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1989-2011.

|      | Age |          |         |             |          |         |           |       |   |     |       |  |  |
|------|-----|----------|---------|-------------|----------|---------|-----------|-------|---|-----|-------|--|--|
| Year | 1   | 2        | 3       | 4           | 5        | 6       | 7         | 8     | 9 | 10+ | Total |  |  |
|      |     | <u>L</u> | JSA Com | nercial Dis | cards in | Numbers | (000's) a | t Age |   |     |       |  |  |
| 1978 | 112 | 49       | 90      | 7           | 6        | 0       | 0         | 0     | 0 | 0   | 264   |  |  |
| 1979 | 173 | 247      | 11      | 10          | 2        | 0       | 0         | 0     | 0 | 0   | 443   |  |  |
| 1980 | 178 | 278      | 55      | 2           | 0        | 0       | 0         | 0     | 0 | 0   | 513   |  |  |
| 1981 | 433 | 397      | 46      | 0           | 0        | 0       | 0         | 0     | 0 | 0   | 877   |  |  |
| 1982 | 154 | 507      | 40      | 15          | 0        | 0       | 0         | 0     | 0 | 0   | 717   |  |  |
| 1983 | 128 | 283      | 77      | 3           | 0        | 0       | 0         | 0     | 0 | 0   | 491   |  |  |
| 1984 | 43  | 66       | 8       | 0           | 0        | 0       | 0         | 0     | 0 | 0   | 117   |  |  |
| 1985 | 9   | 217      | 11      | 0           | 0        | 0       | 0         | 0     | 0 | 0   | 236   |  |  |
| 1986 | 330 | 126      | 26      | 13          | 0        | 0       | 0         | 0     | 0 | 0   | 495   |  |  |
| 1987 | 12  | 142      | 40      | 4           | 1        | 0       | 0         | 0     | 0 | 0   | 200   |  |  |
| 1988 | 57  | 154      | 53      | 6           | 0        | 0       | 0         | 0     | 0 | 0   | 270   |  |  |
| 1989 | 385 | 331      | 179     | 10          | 0        | 0       | 0         | 0     | 0 | 0   | 906   |  |  |
| 1990 | 25  | 359      | 108     | 11          | 4        | 0       | 0         | 0     | 0 | 0   | 507   |  |  |
| 1991 | 54  | 263      | 57      | 22          | 1        | 1       | 0         | 0     | 0 | 0   | 397   |  |  |
| 1992 | 14  | 465      | 23      | 7           | 1        | 0       | 0         | 0     | 0 | 0   | 509   |  |  |
| 1993 | 9   | 269      | 71      | 0           | 0        | 0       | 0         | 0     | 0 | 0   | 350   |  |  |
| 1994 | 6   | 64       | 41      | 5           | 0        | 0       | 0         | 0     | 0 | 0   | 116   |  |  |
| 1995 | 3   | 38       | 26      | 2           | 0        | 0       | 0         | 0     | 0 | 0   | 69    |  |  |
| 1996 | 7   | 20       | 18      | 6           | 0        | 0       | 0         | 0     | 0 | 0   | 51    |  |  |
| 1997 | 11  | 49       | 5       | 4           | 2        | 0       | 0         | 0     | 0 | 0   | 72    |  |  |
| 1998 | 6   | 23       | 13      | 2           | 1        | 1       | 0         | 0     | 0 | 0   | 46    |  |  |
| 1999 | 11  | 58       | 12      | 1           | 0        | 0       | 0         | 0     | 0 | 0   | 82    |  |  |
| 2000 | 14  | 90       | 15      | 5           | 0        | 0       | 0         | 0     | 0 | 0   | 124   |  |  |
| 2001 | 5   | 152      | 147     | 4           | 0        | 0       | 0         | 0     | 0 | 0   | 309   |  |  |
| 2002 | 3   | 14       | 67      | 17          | 3        | 0       | 0         | 0     | 0 | 0   | 104   |  |  |
| 2003 | 0   | 40       | 42      | 38          | 12       | 2       | 0         | 0     | 0 | 0   | 134   |  |  |
| 2004 | 19  | 16       | 47      | 6           | 4        | 2       | 0         | 0     | 0 | 0   | 96    |  |  |
| 2005 | 1   | 146      | 45      | 69          | 9        | 5       | 4         | 0     | 0 | 0   | 279   |  |  |
| 2006 | 5   | 18       | 105     | 12          | 21       | 2       | 0         | 0     | 0 | 0   | 164   |  |  |
| 2007 | 1   | 225      | 74      | 160         | 10       | 14      | 1         | 0     | 0 | 0   | 486   |  |  |
| 2008 | 9   | 124      | 87      | 15          | 7        | 0       | 0         | 0     | 0 | 0   | 242   |  |  |
| 2009 | 9   | 85       | 129     | 16          | 4        | 4       | 0         | 0     | 0 | 0   | 248   |  |  |
| 2010 | 6   | 78       | 73      | 21          | 3        | 0       | 1         | 0     | 0 | 0   | 183   |  |  |
| 2011 | 4   | 48       | 46      | 9           | 0        | 0       | 0         | 0     | 0 | 0   | 107   |  |  |
|      |     |          |         |             |          |         |           |       |   |     |       |  |  |

Table B10a. USA commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

Table B10a - continued. USA commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |     |     |     |          |               |            |           |        |        |        |       |
|------|-----|-----|-----|----------|---------------|------------|-----------|--------|--------|--------|-------|
| Year | 1   | 2   | 3   | 4        | 5             | 6          | 7         | 8      | 9      | 10+    | Total |
|      |     |     |     |          |               |            |           |        |        |        |       |
|      |     |     | 05  | SA Comme | rcial Discard | ds in Weig | ht (Tons) | at Age |        |        |       |
| 1978 | 65  | 45  | 97  | g        | 7             | 0          | 0         | 0      | 0      | 0      | 125   |
| 1979 | 114 | 262 | 13  | 12       | 2             | 0          | 0         | 0      | 0      | 0      | 403   |
| 1980 | 101 | 253 | 70  | 3        | 0             | 0          | 0         | 0      | 0      | Ő      | 426   |
| 1981 | 281 | 435 | 58  | 0        | 0             | 0          | 0         | 0      | 0      | Ő      | 775   |
| 1982 | 104 | 568 | 48  | 19       | 0             | 0          | 0         | 0      | 0      | 0      | 739   |
| 1983 | 87  | 313 | 88  | 4        | 0             | 0          | 0         | 0      | 0      | 0      | 492   |
| 1984 | 20  | 46  | 7   | 0        | 0             | 0          | 0         | 0      | 0      | 0      | 74    |
| 1985 | 4   | 243 | 15  | 0        | 0             | 0          | 0         | 0      | 0      | 0      | 262   |
| 1986 | 214 | 88  | 28  | 14       | 0             | 0          | 0         | 0      | 0      | 0      | 343   |
| 1987 | 7   | 140 | 47  | 4        | 1             | 0          | 0         | 0      | 0      | 0      | 200   |
| 1988 | 35  | 139 | 62  | 6        | 0             | 0          | 0         | 0      | 0      | 0      | 242   |
| 1989 | 164 | 277 | 164 | 20       | 1             | 1          | 0         | 0      | 0      | 0      | 628   |
| 1990 | 11  | 303 | 107 | 19       | 12            | 1          | 1         | 0      | 0      | 0      | 454   |
| 1991 | 30  | 238 | 58  | 28       | 2             | 2          | 0         | 0      | 0      | 0      | 358   |
| 1992 | 15  | 454 | 27  | 7        | 1             | 0          | 0         | 0      | 0      | 0      | 505   |
| 1993 | 4   | 215 | 66  | 0        | 0             | 0          | 0         | 0      | 0      | 0      | 284   |
| 1994 | 6   | 96  | 51  | 5        | 0             | 0          | 0         | 0      | 0      | 0      | 159   |
| 1995 | 3   | 50  | 29  | 2        | 0             | 0          | 0         | 0      | 0      | 0      | 84    |
| 1996 | 22  | 53  | 26  | 7        | 0             | 0          | 0         | 0      | 0      | 0      | 108   |
| 1997 | 25  | 47  | 8   | 11       | 7             | 1          | 0         | 0      | 0      | 0      | 100   |
| 1998 | 23  | 42  | 16  | 10       | 6             | 3          | 0         | 0      | 0      | 0      | 99    |
| 1999 | 12  | 61  | 11  | 1        | 0             | 0          | 0         | 0      | 0      | 0      | 86    |
| 2000 | 14  | 102 | 15  | 5        | 0             | 0          | 0         | 0      | 0      | 0      | 137   |
| 2001 | 5   | 144 | 152 | 5        | 0             | 0          | 0         | 0      | 0      | 0      | 306   |
| 2002 | 4   | 23  | 110 | 27       | 5             | 0          | 0         | 0      | 0      | 0      | 168   |
| 2003 | 0   | 60  | 69  | 65       | 26            | 5          | 2         | 0      | 0      | 0      | 229   |
| 2004 | 4   | 21  | 67  | 13       | 12            | 8          | 2         | 2      | 0      | 0      | 130   |
| 2005 | 0   | 129 | 58  | 141      | 30            | 18         | 16        | 1      | 0      | 0      | 395   |
| 2006 | 2   | 18  | 143 | 23       | 39            | 5          | 1         | 1      | 0      | 0      | 230   |
| 2007 | 0   | 257 | 104 | 295      | 26            | 38         | 4         | 2      | 1      | 0      | 727   |
| 2008 | 5   | 141 | 125 | 22       | 14            | 0          | 0         | 0      | 0      | 0      | 308   |
| 2009 | 6   | 106 | 204 | 39       | 12            | 16         | 1         | 1      | 0<br>0 | 0<br>0 | 384   |
| 2010 | 2   | 79  | 110 | 42       | 11            | 2          | 6         | 0      | Ũ      | 0<br>0 | 253   |
| 2011 | 1   | 45  | 62  | 14       | 1             | 0          | 0         | 0      | 0      | 0      | 122   |
| -    |     | -   | -   |          |               | -          | -         | -      | -      | -      |       |

Table B10a - continued. USA commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      | Age<br>(ear 1 2 3 4 5 6 7 8 9 10+ Mean |       |              |          |            |             |            |           |       |       |       |  |  |
|------|----------------------------------------|-------|--------------|----------|------------|-------------|------------|-----------|-------|-------|-------|--|--|
| Year | 1                                      | 2     | 3            | 4        | 5          | 6           | 7          | 8         | 9     | 10+   | Mean  |  |  |
|      |                                        |       |              |          |            |             |            |           |       |       |       |  |  |
|      |                                        |       | <u>USA C</u> | ommercia | al Discaro | is iviean v | /veight (K | g) at Age |       |       |       |  |  |
| 1978 | 0.577                                  | 0.927 | 1.076        | 1.386    | 1.111      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.845 |  |  |
| 1979 | 0.658                                  | 1.059 | 1.185        | 1.209    | 1.242      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.909 |  |  |
| 1980 | 0.567                                  | 0.910 | 1.276        | 1.484    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.832 |  |  |
| 1981 | 0.648                                  | 1.097 | 1.257        | 0.000    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.883 |  |  |
| 1982 | 0.675                                  | 1.119 | 1.184        | 1.261    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 1.030 |  |  |
| 1983 | 0.677                                  | 1.104 | 1.148        | 1.484    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 1.001 |  |  |
| 1984 | 0.474                                  | 0.699 | 0.835        | 1.484    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.627 |  |  |
| 1985 | 0.474                                  | 1.119 | 1.400        | 0.000    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 1.108 |  |  |
| 1986 | 0.648                                  | 0.694 | 1.049        | 1.059    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.692 |  |  |
| 1987 | 0.610                                  | 0.980 | 1.177        | 1.028    | 1.484      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 1.000 |  |  |
| 1988 | 0.615                                  | 0.900 | 1.178        | 1.093    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.898 |  |  |
| 1989 | 0.508                                  | 0.878 | 0.983        | 2.049    | 2.512      | 3.291       | 3.397      | 0.000     | 0.000 | 0.000 | 0.756 |  |  |
| 1990 | 0.523                                  | 0.935 | 1.035        | 1.761    | 3.440      | 3.963       | 4.196      | 5.729     | 0.000 | 0.000 | 0.975 |  |  |
| 1991 | 0.690                                  | 0.957 | 1.160        | 1.299    | 3.020      | 2.864       | 3.614      | 0.000     | 0.000 | 0.000 | 0.975 |  |  |
| 1992 | 0.633                                  | 0.869 | 1.104        | 1.053    | 1.352      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.877 |  |  |
| 1993 | 0.453                                  | 0.855 | 0.933        | 1.095    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.860 |  |  |
| 1994 | 0.432                                  | 0.896 | 1.048        | 1.074    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.933 |  |  |
| 1995 | 0.555                                  | 0.883 | 0.968        | 0.900    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.903 |  |  |
| 1996 | 0.560                                  | 0.930 | 1.045        | 1.030    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.930 |  |  |
| 1997 | 0.493                                  | 0.692 | 0.998        | 1.714    | 2.275      | 4.951       | 4.951      | 0.000     | 0.000 | 0.000 | 0.805 |  |  |
| 1998 | 0.341                                  | 0.838 | 0.961        | 2.990    | 4.236      | 4.539       | 4.951      | 3.458     | 0.000 | 0.000 | 1.026 |  |  |
| 1999 | 0.499                                  | 0.808 | 0.917        | 1.024    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.783 |  |  |
| 2000 | 0.546                                  | 0.887 | 0.997        | 1.007    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.866 |  |  |
| 2001 | 0.906                                  | 0.923 | 1.033        | 1.060    | 0.000      | 0.000       | 0.000      | 0.000     | 0.000 | 0.000 | 0.977 |  |  |
| 2002 | 0.614                                  | 0.896 | 1.272        | 1.393    | 1.386      | 1.999       | 0.000      | 0.000     | 0.000 | 0.000 | 1.225 |  |  |
| 2003 | 0.214                                  | 1.180 | 1.465        | 1.575    | 2.229      | 2.272       | 5.729      | 7.493     | 8.441 | 0.000 | 1.505 |  |  |
| 2004 | 0.194                                  | 1.138 | 1.373        | 2.215    | 2.844      | 4.172       | 5.703      | 8.493     | 8.272 | 9.518 | 1.310 |  |  |
| 2005 | 0.275                                  | 0.933 | 1.314        | 2.060    | 3.392      | 3.602       | 4.046      | 8.203     | 9.121 | 9.754 | 1.446 |  |  |
| 2006 | 0.390                                  | 1.047 | 1.390        | 1.832    | 1.894      | 2.665       | 4.557      | 5.653     | 6.436 | 8.582 | 1.440 |  |  |
| 2007 | 0.299                                  | 1.346 | 1.507        | 1.871    | 2.626      | 2.712       | 3.675      | 5.100     | 4.854 | 6.147 | 1.617 |  |  |
| 2008 | 0 602                                  | 1 287 | 1 466        | 1 459    | 2 189      | 2 263       | 3 872      | 0 000     | 0 000 | 0 000 | 1 362 |  |  |
| 2009 | 0.689                                  | 1.287 | 1.599        | 2.534    | 3.028      | 3.625       | 4.945      | 2.460     | 4,769 | 0.000 | 1,579 |  |  |
| 2010 | 0.432                                  | 1.104 | 1.539        | 2.077    | 3.473      | 3.544       | 4.657      | 0.000     | 2.684 | 0.000 | 1.441 |  |  |
| 2011 | 0.416                                  | 1.011 | 1.411        | 1.505    | 1.717      | 2.509       | 2.543      | 0.000     | 0.000 | 0.000 | 1.206 |  |  |
|      | _                                      |       |              | _        |            | -           | -          | -         |       |       | -     |  |  |

Table B10a - continued. USA commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |      |      |         |          |          |         |          |          |      |       |      |  |
|------|------|------|---------|----------|----------|---------|----------|----------|------|-------|------|--|
| Year | 1    | 2    | 3       | 4        | 5        | 6       | 7        | 8        | 9    | 10+   | Mean |  |
|      |      |      |         |          | D'       | N4      |          |          |      |       |      |  |
|      |      |      | USA Cor | nmerciai | Discards | Mean Le | engtn(cm | ) at Age |      |       |      |  |
| 1978 | 38.5 | 45.0 | 47.5    | 51.8     | 47.6     | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 43.3 |  |
| 1979 | 40.2 | 47.1 | 49.1    | 49.5     | 50.0     | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.6 |  |
| 1980 | 38.3 | 44.7 | 50.3    | 53.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 43.1 |  |
| 1981 | 40.0 | 47.7 | 50.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.0 |  |
| 1982 | 40.7 | 48.1 | 49.1    | 50.2     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 46.6 |  |
| 1983 | 40.6 | 47.8 | 48.5    | 53.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 46.0 |  |
| 1984 | 35.7 | 41.2 | 43.7    | 53.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 39.4 |  |
| 1985 | 36.1 | 48.1 | 52.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 47.8 |  |
| 1986 | 40.0 | 40.9 | 47.0    | 47.4     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 40.8 |  |
| 1987 | 38.9 | 45.8 | 49.0    | 47.0     | 53.0     | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 46.1 |  |
| 1988 | 39.3 | 44.3 | 48.9    | 47.6     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.2 |  |
| 1989 | 35.5 | 43.9 | 45.8    | 58.5     | 63.3     | 69.7    | 70.5     | 0.0      | 0.0  | 0.0   | 40.9 |  |
| 1990 | 36.6 | 44.6 | 46.3    | 54.5     | 70.4     | 74.3    | 76.0     | 86.0     | 0.0  | 0.0   | 45.0 |  |
| 1991 | 39.3 | 45.6 | 48.0    | 49.8     | 67.1     | 66.6    | 74.0     | 0.0      | 0.0  | 0.0   | 45.4 |  |
| 1992 | 38.8 | 44.1 | 48.4    | 47.6     | 52.1     | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.2 |  |
| 1993 | 34.6 | 43.5 | 45.4    | 50.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 43.6 |  |
| 1994 | 34.5 | 44.0 | 47.2    | 48.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.8 |  |
| 1995 | 37.2 | 43.7 | 45.8    | 45.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 44.3 |  |
| 1996 | 37.1 | 45.5 | 47.8    | 47.7     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 45.4 |  |
| 1997 | 35.2 | 41.1 | 46.5    | 52.7     | 58.4     | 80.0    | 80.0     | 0.0      | 0.0  | 0.0   | 41.9 |  |
| 1998 | 31.0 | 44.1 | 45.7    | 65.3     | 75.2     | 77.7    | 80.0     | 71.0     | 0.0  | 0.0   | 44.9 |  |
| 1999 | 36.0 | 43.0 | 45.0    | 47.0     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 42.4 |  |
| 2000 | 36.9 | 44.4 | 46.6    | 46.9     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 43.9 |  |
| 2001 | 44.0 | 44.8 | 47.5    | 48.1     | 0.0      | 0.0     | 0.0      | 0.0      | 0.0  | 0.0   | 46.1 |  |
| 2002 | 38.5 | 43.6 | 50.0    | 51.8     | 51.9     | 59.4    | 0.0      | 0.0      | 0.0  | 0.0   | 49.2 |  |
| 2003 | 27.5 | 47.8 | 52.2    | 53.5     | 59.8     | 59.6    | 83.2     | 91.9     | 96.4 | 0.0   | 52.1 |  |
| 2004 | 25.3 | 47.0 | 50.9    | 59.8     | 64.9     | 74.1    | 82.2     | 96.3     | 95.2 | 100.7 | 47.0 |  |
| 2005 | 30.0 | 43.8 | 50.2    | 58.2     | 69.4     | 70.6    | 73.0     | 94.3     | 97.8 | 100.1 | 50.1 |  |
| 2006 | 32.7 | 45.5 | 50.9    | 56.4     | 56.8     | 64.1    | 77.0     | 83.0     | 85.2 | 96.9  | 51.1 |  |
| 2007 | 30.9 | 49.9 | 52.5    | 56.4     | 62.9     | 63.4    | 71.0     | 80.1     | 79.1 | 86.0  | 53.1 |  |
| 2008 | 38.1 | 49.2 | 52.4    | 52.4     | 58.9     | 57.7    | 70.8     | 0.0      | 0.0  | 0.0   | 50.4 |  |
| 2009 | 39.5 | 49.0 | 53.7    | 61.8     | 65.8     | 70.3    | 79.3     | 61.8     | 80.0 | 0.0   | 52.6 |  |
| 2010 | 34.0 | 46.9 | 53.1    | 58.5     | 70.2     | 70.9    | 77.5     | 0.0      | 65.1 | 0.0   | 51.0 |  |
| 2011 | 33.6 | 45.3 | 51.6    | 53.3     | 55.3     | 64.8    | 65.0     | 0.0      | 0.0  | 0.0   | 48.3 |  |
|      |      |      |         |          |          |         |          |          |      |       |      |  |

|      |      |      |           |           | Age      | ;          |            |          |     |     |       |
|------|------|------|-----------|-----------|----------|------------|------------|----------|-----|-----|-------|
| Year | 1    | 2    | 3         | 4         | 5        | 6          | 7          | 8        | 9   | 10+ | Total |
|      |      | -    |           |           |          |            | (000)      |          |     |     |       |
|      |      | Ca   | inadian C | ommercial | Discards | s in Numbe | ers (000's | ) at Age |     |     |       |
| 1978 | 6.9  | 0.2  | 19.5      | 3.2       | 2.4      | 0.6        | 2.2        | 0.1      | 0.1 | 0.1 | 35    |
| 1979 | 8.5  | 13.0 | 1.0       | 12.7      | 3.5      | 1.0        | 0.5        | 0.6      | 0.1 | 0.0 | 41    |
| 1980 | 5.6  | 8.5  | 9.9       | 0.6       | 6.2      | 1.1        | 0.3        | 0.3      | 0.1 | 0.1 | 33    |
| 1981 | 22.5 | 12.6 | 13.2      | 5.6       | 0.2      | 1.7        | 0.7        | 0.2      | 0.0 | 0.4 | 57    |
| 1982 | 8.2  | 12.4 | 4.5       | 4.3       | 2.6      | 0.0        | 1.2        | 0.3      | 0.0 | 0.0 | 34    |
| 1983 | 1.6  | 7.0  | 13.9      | 1.9       | 1.3      | 0.7        | 0.2        | 0.4      | 0.0 | 0.2 | 27    |
| 1984 | 9.3  | 1.5  | 5.9       | 8.5       | 0.8      | 1.6        | 0.6        | 0.1      | 0.8 | 0.0 | 29    |
| 1985 | 5.5  | 30.0 | 5.5       | 2.6       | 3.1      | 0.9        | 0.4        | 0.4      | 0.2 | 0.5 | 49    |
| 1986 | 29.6 | 4.3  | 6.4       | 0.7       | 1.2      | 1.2        | 0.2        | 0.2      | 0.3 | 0.0 | 44    |
| 1987 | 2.0  | 20.5 | 4.2       | 5.1       | 0.4      | 0.7        | 0.9        | 0.3      | 0.2 | 0.2 | 35    |
| 1988 | 4.3  | 2.2  | 20.1      | 2.3       | 3.3      | 0.2        | 0.3        | 0.6      | 0.1 | 0.1 | 33    |
| 1989 | 3.6  | 12.9 | 3.2       | 9.7       | 1.4      | 1.6        | 0.3        | 0.2      | 0.3 | 0.3 | 33    |
| 1990 | 2.3  | 3.4  | 9.2       | 2.6       | 4.1      | 0.6        | 0.8        | 0.2      | 0.1 | 0.2 | 23    |
| 1991 | 12.0 | 5.7  | 6.4       | 3.6       | 3.0      | 1.7        | 0.2        | 0.2      | 0.0 | 0.2 | 33    |
| 1992 | 4.1  | 18.3 | 5.6       | 0.9       | 2.4      | 1.3        | 0.9        | 0.2      | 0.2 | 0.0 | 34    |
| 1993 | 2.9  | 5.6  | 11.8      | 2.3       | 0.6      | 1.5        | 0.5        | 0.5      | 0.2 | 0.1 | 26    |
| 1994 | 1.8  | 7.3  | 6.1       | 6.9       | 1.7      | 0.8        | 1.2        | 0.1      | 0.3 | 0.0 | 26    |
| 1995 | 0.5  | 2.1  | 6.7       | 2.5       | 2.2      | 0.6        | 0.4        | 0.1      | 0.1 | 0.0 | 15    |
| 1996 | 3.6  | 1.8  | 7.0       | 8.7       | 1.8      | 1.2        | 0.3        | 0.1      | 0.1 | 0.0 | 25    |
| 1997 | 3.1  | 28.6 | 34.8      | 49.6      | 44.9     | 8.2        | 2.8        | 1.1      | 0.3 | 0.1 | 174   |
| 1998 | 2.8  | 27.8 | 61.3      | 23.3      | 19.1     | 10.6       | 1.3        | 1.2      | 0.1 | 0.1 | 148   |
| 1999 | 2.1  | 14.0 | 71.5      | 37.4      | 11.1     | 4.6        | 3.0        | 0.7      | 0.2 | 0.1 | 145   |
| 2000 | 1.9  | 8.3  | 4.9       | 9.7       | 4.2      | 1.0        | 0.4        | 0.2      | 0.0 | 0.0 | 31    |
| 2001 | 3.2  | 5.5  | 24.6      | 4.2       | 11.4     | 3.6        | 1.4        | 0.7      | 0.7 | 0.2 | 56    |
| 2002 | 0.4  | 3.2  | 6.1       | 18.4      | 2.6      | 3.7        | 1.0        | 0.2      | 0.1 | 0.1 | 36    |
| 2003 | 0.0  | 5.2  | 21.2      | 22.5      | 18.9     | 2.6        | 3.4        | 0.6      | 0.1 | 0.0 | 74    |
| 2004 | 19.0 | 4.4  | 23.4      | 12.5      | 9.6      | 6.8        | 0.9        | 1.3      | 0.2 | 0.0 | 78    |
| 2005 | 0.6  | 18.2 | 15.6      | 55.1      | 9.0      | 4.9        | 4.8        | 1.0      | 0.4 | 0.0 | 110   |
| 2006 | 2.0  | 16.0 | 74.8      | 20.9      | 39.4     | 7.1        | 1.9        | 1.8      | 0.2 | 0.2 | 164   |
| 2007 | 0.1  | 13.6 | 13.2      | 44.7      | 3.5      | 3.2        | 0.2        | 0.1      | 0.1 | 0.0 | 79    |
| 2008 | 0.9  | 12.8 | 12.1      | 5.0       | 19.6     | 1.3        | 3.1        | 0.4      | 0.2 | 0.1 | 55    |
| 2009 | 0.5  | 10.2 | 34.5      | 17.6      | 4.9      | 16.9       | 1.2        | 1.1      | 0.1 | 0.1 | 87    |
| 2010 | 1.2  | 5.8  | 10.8      | 20.8      | 6.0      | 1.4        | 1.4        | 0.1      | 0.0 | 0.0 | 48    |
| 2011 | 4.2  | 13.3 | 7.8       | 4.2       | 3.5      | 0.6        | 0.2        | 0.2      | 0.0 | 0.0 | 34    |

Table B10b. Canadian commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

Table B10b continued. Canadian commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      |      |            |              |              | Age         | ;           |            |         |     |     |          |
|------|------|------------|--------------|--------------|-------------|-------------|------------|---------|-----|-----|----------|
| Year | 1    | 2          | 3            | 4            | 5           | 6           | 7          | 8       | 9   | 10+ | Total    |
|      |      |            | Concilion    | Commoro      | ial Diagona | la in Maia  | ht (Tono)  | ot A co |     |     |          |
|      |      |            | Canadian     | Commerc      | iai Discarc | is in weig  | nt (Tons)  | al Age  |     |     |          |
| 1978 | 2.7  | 0.4        | 44.3         | 11.8         | 12.3        | 4.2         | 18.2       | 1.3     | 1.0 | 1.4 | 98       |
| 1979 | 3.1  | 16.5       | 2.1          | 45.7         | 16.6        | 5.8         | 5.1        | 7.0     | 0.8 | 0.0 | 103      |
| 1980 | 2.0  | 8.1        | 22.1         | 2.1          | 33.8        | 7.2         | 1.9        | 3.4     | 0.9 | 1.6 | 83       |
| 1981 | 6.2  | 17.1       | 28.7         | 19.7         | 1.3         | 12.2        | 5.5        | 2.6     | 0.0 | 4.5 | 98       |
| 1982 | 4.5  | 18.4       | 10.5         | 14.1         | 10.7        | 0.0         | 10.3       | 2.4     | 0.4 | 0.0 | 71       |
| 1983 | 0.7  | 9.3        | 33.2         | 4.7          | 4.5         | 4.4         | 1.8        | 3.4     | 0.0 | 3.6 | 65       |
| 1984 | 2.2  | 1.3        | 14.6         | 27.3         | 2.5         | 6.8         | 3.4        | 1.3     | 8.9 | 0.0 | 68       |
| 1985 | 2.3  | 41.0       | 14.3         | 9.4          | 12.3        | 5.7         | 3.8        | 4.2     | 2.3 | 7.0 | 102      |
| 1986 | 13.2 | 3.8        | 12.3         | 2.3          | 6.0         | 6.9         | 1.7        | 1.6     | 2.7 | 0.2 | 51       |
| 1987 | 0.5  | 29.5       | 9.1          | 14.3         | 2.4         | 5.1         | 6.8        | 2.1     | 2.0 | 4.4 | 76       |
| 1988 | 1.4  | 2.3        | 41.7         | 7.7          | 16.9        | 1.5         | 2.6        | 7.0     | 1.0 | 1.1 | 83       |
| 1989 | 1.3  | 14.9       | 6.2          | 27.6         | 5.2         | 10.7        | 2.3        | 1.5     | 3.3 | 3.3 | 76       |
| 1990 | 1.0  | 4.1        | 21.4         | 8.2          | 19.3        | 3.7         | 6.5        | 1.8     | 0.8 | 3.6 | 70       |
| 1991 | 4.1  | 8.2        | 14.1         | 11.5         | 11.0        | 8.2         | 1.5        | 2.2     | 0.3 | 3.4 | 65       |
| 1992 | 2.2  | 23.4       | 11.8         | 2.4          | 10.8        | 8.6         | 6.9        | 1.8     | 2.6 | 0.7 | 71       |
| 1993 | 1.1  | 6.2        | 25.0         | 7.1          | 3.1         | 9.4         | 4.0        | 3.4     | 2.0 | 1.3 | 63       |
| 1994 | 0.5  | 6.2        | 11.3         | 20.8         | 6.6         | 4.3         | 7.0        | 1.3     | 3.9 | 0.7 | 63       |
| 1995 | 0.1  | 2.4        | 13.0         | 6.6          | 8.3         | 2.4         | 2.4        | 0.8     | 1.4 | 0.8 | 38       |
| 1996 | 1.3  | 2.2        | 12.5         | 23.1         | 6.4         | 6.4         | 1.5        | 0.8     | 1.0 | 0.4 | 56       |
| 1997 | 1.6  | 40.6       | 72.2         | 136.5        | 160.8       | 41.4        | 19.3       | 9.0     | 2.9 | 1.5 | 486      |
| 1998 | 2.2  | 36.4       | 124.9        | 62.3         | 68.5        | 51.6        | 8.1        | 8.2     | 1.2 | 1.5 | 365      |
| 1999 | 1.1  | 18.0       | 134.2        | 100.7        | 33.4        | 22.2        | 18.3       | 5.8     | 2.4 | 1.7 | 338      |
| 2000 | 1.1  | 10.5       | 8.7          | 26.1         | 14.0        | 3.6         | 2.8        | 1.9     | 0.1 | 0.3 | 69       |
| 2001 | 0.7  | 5.4        | 41.0         | 14.1         | 41.8        | 17.4        | 8.7        | 6.3     | 5.8 | 1.9 | 143      |
| 2002 | 0.1  | 3.3        | 9.3          | 47.3         | 9.1         | 15.4        | 5.0        | 2.1     | 0.8 | 1.3 | 94       |
| 2003 | 0.0  | 6.2        | 47.4         | 62.0         | 56.1        | 7.9         | 15.8       | 3.7     | 0.7 | 0.0 | 200      |
| 2004 | 4.4  | 4.3        | 37.7         | 30.2         | 29.6        | 25.0        | 4.0        | 8.0     | 1.7 | 0.5 | 145      |
| 2005 | 0.1  | 13.4       | 22.4         | 117.0        | 27.3        | 19.8        | 20.1       | 5.1     | 2.8 | 0.4 | 228      |
| 2006 | 0.2  | 8.3        | 124.0        | 44.6         | 119.0       | 28.5        | 11.3       | 10.1    | 1.4 | 1.5 | 349      |
| 2007 | 0.0  | 9.1        | 13.8         | /2.8         | 7.3         | 9.1         | 0.9        | 0.4     | 0.3 | 0.0 | 114      |
| 2008 | 0.1  | 9.8        | 20.4         | 11.9         | 67.6        | 6.3<br>00 F | 18.2       | 2.9     | 1.4 | 0.8 | 139      |
| 2009 | 0.1  | /.ð<br>೯1  | 54.8<br>16.6 | 44.ð<br>⊿2.2 | 14.7        | 09.5<br>1 1 | 0.U<br>5.6 | 1.1     | 1.1 | 0.7 | 207      |
| 2010 | 0.5  | 9.1<br>8.7 | 10.0         | 40.Z<br>g g  | 10.3<br>Q / | 4.1<br>21   | 0.0        | 0.5     | 0.2 | 0.0 | 92<br>10 |
| 2011 | 1.1  | 0.7        | 10.1         | 0.0          | 5.7         | 2.1         | 0.0        | 1.4     | 0.1 | 0.0 | 72       |
|      |      |            |              |              |             |             |            |         |     |     |          |

Table B10b continued. Canadian commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |       |          |          |          |             |         |           |           |        |        |       |  |
|------|-------|----------|----------|----------|-------------|---------|-----------|-----------|--------|--------|-------|--|
| Year | 1     | 2        | 3        | 4        | 5           | 6       | 7         | 8         | 9      | 10+    | Mean  |  |
|      |       |          |          | •        |             |         |           | <b>.</b>  |        |        |       |  |
|      |       | <u>(</u> | Canadian | Commerci | ial Discard | ds Mean | Weight (k | g) at Age |        |        |       |  |
| 1978 | 0 391 | 1 641    | 2 275    | 3 689    | 5 209       | 6 783   | 8 445     | 8 985     | 10 222 | 14 998 | 2 765 |  |
| 1979 | 0.362 | 1 276    | 2 022    | 3 603    | 4 811       | 5 776   | 10 371    | 10 937    | 10 799 | 0.000  | 2 516 |  |
| 1980 | 0.360 | 0.960    | 2.220    | 3.667    | 5.457       | 6.502   | 5.894     | 12.954    | 11.735 | 13.451 | 2.546 |  |
| 1981 | 0.274 | 1.354    | 2.181    | 3.542    | 5.333       | 7.018   | 8.205     | 12.670    | 0.000  | 12.401 | 1.711 |  |
| 1982 | 0.550 | 1.489    | 2.328    | 3.263    | 4.163       | 0.000   | 8.340     | 8.842     | 10.764 | 0.000  | 2.128 |  |
| 1983 | 0.413 | 1.324    | 2.385    | 2.491    | 3.300       | 5.952   | 8.174     | 7.476     | 0.000  | 16.207 | 2.387 |  |
| 1984 | 0.242 | 0.916    | 2.483    | 3.206    | 3.070       | 4.394   | 5.931     | 8.985     | 10.471 | 0.000  | 2.352 |  |
| 1985 | 0.418 | 1.367    | 2.615    | 3.662    | 3.933       | 6.458   | 8.786     | 9.867     | 14.048 | 15.347 | 2.086 |  |
| 1986 | 0.445 | 0.893    | 1.942    | 3.217    | 4.920       | 5.733   | 7.439     | 8.988     | 10.684 | 18.000 | 1.153 |  |
| 1987 | 0.260 | 1.440    | 2.188    | 2.817    | 5.672       | 7.487   | 7.480     | 6.659     | 10.100 | 20.219 | 2.209 |  |
| 1988 | 0.323 | 1.057    | 2.077    | 3.371    | 5.062       | 6.268   | 9.325     | 11.369    | 11.973 | 17.117 | 2.484 |  |
| 1989 | 0.360 | 1.157    | 1.938    | 2.837    | 3.818       | 6.597   | 7.615     | 7.813     | 11.320 | 12.723 | 2.279 |  |
| 1990 | 0.446 | 1.193    | 2.316    | 3.158    | 4.731       | 5.903   | 8.589     | 10.114    | 13.493 | 16.278 | 2.997 |  |
| 1991 | 0.343 | 1.441    | 2.208    | 3.151    | 3.614       | 4.895   | 7.544     | 10.059    | 9.973  | 14.584 | 1.946 |  |
| 1992 | 0.548 | 1.279    | 2.088    | 2.672    | 4.476       | 6.379   | 7.420     | 8.474     | 11.803 | 19.671 | 2.091 |  |
| 1993 | 0.365 | 1.110    | 2.117    | 3.137    | 5.101       | 6.191   | 8.169     | 7.289     | 9.450  | 11.783 | 2.412 |  |
| 1994 | 0.278 | 0.853    | 1.866    | 2.993    | 3.786       | 5.528   | 5.710     | 8.661     | 11.246 | 17.373 | 2.374 |  |
| 1995 | 0.159 | 1.109    | 1.938    | 2.628    | 3.757       | 4.056   | 6.801     | 7.920     | 11.753 | 16.693 | 2.500 |  |
| 1996 | 0.369 | 1.223    | 1.782    | 2.667    | 3.642       | 5.412   | 4.294     | 12.028    | 11.920 | 15.163 | 2.264 |  |
| 1997 | 0.519 | 1.421    | 2.074    | 2.751    | 3.578       | 5.052   | 6.798     | 8.328     | 11.495 | 12.537 | 2.799 |  |
| 1998 | 0.794 | 1.309    | 2.037    | 2.673    | 3.591       | 4.854   | 6.070     | 7.125     | 9.531  | 12.366 | 2.471 |  |
| 1999 | 0.525 | 1.285    | 1.875    | 2.692    | 3.025       | 4.807   | 6.110     | 8.327     | 9.672  | 15.349 | 2.333 |  |
| 2000 | 0.584 | 1.271    | 1.785    | 2.700    | 3.322       | 3.676   | 6.397     | 7.722     | 11.523 | 13.972 | 2.257 |  |
| 2001 | 0.208 | 0.978    | 1.668    | 3.334    | 3.674       | 4.802   | 6.142     | 8.514     | 8.022  | 10.533 | 2.574 |  |
| 2002 | 0.338 | 1.020    | 1.542    | 2.574    | 3.500       | 4.114   | 4.899     | 8.436     | 10.001 | 12.169 | 2.618 |  |
| 2003 | 0.000 | 1.190    | 2.231    | 2.752    | 2.971       | 3.065   | 4.692     | 6.014     | 7.661  | 0.000  | 2.682 |  |
| 2004 | 0.230 | 0.979    | 1.612    | 2.411    | 3.085       | 3.666   | 4.207     | 6.085     | 8.596  | 11.353 | 1.857 |  |
| 2005 | 0.114 | 0.737    | 1.437    | 2.122    | 3.026       | 4.090   | 4.212     | 5.071     | 7.578  | 7.752  | 2.084 |  |
| 2006 | 0.086 | 0.518    | 1.658    | 2.135    | 3.023       | 4.003   | 5.879     | 5.605     | 6.516  | 8.008  | 2.124 |  |
| 2007 | 0.161 | 0.669    | 1.042    | 1.628    | 2.080       | 2.821   | 4.670     | 6.636     | 5.277  | 0.000  | 1.444 |  |
| 2008 | 0.130 | 0.765    | 1.679    | 2.363    | 3.452       | 4.999   | 5.928     | 7.543     | 1.758  | 8.682  | 2.514 |  |
| 2009 | 0.191 | 0.764    | 1.590    | 2.551    | 3.009       | 4.123   | 5.041     | 6.413     | 9.700  | 11.622 | 2.377 |  |
| 2010 | 0.418 | 0.655    | 1.039    | 2.077    | 2.099       | 2.892   | 4.080     | 4.200     | 0.413  | 1.901  | 1.935 |  |
| 2011 | 0.254 | 0.000    | 1.302    | 1.970    | 2.703       | 3.705   | 3.404     | 5.002     | 1.581  | 9.330  | 1.231 |  |

Table B10b continued. Canadian commercial discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age  |      |      |           |           |            |          |           |           |       |       |      |  |
|------|------|------|-----------|-----------|------------|----------|-----------|-----------|-------|-------|------|--|
| Year | 1    | 2    | 3         | 4         | 5          | 6        | 7         | 8         | 9     | 10+   | Mean |  |
|      |      |      |           |           |            |          |           |           |       |       |      |  |
|      |      | C    | anadian C | Commercia | al Discard | s Mean L | ength (cr | n) at Age |       |       |      |  |
| 1978 | 34.5 | 54 9 | 60.7      | 71.5      | 80.6       | 87.3     | 94 6      | 97.0      | 101 2 | 115.0 | 60.8 |  |
| 1979 | 33.2 | 50.1 | 58.7      | 70.8      | 78.3       | 83.0     | 100.9     | 103.3     | 100.0 | 0.0   | 58.0 |  |
| 1980 | 33.9 | 45.6 | 60.5      | 70.6      | 81.8       | 86.8     | 83.6      | 106.2     | 106.0 | 110.9 | 58.1 |  |
| 1981 | 30.0 | 51.2 | 60.1      | 70.8      | 80.8       | 89.1     | 94.1      | 108.7     | 0.0   | 104.5 | 49.1 |  |
| 1982 | 38.7 | 53.0 | 61.8      | 69.0      | 75.1       | 0.0      | 93.8      | 96.5      | 103.0 | 0.0   | 56.3 |  |
| 1983 | 34.3 | 51.2 | 61.7      | 63.0      | 69.3       | 84.4     | 94.0      | 89.9      | 0.0   | 118.0 | 59.7 |  |
| 1984 | 29.4 | 44.5 | 62.6      | 67.9      | 67.3       | 76.1     | 84.5      | 97.0      | 101.8 | 0.0   | 55.3 |  |
| 1985 | 35.5 | 51.5 | 63.6      | 71.3      | 73.5       | 86.1     | 96.3      | 100.1     | 112.5 | 114.4 | 55.7 |  |
| 1986 | 36.0 | 44.5 | 58.1      | 68.9      | 81.2       | 85.2     | 97.6      | 97.0      | 108.3 | 118.0 | 44.1 |  |
| 1987 | 30.4 | 52.1 | 61.4      | 68.6      | 82.0       | 90.1     | 92.8      | 97.5      | 100.4 | 121.2 | 57.7 |  |
| 1988 | 31.3 | 45.6 | 59.4      | 68.8      | 77.0       | 79.1     | 96.7      | 103.5     | 103.5 | 120.6 | 58.8 |  |
| 1989 | 32.6 | 48.1 | 58.1      | 65.7      | 71.1       | 83.6     | 88.2      | 96.4      | 105.2 | 107.5 | 56.7 |  |
| 1990 | 35.8 | 49.2 | 60.7      | 67.2      | 75.9       | 83.6     | 92.5      | 98.0      | 106.0 | 111.1 | 62.5 |  |
| 1991 | 32.4 | 52.0 | 60.5      | 65.3      | 68.9       | 78.6     | 90.8      | 98.5      | 94.8  | 116.6 | 51.9 |  |
| 1992 | 37.0 | 49.7 | 59.4      | 64.1      | 75.2       | 84.7     | 88.2      | 92.0      | 100.9 | 119.6 | 55.1 |  |
| 1993 | 33.8 | 48.0 | 58.7      | 67.6      | 79.8       | 84.3     | 91.1      | 90.7      | 95.0  | 103.5 | 58.1 |  |
| 1994 | 29.1 | 43.6 | 56.7      | 66.4      | 71.0       | 80.3     | 81.0      | 98.4      | 101.1 | 132.6 | 57.5 |  |
| 1995 | 24.3 | 47.0 | 57.6      | 64.7      | 72.8       | 73.5     | 87.1      | 86.5      | 105.4 | 109.6 | 60.5 |  |
| 1996 | 33.3 | 49.3 | 55.7      | 63.7      | 69.3       | 81.1     | 73.5      | 100.8     | 102.7 | 109.3 | 57.5 |  |
| 1997 | 36.9 | 51.1 | 58.2      | 63.9      | 70.0       | 78.3     | 87.5      | 93.0      | 104.5 | 105.9 | 63.1 |  |
| 1998 | 42.9 | 49.2 | 57.8      | 63.3      | 70.1       | 77.6     | 84.1      | 89.0      | 97.8  | 104.7 | 60.3 |  |
| 1999 | 36.1 | 49.2 | 56.2      | 63.8      | 66.4       | 77.6     | 84.2      | 92.1      | 97.8  | 114.0 | 59.5 |  |
| 2000 | 37.3 | 49.6 | 55.4      | 64.2      | 68.7       | 70.1     | 86.0      | 93.7      | 101.6 | 108.4 | 58.6 |  |
| 2001 | 28.4 | 46.1 | 54.7      | 68.6      | 72.2       | 78.7     | 85.4      | 94.4      | 93.4  | 99.3  | 60.5 |  |
| 2002 | 32.1 | 45.3 | 53.4      | 62.9      | 70.7       | 74.9     | 80.1      | 93.4      | 98.5  | 103.9 | 62.1 |  |
| 2003 | 0.0  | 46.4 | 60.8      | 63.9      | 67.2       | 67.3     | 79.6      | 84.5      | 91.8  | 0.0   | 63.6 |  |
| 2004 | 24.6 | 44.3 | 52.7      | 61.2      | 66.7       | 70.7     | 73.9      | 84.3      | 94.6  | 100.5 | 51.0 |  |
| 2005 | 22.1 | 40.2 | 51.1      | 58.5      | 66.1       | 73.8     | 73.7      | 77.8      | 89.5  | 91.2  | 56.5 |  |
| 2006 | 22.0 | 35.7 | 52.9      | 57.7      | 65.5       | 71.9     | 82.2      | 81.1      | 86.2  | 91.7  | 56.0 |  |
| 2007 | 24.2 | 40.1 | 46.9      | 54.2      | 58.6       | 64.9     | 77.1      | 87.1      | 80.7  | 0.0   | 51.2 |  |
| 2008 | 22.1 | 40.8 | 53.9      | 60.2      | 68.6       | 77.3     | 82.5      | 90.0      | 91.2  | 95.0  | 58.7 |  |
| 2009 | 25.8 | 40.9 | 53.2      | 62.1      | 65.6       | 73.0     | 77.9      | 85.1      | 99.0  | 104.6 | 58.8 |  |
| 2010 | 33.6 | 43.7 | 52.9      | 58.6      | 64.0       | 65.7     | 73.8      | 74.4      | 84.9  | 92.0  | 56.2 |  |
| 2011 | 28.2 | 39.0 | 49.6      | 56.8      | 63.4       | 70.8     | 68.8      | 79.0      | 91.3  | 97.3  | 45.8 |  |
|      |      |      |           |           |            |          |           |           |       |       |      |  |

|      |       |          |           |             | Age        |         |           |        |      |      |       |
|------|-------|----------|-----------|-------------|------------|---------|-----------|--------|------|------|-------|
| Year | 1     | 2        | 3         | 4           | 5          | 6       | 7         | 8      | 9    | 10+  | Total |
|      |       |          |           |             |            |         | (0.0.01.) |        |      |      |       |
|      |       | <u>L</u> | JSA Recre | eational La | andings in | Numbers | (000's) a | at Age |      |      |       |
| 1978 |       |          |           |             |            |         |           |        |      |      |       |
| 1979 |       |          |           |             |            |         |           |        |      |      |       |
| 1980 |       |          |           |             |            |         |           |        |      |      |       |
| 1981 | 184.7 | 428.9    | 539.3     | 309.9       | 19.2       | 170.2   | 44.0      | 23.5   | 0.0  | 22.5 | 1742  |
| 1982 | 67.7  | 434.9    | 367.5     | 308.9       | 232.3      | 9.4     | 70.2      | 13.1   | 2.9  | 1.2  | 1508  |
| 1983 | 139.0 | 495.6    | 645.7     | 148.2       | 124.5      | 75.9    | 7.1       | 38.0   | 0.0  | 28.0 | 1702  |
| 1984 | 30.9  | 65.2     | 108.8     | 140.3       | 41.0       | 40.0    | 14.2      | 0.2    | 18.0 | 1.3  | 460   |
| 1985 | 49.5  | 861.9    | 209.9     | 278.7       | 333.0      | 62.2    | 40.9      | 38.0   | 8.1  | 30.0 | 1912  |
| 1986 | 48.2  | 26.0     | 114.9     | 20.6        | 32.2       | 38.2    | 4.1       | 6.7    | 5.6  | 1.7  | 298   |
| 1987 | 1.7   | 237.6    | 57.0      | 110.4       | 9.0        | 23.5    | 19.4      | 2.1    | 3.4  | 2.0  | 466   |
| 1988 | 13.9  | 130.2    | 728.3     | 89.9        | 145.3      | 11.5    | 8.8       | 15.7   | 0.0  | 0.0  | 1144  |
| 1989 | 0.0   | 73.1     | 74.5      | 174.3       | 24.7       | 32.8    | 5.2       | 3.7    | 5.2  | 4.2  | 398   |
| 1990 | 0.0   | 52.1     | 205.7     | 75.0        | 95.5       | 13.2    | 14.1      | 1.2    | 1.5  | 2.0  | 460   |
| 1991 | 0.0   | 47.8     | 131.6     | 97.6        | 55.6       | 34.9    | 5.7       | 4.4    | 0.0  | 0.0  | 378   |
| 1992 | 0.4   | 64.6     | 56.3      | 20.4        | 29.9       | 15.8    | 14.8      | 2.0    | 2.1  | 0.0  | 206   |
| 1993 | 0.0   | 40.6     | 517.6     | 71.1        | 37.5       | 51.6    | 9.7       | 11.3   | 15.2 | 15.4 | 770   |
| 1994 | 0.0   | 21.9     | 113.5     | 105.6       | 19.5       | 4.0     | 19.2      | 0.5    | 8.3  | 0.0  | 293   |
| 1995 | 0.0   | 65.4     | 177.9     | 102.5       | 106.0      | 18.5    | 37.9      | 5.0    | 3.9  | 0.0  | 517   |
| 1996 | 0.0   | 12.5     | 46.3      | 66.9        | 11.6       | 11.7    | 1.4       | 0.9    | 0.0  | 0.0  | 151   |
| 1997 | 0.0   | 26.7     | 45.1      | 119.8       | 97.1       | 12.4    | 30.3      | 4.4    | 0.0  | 0.0  | 336   |
| 1998 | 0.5   | 36.7     | 82.9      | 58.5        | 51.2       | 35.6    | 6.7       | 2.3    | 0.0  | 0.0  | 274   |
| 1999 | 0.0   | 5.8      | 40.8      | 45.6        | 19.9       | 8.6     | 4.6       | 1.7    | 0.5  | 0.0  | 128   |
| 2000 | 0.0   | 45.0     | 76.6      | 117.0       | 40.1       | 9.1     | 2.2       | 1.8    | 0.0  | 0.0  | 292   |
| 2001 | 0.0   | 7.4      | 46.3      | 9.8         | 22.5       | 10.9    | 1.7       | 1.1    | 0.7  | 0.0  | 100   |
| 2002 | 0.0   | 0.3      | 15.1      | 48.6        | 12.9       | 13.4    | 2.3       | 0.0    | 0.0  | 1.6  | 94    |
| 2003 | 0.0   | 2.2      | 15.8      | 35.3        | 35.1       | 2.2     | 4.2       | 0.5    | 0.0  | 0.0  | 95    |
| 2004 | 0.0   | 0.9      | 13.1      | 17.6        | 18.7       | 13.9    | 3.2       | 2.6    | 0.1  | 0.5  | 71    |
| 2005 | 0.0   | 3.0      | 16.3      | 113.2       | 56.5       | 39.8    | 26.5      | 5.2    | 0.0  | 0.0  | 260   |
| 2006 | 0.0   | 0.3      | 6.7       | 1.1         | 3.9        | 0.9     | 1.2       | 0.4    | 0.2  | 0.0  | 15    |
| 2007 | 0.0   | 0.4      | 0.3       | 1.7         | 0.2        | 0.2     | 0.0       | 0.0    | 0.0  | 0.0  | 3     |
| 2008 | 0.0   | 1.4      | 3.2       | 2.9         | 12.6       | 0.7     | 0.8       | 0.0    | 0.0  | 0.0  | 22    |
| 2009 | 0.0   | 0.1      | 3.2       | 4.4         | 2.4        | 4.4     | 0.3       | 0.2    | 0.2  | 0.0  | 15    |
| 2010 | 0.0   | 0.7      | 7.2       | 25.3        | 7.7        | 1.5     | 5.5       | 0.0    | 0.4  | 0.0  | 48    |
| 2011 | 0.0   | 0.0      | 10.7      | 26.8        | 18.4       | 6.2     | 0.8       | 1.9    | 0.0  | 0.0  | 65    |
|      |       |          |           |             |            |         |           |        |      |      |       |

Table B11a. Recreational landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

|      | Age  |       |        |           |          |          |            |        |       |       |       |  |  |  |
|------|------|-------|--------|-----------|----------|----------|------------|--------|-------|-------|-------|--|--|--|
| Year | 1    | 2     | 3      | 4         | 5        | 6        | 7          | 8      | 9     | 10+   | Total |  |  |  |
|      |      |       |        |           |          |          | · \        |        |       |       |       |  |  |  |
|      |      |       | USA Re | creationa | Landings | in Weigh | t (Ions) a | it Age |       |       |       |  |  |  |
| 1978 |      |       |        |           |          |          |            |        |       |       |       |  |  |  |
| 1979 |      |       |        |           |          |          |            |        |       |       |       |  |  |  |
| 1980 |      |       |        |           |          |          |            |        |       |       |       |  |  |  |
| 1981 | 91.8 | 504 6 | 1182.5 | 1079 9    | 70.0     | 12126    | 345 1      | 205.0  | 0.0   | 329.0 | 5021  |  |  |  |
| 1982 | 40.7 | 556.6 | 847.3  | 914.5     | 980.3    | 48.2     | 563.1      | 108.4  | 28.2  | 26.0  | 4113  |  |  |  |
| 1983 | 76.6 | 593.3 | 1558.9 | 474.2     | 498.9    | 428.5    | 57.1       | 414.5  | 0.0   | 414.6 | 4517  |  |  |  |
| 1984 | 13.3 | 47 7  | 263.7  | 510.9     | 201.6    | 222.0    | 92.5       | 2.9    | 175.8 | 18.0  | 1549  |  |  |  |
| 1985 | 22.6 | 922.8 | 454.6  | 972.5     | 1469.5   | 368.0    | 326.5      | 370.7  | 94.7  | 412.1 | 5414  |  |  |  |
| 1986 | 30.8 | 28.5  | 237.4  | 68.3      | 177.6    | 239.3    | 36.8       | 71.2   | 72.4  | 26.2  | 988   |  |  |  |
| 1987 | 1.6  | 327.1 | 149.5  | 446.4     | 42.4     | 156.5    | 164.9      | 24.1   | 31.0  | 29.9  | 1373  |  |  |  |
| 1988 | 11.9 | 170.4 | 1554.0 | 300.0     | 714.9    | 80.3     | 96.6       | 174.9  | 0.0   | 0.0   | 3103  |  |  |  |
| 1989 | 0.0  | 112.8 | 158.5  | 517.9     | 106.6    | 183.0    | 27.5       | 32.9   | 51.0  | 48.5  | 1239  |  |  |  |
| 1990 | 0.0  | 85.3  | 458.3  | 251.0     | 451.1    | 79.0     | 112.9      | 10.8   | 12.3  | 27.8  | 1489  |  |  |  |
| 1991 | 0.0  | 80.5  | 346.7  | 305.6     | 210.2    | 179.0    | 36.0       | 45.0   | 0.0   | 0.0   | 1203  |  |  |  |
| 1992 | 0.7  | 97.2  | 122.2  | 69.7      | 118.0    | 98.9     | 96.8       | 13.7   | 23.7  | 0.0   | 641   |  |  |  |
| 1993 | 0.0  | 56.1  | 1126.1 | 202.8     | 181.8    | 362.2    | 81.8       | 89.2   | 211.8 | 257.8 | 2570  |  |  |  |
| 1994 | 0.0  | 32.3  | 218.7  | 279.5     | 62.4     | 18.3     | 49.1       | 7.6    | 75.6  | 0.0   | 744   |  |  |  |
| 1995 | 0.0  | 105.3 | 312.3  | 301.3     | 442.2    | 58.2     | 292.8      | 52.8   | 48.4  | 0.0   | 1613  |  |  |  |
| 1996 | 0.0  | 20.9  | 104.1  | 192.4     | 57.9     | 66.9     | 6.3        | 4.3    | 0.0   | 0.0   | 453   |  |  |  |
| 1997 | 0.0  | 51.0  | 118.4  | 388.3     | 392.9    | 60.0     | 251.6      | 21.3   | 0.0   | 0.0   | 1283  |  |  |  |
| 1998 | 0.7  | 67.0  | 180.1  | 173.4     | 189.3    | 161.4    | 72.5       | 14.6   | 0.0   | 0.0   | 859   |  |  |  |
| 1999 | 0.0  | 11.5  | 90.8   | 145.1     | 77.1     | 43.4     | 18.1       | 9.6    | 4.3   | 0.0   | 400   |  |  |  |
| 2000 | 0.0  | 84.6  | 169.6  | 360.0     | 159.2    | 29.1     | 14.0       | 15.7   | 0.0   | 0.0   | 832   |  |  |  |
| 2001 | 0.0  | 14.5  | 93.1   | 31.3      | 98.3     | 77.9     | 15.3       | 9.6    | 4.9   | 0.0   | 345   |  |  |  |
| 2002 | 0.0  | 0.7   | 38.0   | 141.2     | 44.4     | 61.7     | 10.0       | 0.0    | 0.0   | 15.2  | 311   |  |  |  |
| 2003 | 0.0  | 5.2   | 40.6   | 100.7     | 121.8    | 9.3      | 19.1       | 2.5    | 0.0   | 0.0   | 299   |  |  |  |
| 2004 | 0.0  | 2.1   | 37.5   | 54.9      | 67.0     | 60.6     | 18.3       | 15.1   | 0.7   | 6.2   | 262   |  |  |  |
| 2005 | 0.0  | 6.4   | 44.3   | 337.8     | 214.2    | 142.2    | 130.7      | 51.7   | 0.0   | 0.0   | 927   |  |  |  |
| 2006 | 0.0  | 0.6   | 17.4   | 4.5       | 12.4     | 3.7      | 14.8       | 1.8    | 1.0   | 0.0   | 56    |  |  |  |
| 2007 | 0.0  | 1.1   | 0.8    | 6.1       | 1.0      | 1.4      | 0.1        | 0.1    | 0.0   | 0.0   | 10    |  |  |  |
| 2008 | 0.0  | 3.1   | 9.3    | 6.5       | 39.4     | 4.2      | 3.4        | 0.0    | 0.0   | 0.0   | 66    |  |  |  |
| 2009 | 0.0  | 0.2   | 7.4    | 11.7      | 7.2      | 16.0     | 1.5        | 0.7    | 1.0   | 0.0   | 46    |  |  |  |
| 2010 | 0.0  | 1.7   | 15.5   | 68.9      | 29.1     | 5.2      | 24.7       | 0.0    | 1.0   | 0.0   | 146   |  |  |  |
| 2011 | 0.0  | 0.0   | 29.0   | 76.8      | 57.9     | 23.7     | 2.7        | 10.6   | 0.0   | 0.0   | 201   |  |  |  |
|      |      |       |        |           |          |          |            |        |       |       |       |  |  |  |

Table B11a - continued. Recreational landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

| Age  |       |       |       |          |            |             |            |             |          |        |       |  |
|------|-------|-------|-------|----------|------------|-------------|------------|-------------|----------|--------|-------|--|
| Year | 1     | 2     | 3     | 4        | 5          | 6           | 7          | 8           | 9        | 10+    | Mean  |  |
|      |       |       |       |          |            |             |            | (1) = 1 A = | _        |        |       |  |
|      |       |       | 054   | A Recrea | tional Lar | naings ivie | ean weight | (kg) at Ag  | <u>e</u> |        |       |  |
| 1978 |       |       |       |          |            |             |            |             |          |        |       |  |
| 1979 |       |       |       |          |            |             |            |             |          |        |       |  |
| 1980 |       |       |       |          |            |             |            |             |          |        |       |  |
| 1981 | 0.497 | 1.177 | 2.193 | 3.486    | 3.640      | 7.125       | 7.847      | 8.721       | 0.000    | 14.592 | 2.882 |  |
| 1982 | 0.602 | 1.280 | 2.306 | 2.960    | 4.220      | 5.143       | 8.016      | 8.271       | 9.656    | 21.217 | 2.727 |  |
| 1983 | 0.551 | 1.197 | 2.414 | 3.200    | 4.006      | 5.646       | 8.022      | 10.919      | 0.000    | 14.833 | 2.654 |  |
| 1984 | 0.431 | 0.732 | 2.424 | 3.641    | 4.922      | 5.555       | 6.519      | 14.875      | 9.782    | 13.641 | 3.367 |  |
| 1985 | 0.456 | 1.071 | 2.166 | 3.490    | 4.413      | 5.917       | 7.980      | 9.762       | 11.744   | 13.726 | 2.831 |  |
| 1986 | 0.640 | 1.095 | 2.067 | 3.309    | 5.515      | 6.259       | 9.004      | 10.705      | 12.965   | 15.209 | 3.316 |  |
| 1987 | 0.979 | 1.377 | 2.624 | 4.046    | 4.728      | 6.672       | 8.487      | 11.499      | 9.129    | 15.206 | 2.948 |  |
| 1988 | 0.861 | 1.309 | 2.133 | 3.335    | 4.921      | 6.957       | 10.932     | 11.143      | 0.000    | 0.000  | 2.713 |  |
| 1989 | 0.000 | 1.543 | 2.128 | 2.971    | 4.320      | 5.575       | 5.319      | 8.843       | 9.869    | 11.499 | 3.115 |  |
| 1990 | 0.000 | 1.637 | 2.228 | 3.347    | 4.723      | 5.968       | 8.014      | 8.814       | 8.022    | 14.219 | 3.233 |  |
| 1991 | 0.000 | 1.684 | 2.634 | 3.132    | 3.779      | 5.135       | 6.334      | 10.283      | 0.000    | 0.000  | 3.186 |  |
| 1992 | 1.512 | 1.505 | 2.170 | 3.412    | 3.947      | 6.253       | 6.536      | 6.904       | 11.499   | 0.000  | 3.106 |  |
| 1993 | 0.000 | 1.381 | 2.176 | 2.854    | 4.843      | 7.021       | 8.479      | 7.871       | 13.948   | 16.779 | 3.338 |  |
| 1994 | 0.000 | 1.476 | 1.926 | 2.646    | 3.205      | 4.546       | 2.557      | 16.182      | 9.080    | 0.000  | 2.542 |  |
| 1995 | 0.000 | 1.612 | 1.755 | 2.938    | 4.174      | 3.152       | 7.719      | 10.551      | 12.503   | 0.000  | 3.121 |  |
| 1996 | 0.000 | 1.675 | 2.247 | 2.877    | 4.985      | 5.705       | 4.545      | 4.768       | 0.000    | 0.000  | 2.993 |  |
| 1997 | 0.000 | 1.908 | 2.624 | 3.240    | 4.046      | 4.841       | 8.293      | 4.901       | 0.000    | 0.000  | 3.821 |  |
| 1998 | 1.512 | 1.827 | 2.173 | 2.964    | 3.697      | 4.535       | 10.770     | 6.245       | 0.000    | 0.000  | 3.131 |  |
| 1999 | 0.000 | 1.982 | 2.226 | 3.179    | 3.870      | 5.025       | 3.929      | 5.597       | 8.022    | 0.000  | 3.133 |  |
| 2000 | 0.000 | 1.878 | 2.213 | 3.076    | 3.970      | 3.191       | 6.278      | 8.584       | 0.000    | 0.000  | 2.850 |  |
| 2001 | 0.000 | 1.966 | 2.012 | 3.183    | 4.359      | 7.161       | 9.105      | 8.814       | 6.585    | 0.000  | 3.435 |  |
| 2002 | 0.000 | 2.314 | 2.524 | 2.905    | 3.452      | 4.604       | 4.394      | 0.000       | 0.000    | 9.656  | 3.308 |  |
| 2003 | 0.000 | 2.345 | 2.578 | 2.852    | 3.473      | 4.181       | 4.513      | 4.768       | 0.000    | 0.000  | 3.139 |  |
| 2004 | 0.000 | 2.370 | 2.852 | 3.116    | 3.585      | 4.370       | 5.727      | 5.725       | 6.585    | 11.386 | 3.712 |  |
| 2005 | 0.000 | 2.115 | 2.719 | 2.986    | 3.795      | 3.574       | 4.937      | 9.916       | 0.000    | 0.000  | 3.561 |  |
| 2006 | 0.000 | 2.115 | 2.595 | 3.945    | 3.170      | 4.337       | 12.316     | 4.848       | 4.299    | 0.000  | 3.819 |  |
| 2007 | 0.000 | 2.431 | 2.719 | 3.487    | 5.202      | 6.770       | 3.475      | 5.331       | 0.000    | 0.000  | 3.611 |  |
| 2008 | 0.000 | 2.257 | 2.925 | 2.253    | 3.123      | 5.760       | 4.010      | 0.000       | 0.000    | 0.000  | 3.046 |  |
| 2009 | 0.000 | 2.303 | 2.319 | 2.632    | 2.980      | 3.616       | 4.795      | 3.849       | 5.545    | 0.000  | 2.997 |  |
| 2010 | 0.000 | 2.279 | 2.150 | 2.730    | 3.772      | 3.463       | 4.506      | 0.000       | 2.543    | 0.000  | 3.025 |  |
| 2011 | 0.000 | 0.000 | 2.709 | 2.859    | 3.147      | 3.853       | 3.323      | 5.590       | 0.000    | 0.000  | 3.096 |  |
|      |       |       |       |          |            |             |            |             |          |        |       |  |

Table B11a - continued. Recreational landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.
| Age  |      |         |          |           |         |        |            |            |       |       |      |
|------|------|---------|----------|-----------|---------|--------|------------|------------|-------|-------|------|
| Year | 1    | 2       | 3        | 4         | 5       | 6      | 7          | 8          | 9     | 10+   | Mean |
|      |      | 1 14    | SA Pecre | ational I | andings | Meanle | anath (cr  | n) at A de |       |       |      |
|      |      | <u></u> |          |           | anungs  |        | ingtri (on | ij al Age  |       |       |      |
| 1978 |      |         |          |           |         |        |            |            |       |       |      |
| 1979 |      |         |          |           |         |        |            |            |       |       |      |
| 1980 |      |         |          |           |         |        |            |            |       |       |      |
| 1981 | 36.8 | 48.9    | 60.5     | 70.7      | 70.3    | 89.4   | 92.7       | 95.7       | 0.0   | 114.6 | 61.9 |
| 1982 | 39.1 | 49.6    | 62.3     | 67.4      | 75.9    | 82.0   | 93.7       | 95.1       | 101.0 | 131.0 | 62.7 |
| 1983 | 38.0 | 49.3    | 62.3     | 68.2      | 73.8    | 83.9   | 95.0       | 104.1      | 0.0   | 113.3 | 60.7 |
| 1984 | 35.1 | 41.5    | 62.4     | 71.9      | 79.9    | 82.2   | 87.9       | 110.0      | 100.8 | 107.0 | 66.2 |
| 1985 | 35.9 | 46.6    | 60.2     | 70.2      | 76.2    | 85.3   | 94.4       | 100.4      | 107.5 | 112.3 | 61.1 |
| 1986 | 40.1 | 47.7    | 59.4     | 70.3      | 83.2    | 86.4   | 96.9       | 102.5      | 109.7 | 108.4 | 64.8 |
| 1987 | 46.0 | 51.6    | 64.6     | 74.3      | 77.7    | 88.7   | 96.2       | 107.0      | 98.9  | 112.1 | 63.6 |
| 1988 | 44.3 | 50.7    | 60.0     | 69.6      | 78.2    | 86.6   | 103.9      | 102.0      | 0.0   | 0.0   | 63.0 |
| 1989 | 0.0  | 53.5    | 60.3     | 66.9      | 75.9    | 82.7   | 80.5       | 97.9       | 101.3 | 107.0 | 66.4 |
| 1990 | 0.0  | 54.5    | 60.4     | 69.1      | 77.8    | 84.6   | 92.9       | 98.0       | 95.0  | 111.3 | 66.9 |
| 1991 | 0.0  | 54.8    | 64.0     | 68.4      | 72.5    | 80.5   | 86.8       | 102.3      | 0.0   | 0.0   | 67.5 |
| 1992 | 53.0 | 53.3    | 60.3     | 69.0      | 73.5    | 85.9   | 87.5       | 90.4       | 107.0 | 0.0   | 65.5 |
| 1993 | 0.0  | 52.0    | 60.2     | 65.9      | 79.1    | 89.0   | 96.2       | 94.2       | 107.0 | 120.3 | 66.2 |
| 1994 | 0.0  | 52.4    | 57.8     | 64.6      | 67.9    | 77.2   | 63.9       | 113.0      | 98.0  | 0.0   | 62.4 |
| 1995 | 0.0  | 53.9    | 56.2     | 67.6      | 75.7    | 69.3   | 92.9       | 104.0      | 110.0 | 0.0   | 66.2 |
| 1996 | 0.0  | 55.2    | 60.4     | 66.6      | 77.8    | 83.8   | 74.7       | 80.0       | 0.0   | 0.0   | 66.1 |
| 1997 | 0.0  | 56.9    | 63.2     | 68.7      | 74.8    | 77.8   | 93.4       | 79.8       | 0.0   | 0.0   | 71.5 |
| 1998 | 53.0 | 56.1    | 60.1     | 66.9      | 72.1    | 77.1   | 103.3      | 85.0       | 0.0   | 0.0   | 66.7 |
| 1999 | 0.0  | 58.0    | 60.6     | 67.8      | 72.3    | 80.3   | 74.8       | 81.4       | 95.0  | 0.0   | 67.1 |
| 2000 | 0.0  | 56.8    | 61.1     | 67.6      | 73.9    | 68.7   | 86.7       | 97.1       | 0.0   | 0.0   | 65.4 |
| 2001 | 0.0  | 57.4    | 58.8     | 69.0      | 75.8    | 90.3   | 98.2       | 98.0       | 89.0  | 0.0   | 68.2 |
| 2002 | 0.0  | 60.7    | 62.9     | 66.7      | 70.5    | 77.9   | 77.5       | 0.0        | 0.0   | 101.0 | 69.0 |
| 2003 | 0.0  | 60.8    | 63.6     | 66.2      | 70.8    | 73.6   | 77.6       | 80.0       | 0.0   | 0.0   | 68.1 |
| 2004 | 0.0  | 61.5    | 64.6     | 67.8      | 70.5    | 75.0   | 80.5       | 83.5       | 89.0  | 101.0 | 70.7 |
| 2005 | 0.0  | 59.0    | 63.9     | 67.3      | 73.3    | 72.0   | 78.4       | 101.0      | 0.0   | 0.0   | 70.8 |
| 2006 | 0.0  | 59.0    | 62.6     | 72.0      | 67.8    | 75.2   | 101.8      | 77.9       | 74.0  | 0.0   | 69.1 |
| 2007 | 0.0  | 61.6    | 64.2     | 69.0      | 77.9    | 84.5   | 71.5       | 83.0       | 0.0   | 0.0   | 69.2 |
| 2008 | 0.0  | 60.2    | 65.9     | 62.3      | 68.1    | 78.6   | 74.8       | 0.0        | 0.0   | 0.0   | 67.1 |
| 2009 | 0.0  | 60.5    | 62.1     | 65.2      | 67.9    | 71.9   | 80.0       | 66.7       | 83.6  | 0.0   | 67.4 |
| 2010 | 0.0  | 60.4    | 60.7     | 65.8      | 72.7    | 71.4   | 78.2       | 0.0        | 65.0  | 0.0   | 67.6 |
| 2011 | 0.0  | 0.0     | 64.2     | 66.1      | 68.5    | 74.0   | 71.0       | 83.0       | 0.0   | 0.0   | 67.8 |
|      |      |         |          |           |         |        |            |            |       |       |      |

Table B11a - continued. Recreational landings (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

| Age  |      |      |           |             |            |         |           |         |     |     |       |
|------|------|------|-----------|-------------|------------|---------|-----------|---------|-----|-----|-------|
| Year | 1    | 2    | 3         | 4           | 5          | 6       | 7         | 8       | 9   | 10+ | Total |
|      |      | U    | ISA Recre | ational Dis | cards in I | Numbers | (000's) a | t Aae   |     |     |       |
|      |      | -    |           |             |            |         | (*****)   | <u></u> |     |     |       |
| 1978 |      |      |           |             |            |         |           |         |     |     |       |
| 1979 |      |      |           |             |            |         |           |         |     |     |       |
| 1980 |      |      |           |             |            |         |           |         |     |     |       |
| 1981 | 18.7 | 0.1  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 19    |
| 1982 | 12.9 | 0.0  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 13    |
| 1983 | 44.1 | 0.0  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 44    |
| 1984 | 14.1 | 0.6  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 15    |
| 1985 | 21.3 | 9.1  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 30    |
| 1986 | 7.6  | 0.6  | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 8     |
| 1987 | 4.8  | 17.3 | 0.0       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 22    |
| 1988 | 26.5 | 9.9  | 1.1       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 37    |
| 1989 | 14.5 | 19.9 | 1.1       | 0.2         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 36    |
| 1990 | 5.9  | 20.8 | 4.2       | 0.6         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 31    |
| 1991 | 16.2 | 4.1  | 0.4       | 0.4         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 21    |
| 1992 | 4.9  | 19.3 | 0.3       | 0.3         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 25    |
| 1993 | 17.3 | 75.0 | 21.5      | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 114   |
| 1994 | 25.3 | 45.8 | 1.1       | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 72    |
| 1995 | 11.7 | 58.9 | 23.2      | 1.4         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 95    |
| 1996 | 9.5  | 8.0  | 12.5      | 2.2         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 32    |
| 1997 | 28.6 | 36.6 | 4.3       | 1.3         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 71    |
| 1998 | 11.1 | 45.0 | 22.0      | 0.0         | 1.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 79    |
| 1999 | 14.0 | 13.7 | 10.2      | 0.0         | 0.5        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 38    |
| 2000 | 23.9 | 51.8 | 6.2       | 2.5         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 84    |
| 2001 | 2.9  | 10.3 | 10.8      | 0.0         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 24    |
| 2002 | 4.0  | 5.3  | 13.7      | 8.7         | 0.5        | 0.1     | 0.0       | 0.0     | 0.0 | 0.0 | 32    |
| 2003 | 3.1  | 13.0 | 5.4       | 5.1         | 2.8        | 1.3     | 0.0       | 0.0     | 0.0 | 0.0 | 31    |
| 2004 | 11.4 | 1.4  | 6.0       | 0.3         | 0.5        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 20    |
| 2005 | 2.9  | 75.4 | 17.0      | 22.0        | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 117   |
| 2006 | 2.4  | 0.8  | 1.6       | 0.1         | 0.1        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 5     |
| 2007 | 0.4  | 1.2  | 0.4       | 1.1         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 3     |
| 2008 | 0.4  | 0.6  | 0.2       | 0.1         | 0.1        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 1     |
| 2009 | 3.1  | 1.8  | 2.2       | 0.2         | 0.1        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 7     |
| 2010 | 2.6  | 14.5 | 6.4       | 1.6         | 0.0        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 25    |
| 2011 | 3.7  | 9.9  | 4.5       | 3.1         | 0.2        | 0.0     | 0.0       | 0.0     | 0.0 | 0.0 | 21    |
|      |      |      |           |             |            |         |           |         |     |     |       |

Table B11b. Recreational discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

| Age  |      |       |              |               |          |           |           |      |      |      |          |  |
|------|------|-------|--------------|---------------|----------|-----------|-----------|------|------|------|----------|--|
| Year | 1    | 2     | 3            | 4             | 5        | 6         | 7         | 8    | 9    | 10+  | Total    |  |
|      |      |       |              | aroational    | Discarde | in Woight | (Tope) at | Ago  |      |      |          |  |
|      |      |       |              |               | Discalus | in weight | (10115) a | Aye  |      |      |          |  |
| 1978 |      |       |              |               |          |           |           |      |      |      |          |  |
| 1979 |      |       |              |               |          |           |           |      |      |      |          |  |
| 1980 |      |       |              |               |          |           |           |      |      |      |          |  |
| 1981 | 2.53 | 0.03  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 3        |  |
| 1982 | 1.68 | 0.00  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 2        |  |
| 1983 | 7.58 | 0.00  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 8        |  |
| 1984 | 1.39 | 0.14  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 2        |  |
| 1985 | 4.12 | 1.86  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 6        |  |
| 1986 | 1.88 | 0.26  | 0.02         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 2        |  |
| 1987 | 1.76 | 9.76  | 0.00         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 12       |  |
| 1988 | 5.65 | 4.74  | 0.57         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 11       |  |
| 1989 | 5.08 | 13.32 | 0.95         | 0.19          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 20       |  |
| 1990 | 1.44 | 13.87 | 3.33         | 0.53          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 19       |  |
| 1991 | 3.74 | 3.14  | 0.33         | 0.33          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 8        |  |
| 1992 | 1.63 | 13.80 | 0.24         | 0.24          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 16       |  |
| 1993 | 3.34 | 50.73 | 19.23        | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 73       |  |
| 1994 | 5.46 | 24.79 | 0.84         | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 31       |  |
| 1995 | 2.69 | 39.04 | 17.64        | 1.08          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 60       |  |
| 1996 | 2.74 | 5.77  | 12.63        | 2.24          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 23       |  |
| 1997 | 6.90 | 25.85 | 3.95         | 1.38          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 38       |  |
| 1998 | 4.26 | 34.50 | 22.36        | 0.00          | 0.93     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 62       |  |
| 1999 | 4.36 | 11.52 | 10.10        | 0.00          | 0.59     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 27       |  |
| 2000 | 5.88 | 39.62 | 5.57         | 2.52          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 54       |  |
| 2001 | 0.55 | 8.00  | 11.26        | 0.00          | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 20       |  |
| 2002 | 0.87 | 4.62  | 16.65        | 11.56         | 0.54     | 0.14      | 0.00      | 0.00 | 0.00 | 0.00 | 34       |  |
| 2003 | 1.16 | 9.77  | 7.27         | 7.66          | 4.34     | 1.96      | 0.00      | 0.00 | 0.00 | 0.00 | 32       |  |
| 2004 | 1.81 | 1.27  | 8.02         | 0.47          | 0.75     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 12       |  |
| 2005 | 0.86 | 42.76 | 20.16        | 31.25         | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 95       |  |
| 2006 | 0.70 | 0.79  | 2.11         | 0.14          | 0.15     | 0.01      | 0.00      | 0.00 | 0.00 | 0.00 | 4        |  |
| 2007 | 0.11 | 0.91  | 0.39         | 1.29          | 0.06     | 0.05      | 0.00      | 0.00 | 0.00 | 0.00 | 3        |  |
| 2008 | 0.11 | 0.48  | 0.24         | 0.08          | 0.13     | 0.01      | 0.00      | 0.00 | 0.00 | 0.00 | 1        |  |
| 2009 | 0.46 | 11.06 | 3.08         | 0.28          | 0.12     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 5        |  |
| 2010 | 0.55 |       | 0.04<br>6 10 | ∠.40<br>∕\ 95 | 0.00     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | ∠3<br>10 |  |
| 2011 | 0.04 | 0.09  | 0.10         | 4.00          | 0.20     | 0.00      | 0.00      | 0.00 | 0.00 | 0.00 | 10       |  |

Table B11b continued. Recreational discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

Table B11b continued. Recreational discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

| Age  |       |       |       |          |             |            |              |             |       |       |       |  |
|------|-------|-------|-------|----------|-------------|------------|--------------|-------------|-------|-------|-------|--|
| Year | 1     | 2     | 3     | 4        | 5           | 6          | 7            | 8           | 9     | 10+   | Mean  |  |
|      |       |       |       |          | tion of Dis | l - M-     |              |             |       |       |       |  |
|      |       |       | 054   | A Recrea | tional Dis  | cards ivie | an vveignt ( | (kg) at Age | -     |       |       |  |
| 1978 |       |       |       |          |             |            |              |             |       |       |       |  |
| 1979 |       |       |       |          |             |            |              |             |       |       |       |  |
| 1980 |       |       |       |          |             |            |              |             |       |       |       |  |
| 1981 | 0.135 | 0.221 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.136 |  |
| 1982 | 0.130 | 0.000 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.130 |  |
| 1983 | 0.172 | 0.000 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.172 |  |
| 1984 | 0.099 | 0.221 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.104 |  |
| 1985 | 0.194 | 0.203 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.196 |  |
| 1986 | 0.248 | 0.423 | 0.501 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.262 |  |
| 1987 | 0.370 | 0.564 | 0.000 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.522 |  |
| 1988 | 0.213 | 0.477 | 0.526 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.292 |  |
| 1989 | 0.351 | 0.670 | 0.876 | 0.953    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.549 |  |
| 1990 | 0.246 | 0.667 | 0.798 | 0.953    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.611 |  |
| 1991 | 0.231 | 0.766 | 0.953 | 0.953    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.359 |  |
| 1992 | 0.333 | 0.716 | 0.953 | 0.953    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.645 |  |
| 1993 | 0.193 | 0.677 | 0.895 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.644 |  |
| 1994 | 0.216 | 0.542 | 0.781 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.431 |  |
| 1995 | 0.230 | 0.663 | 0.762 | 0.781    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.635 |  |
| 1996 | 0.289 | 0.724 | 1.013 | 1.001    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.727 |  |
| 1997 | 0.242 | 0.705 | 0.912 | 1.049    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.537 |  |
| 1998 | 0.382 | 0.767 | 1.016 | 0.000    | 0.953       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.784 |  |
| 1999 | 0.312 | 0.842 | 0.990 | 0.000    | 1.150       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.692 |  |
| 2000 | 0.246 | 0.764 | 0.896 | 1.007    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.634 |  |
| 2001 | 0.189 | 0.774 | 1.047 | 0.000    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.825 |  |
| 2002 | 0.217 | 0.873 | 1.215 | 1.324    | 1.150       | 1.386      | 0.000        | 0.000       | 0.000 | 0.000 | 1.065 |  |
| 2003 | 0.375 | 0.750 | 1.357 | 1.492    | 1.570       | 1.499      | 0.000        | 0.000       | 0.000 | 0.000 | 1.048 |  |
| 2004 | 0.158 | 0.918 | 1.328 | 1.362    | 1.620       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.626 |  |
| 2005 | 0.295 | 0.567 | 1.186 | 1.422    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.810 |  |
| 2006 | 0.289 | 0.943 | 1.299 | 1.415    | 1.546       | 1.620      | 0.000        | 0.000       | 0.000 | 0.000 | 0.767 |  |
| 2007 | 0.268 | 0.782 | 1.052 | 1.212    | 1.393       | 1.163      | 0.000        | 0.000       | 0.000 | 0.000 | 0.907 |  |
| 2008 | 0.249 | 0.848 | 1.251 | 1.286    | 1.419       | 1.371      | 0.000        | 0.000       | 0.000 | 0.000 | 0.775 |  |
| 2009 | 0.149 | 0.600 | 1.386 | 1.421    | 1.620       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.678 |  |
| 2010 | 0.211 | 0.762 | 1.339 | 1.473    | 0.000       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.900 |  |
| 2011 | 0.172 | 0.616 | 1.345 | 1.550    | 1.371       | 0.000      | 0.000        | 0.000       | 0.000 | 0.000 | 0.837 |  |
|      |       |       |       |          |             |            |              |             |       |       |       |  |

| Age  |      |          |         |            |          |          |           |         |     |     |      |
|------|------|----------|---------|------------|----------|----------|-----------|---------|-----|-----|------|
| Year | 1    | 2        | 3       | 4          | 5        | 6        | 7         | 8       | 9   | 10+ | Mean |
|      |      | 1.1      | SA Door | national [ | Viceorde | Maan Lor | ath (am)  | at A ao |     |     |      |
|      |      | <u>U</u> | SA RECI |            | JSCalus  |          | igin (cm) | al Aye  |     |     |      |
| 1978 |      |          |         |            |          |          |           |         |     |     |      |
| 1979 |      |          |         |            |          |          |           |         |     |     |      |
| 1980 |      |          |         |            |          |          |           |         |     |     |      |
| 1981 | 23.9 | 29.0     | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 23.9 |
| 1982 | 23.7 | 0.0      | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 23.7 |
| 1983 | 26.1 | 0.0      | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 26.1 |
| 1984 | 21.4 | 29.0     | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 21.7 |
| 1985 | 26.6 | 28.1     | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 27.1 |
| 1986 | 28.7 | 35.8     | 38.0    | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 29.3 |
| 1987 | 32.7 | 39.3     | 0.0     | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 37.9 |
| 1988 | 26.4 | 36.6     | 38.5    | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 29.5 |
| 1989 | 31.6 | 41.2     | 45.7    | 47.0       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 37.5 |
| 1990 | 27.9 | 40.9     | 43.8    | 47.0       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 39.0 |
| 1991 | 27.6 | 43.1     | 47.0    | 47.0       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 31.3 |
| 1992 | 31.1 | 42.3     | 47.0    | 47.0       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 40.1 |
| 1993 | 26.7 | 41.4     | 46.0    | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 40.0 |
| 1994 | 26.3 | 37.6     | 44.0    | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 33.7 |
| 1995 | 26.9 | 40.9     | 43.3    | 44.0       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 39.8 |
| 1996 | 29.8 | 42.3     | 47.6    | 47.4       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 41.0 |
| 1997 | 28.1 | 41.5     | 46.0    | 48.5       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 36.5 |
| 1998 | 32.6 | 42.9     | 47.8    | 0.0        | 47.0     | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 42.9 |
| 1999 | 29.5 | 44.4     | 47.3    | 0.0        | 50.0     | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 39.8 |
| 2000 | 29.2 | 42.9     | 45.6    | 47.7       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 39.4 |
| 2001 | 26.4 | 42.4     | 48.1    | 0.0        | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 43.0 |
| 2002 | 25.8 | 44.1     | 50.4    | 51.9       | 50.0     | 51.5     | 0.0       | 0.0     | 0.0 | 0.0 | 46.7 |
| 2003 | 32.6 | 41.4     | 52.4    | 54.4       | 55.3     | 54.5     | 0.0       | 0.0     | 0.0 | 0.0 | 46.4 |
| 2004 | 23.3 | 44.5     | 51.3    | 52.7       | 56.0     | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 34.7 |
| 2005 | 30.8 | 37.8     | 50.0    | 53.4       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 42.3 |
| 2006 | 29.5 | 44.8     | 50.5    | 52.2       | 54.2     | 56.0     | 0.0       | 0.0     | 0.0 | 0.0 | 39.7 |
| 2007 | 29.3 | 42.4     | 47.3    | 50.4       | 53.2     | 50.1     | 0.0       | 0.0     | 0.0 | 0.0 | 44.2 |
| 2008 | 28.1 | 42.0     | 51.0    | 51.5       | 53.2     | 53.0     | 0.0       | 0.0     | 0.0 | 0.0 | 40.1 |
| 2009 | 24.9 | 39.8     | 53.0    | 53.5       | 56.0     | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 38.0 |
| 2010 | 26.7 | 43.1     | 52.3    | 54.1       | 0.0      | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 44.5 |
| 2011 | 23.9 | 39.5     | 52.2    | 55.1       | 53.0     | 0.0      | 0.0       | 0.0     | 0.0 | 0.0 | 41.9 |
|      |      |          |         |            |          |          |           |         |     |     |      |

Table B11b continued. Recreational discards (thousands of fish; metric tons), mean weight (kg), and mean length, at age, of Atlantic cod from Georges Bank and South (NAFO Division 5Z and Subarea 6), 1981-2011.

| Age  |     |       |      |          |            |              |     |     |     |     |       |
|------|-----|-------|------|----------|------------|--------------|-----|-----|-----|-----|-------|
| Year | 1   | 2     | 3    | 4        | 5          | 6            | 7   | 8   | 9   | 10+ | Total |
|      |     |       |      | Catab in | Numbere (C | 00/a) at A a |     |     |     |     |       |
|      |     |       |      | Catchin  |            | JOUS) at Ag  | le  |     |     |     |       |
| 1978 | 324 | 840   | 9002 | 2806     | 931        | 349          | 288 | 46  | 41  | 32  | 14660 |
| 1979 | 438 | 2785  | 1694 | 4935     | 1194       | 623          | 201 | 331 | 11  | 57  | 12270 |
| 1980 | 489 | 4512  | 6443 | 841      | 2569       | 1165         | 462 | 97  | 151 | 43  | 16773 |
| 1981 | 701 | 3964  | 5212 | 2969     | 374        | 1352         | 433 | 157 | 162 | 77  | 15401 |
| 1982 | 678 | 10719 | 4684 | 2979     | 2152       | 294          | 752 | 213 | 83  | 92  | 22648 |
| 1983 | 417 | 4658  | 7805 | 2390     | 1297       | 954          | 182 | 320 | 126 | 134 | 18281 |
| 1984 | 168 | 1500  | 3531 | 3393     | 871        | 620          | 484 | 58  | 199 | 113 | 10936 |
| 1985 | 214 | 7439  | 2823 | 1716     | 2233       | 532          | 278 | 242 | 37  | 117 | 15631 |
| 1986 | 558 | 1543  | 4701 | 897      | 565        | 670          | 98  | 79  | 62  | 29  | 9202  |
| 1987 | 60  | 8348  | 1520 | 2263     | 313        | 269          | 290 | 61  | 39  | 27  | 13191 |
| 1988 | 120 | 2205  | 9020 | 1138     | 1619       | 223          | 168 | 235 | 61  | 52  | 14841 |
| 1989 | 349 | 2464  | 3219 | 4413     | 416        | 587          | 90  | 58  | 70  | 31  | 11697 |
| 1990 | 37  | 5479  | 5744 | 2070     | 2338       | 228          | 230 | 24  | 20  | 36  | 16206 |
| 1991 | 151 | 2160  | 3685 | 3265     | 1471       | 1079         | 138 | 96  | 28  | 30  | 12103 |
| 1992 | 78  | 4673  | 2338 | 1083     | 1522       | 478          | 409 | 59  | 45  | 13  | 10697 |
| 1993 | 34  | 1411  | 4898 | 1306     | 519        | 583          | 191 | 156 | 50  | 35  | 9183  |
| 1994 | 43  | 552   | 1634 | 2103     | 451        | 101          | 167 | 54  | 40  | 6   | 5150  |
| 1995 | 17  | 563   | 1407 | 741      | 475        | 58           | 62  | 27  | 11  | 1   | 3364  |
| 1996 | 53  | 320   | 1014 | 1315     | 260        | 188          | 20  | 13  | 12  | 0   | 3196  |
| 1997 | 81  | 658   | 778  | 1123     | 955        | 157          | 119 | 26  | 9   | 4   | 3910  |
| 1998 | 63  | 910   | 1369 | 535      | 426        | 317          | 48  | 20  | 5   | 2   | 3694  |
| 1999 | 45  | 407   | 2061 | 867      | 290        | 128          | 146 | 24  | 4   | 1   | 3973  |
| 2000 | 61  | 972   | 789  | 1237     | 345        | 92           | 47  | 39  | 4   | 1   | 3586  |
| 2001 | 12  | 695   | 2717 | 748      | 704        | 186          | 55  | 26  | 15  | 2   | 5160  |
| 2002 | 11  | 66    | 1153 | 1532     | 372        | 378          | 85  | 18  | 11  | 8   | 3634  |
| 2003 | 3   | 149   | 423  | 827      | 917        | 154          | 142 | 28  | 6   | 3   | 2653  |
| 2004 | 51  | 58    | 424  | 254      | 315        | 254          | 56  | 49  | 11  | 5   | 1477  |
| 2005 | 4   | 264   | 201  | 700      | 198        | 145          | 111 | 23  | 9   | 4   | 1658  |
| 2006 | 9   | 48    | 739  | 208      | 373        | 72           | 31  | 29  | 4   | 3   | 1516  |
| 2007 | 1   | 342   | 281  | 1235     | 76         | 139          | 17  | 10  | 9   | 1   | 2112  |
| 2008 | 9   | 305   | 719  | 183      | 540        | 22           | 48  | 5   | 3   | 1   | 1834  |
| 2009 | 12  | 143   | 616  | 460      | 106        | 213          | 13  | 14  | 2   | 1   | 1580  |
| 2010 | 9   | 122   | 437  | 598      | 164        | 26           | 76  | 3   | 4   | 1   | 1441  |
| 2011 | 11  | 121   | 493  | 440      | 332        | 90           | 21  | 24  | 3   | 1   | 1536  |
|      |     |       |      |          |            |              |     |     |     |     |       |

Table B12. Catch (thousands of fish; metric tons), mean weight (kg), and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      |     |       |       |                | Age         |            |      |      |      |      |       |
|------|-----|-------|-------|----------------|-------------|------------|------|------|------|------|-------|
| Year | 1   | 2     | 3     | 4              | 5           | 6          | 7    | 8    | 9    | 10+  | Total |
|      |     |       |       | <u>Catch i</u> | n Weight (T | ons) at Ag | je   |      |      |      |       |
| 1978 | 163 | 1016  | 21169 | 9365           | 3628        | 2188       | 1929 | 391  | 395  | 457  | 40702 |
| 1979 | 259 | 3801  | 3274  | 20496          | 5757        | 4421       | 1858 | 3379 | 108  | 801  | 44154 |
| 1980 | 281 | 6254  | 15397 | 2933           | 14135       | 7889       | 3802 | 947  | 1407 | 609  | 53654 |
| 1981 | 425 | 5589  | 12005 | 10172          | 1788        | 9583       | 3653 | 1489 | 2241 | 1310 | 48256 |
| 1982 | 438 | 14728 | 11603 | 10813          | 11086       | 1950       | 6867 | 2110 | 1046 | 1443 | 62083 |
| 1983 | 280 | 6605  | 18478 | 7948           | 6204        | 6053       | 1498 | 3367 | 1447 | 2086 | 53964 |
| 1984 | 110 | 2283  | 8702  | 12419          | 4367        | 3999       | 4150 | 575  | 2179 | 1586 | 40369 |
| 1985 | 153 | 9900  | 5711  | 6345           | 10900       | 3306       | 2244 | 2441 | 426  | 1630 | 43055 |
| 1986 | 393 | 2134  | 11227 | 3116           | 3030        | 4663       | 845  | 778  | 778  | 414  | 27378 |
| 1987 | 40  | 11914 | 3702  | 9111           | 1745        | 2043       | 2516 | 604  | 451  | 411  | 32538 |
| 1988 | 67  | 3109  | 20435 | 3781           | 8328        | 1499       | 1461 | 2367 | 697  | 747  | 42490 |
| 1989 | 172 | 3620  | 6869  | 15970          | 2110        | 3753       | 683  | 560  | 753  | 422  | 34912 |
| 1990 | 20  | 8227  | 13694 | 7154           | 11181       | 1406       | 1855 | 261  | 223  | 488  | 44508 |
| 1991 | 117 | 3213  | 9037  | 11145          | 6887        | 6265       | 1033 | 908  | 286  | 430  | 39321 |
| 1992 | 61  | 6537  | 5406  | 4063           | 6748        | 2878       | 2863 | 525  | 511  | 208  | 29802 |
| 1993 | 12  | 1887  | 10535 | 4027           | 2532        | 3358       | 1371 | 1346 | 534  | 502  | 26105 |
| 1994 | 14  | 668   | 3388  | 7176           | 2065        | 695        | 1092 | 473  | 349  | 88   | 16007 |
| 1995 | 6   | 762   | 2745  | 2677           | 2373        | 368        | 517  | 313  | 135  | 28   | 9924  |
| 1996 | 27  | 442   | 2356  | 4135           | 1250        | 1202       | 156  | 121  | 130  | 5    | 9824  |
| 1997 | 37  | 944   | 1776  | 3739           | 3743        | 867        | 919  | 195  | 104  | 46   | 12370 |
| 1998 | 35  | 1282  | 3014  | 1790           | 1886        | 1717       | 377  | 151  | 54   | 27   | 10332 |
| 1999 | 20  | 554   | 4337  | 2822           | 1288        | 737        | 970  | 202  | 41   | 11   | 10981 |
| 2000 | 32  | 1506  | 1858  | 4144           | 1547        | 487        | 326  | 318  | 37   | 8    | 10263 |
| 2001 | 7   | 967   | 5928  | 2201           | 2901        | 1005       | 337  | 204  | 137  | 18   | 13704 |
| 2002 | 5   | 95    | 2421  | 4524           | 1468        | 1953       | 551  | 145  | 99   | 96   | 11357 |
| 2003 | 1   | 240   | 951   | 2383           | 3535        | 719        | 822  | 194  | 54   | 31   | 8930  |
| 2004 | 10  | 93    | 1016  | 788            | 1214        | 1218       | 317  | 360  | 97   | 58   | 5170  |
| 2005 | 1   | 239   | 412   | 2063           | 771         | 655        | 588  | 183  | 78   | 42   | 5032  |
| 2006 | 3   | 55    | 1610  | 644            | 1356        | 324        | 202  | 183  | 29   | 31   | 4435  |
| 2007 | 0   | 521   | 591   | 3469           | 268         | 568        | 99   | 73   | 61   | 9    | 5660  |
| 2008 | 5   | 512   | 1690  | 517            | 1970        | 117        | 275  | 37   | 23   | 13   | 5159  |
| 2009 | 6   | 198   | 1319  | 1521           | 413         | 989        | 78   | 92   | 18   | 10   | 4644  |
| 2010 | 3   | 148   | 966   | 1720           | 600         | 99         | 363  | 20   | 25   | 7    | 3951  |
| 2011 | 3   | 149   | 1128  | 1293           | 1198        | 411        | 100  | 137  | 34   | 19   | 4472  |
|      |     |       |       |                |             |            |      |      |      |      |       |

Table B12- continued. Catch (thousands of fish; metric tons), mean weight (kg), and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

| Age<br>Year 1 2 3 4 5 6 7 8 9 10+ Mea |       |         |       |                |           |               |                |        |        |        |         |
|---------------------------------------|-------|---------|-------|----------------|-----------|---------------|----------------|--------|--------|--------|---------|
| Year                                  | 1     | 2       | 3     | 4              | 5         | 6             | 7              | 8      | 9      | 10+    | Mean    |
|                                       |       |         |       | Catch I        | Mean Weig | ght (kg) at . | Age            |        |        |        |         |
| 1078                                  | 0 502 | 1 200   | 2 352 | 3 3 3 7        | 3 805     | 6 265         | 6 706          | 8 101  | 0.673  | 14 074 | 2 776   |
| 1970                                  | 0.502 | 1.209   | 2.332 | J.JJ7<br>1 153 | 1 820     | 7 004         | 0.700          | 10 207 | 9.075  | 14.074 | 2.770   |
| 1080                                  | 0.532 | 1 386   | 2 300 | 3 / 86         | 5 502     | 6 774         | 9.209<br>8.234 | 0 738  | 0.316  | 14.000 | 3 100   |
| 1001                                  | 0.575 | 1.300   | 2.390 | 2 426          | J.JUZ     | 7 0 00        | 0.234          | 9.750  | 12 015 | 17.045 | 2 1 2 2 |
| 1082                                  | 0.007 | 1.410   | 2.303 | 3 620          | 5 151     | 6 638         | 0.400          | 9.505  | 12 580 | 15.620 | 2 7/1   |
| 1083                                  | 0.040 | 1.374   | 2.4// | 3 3 2 5        | 1 783     | 6 347         | 9.129          | 10 530 | 12.500 | 15.029 | 2.741   |
| 108/                                  | 0.653 | 1 522   | 2.000 | 3.660          | 5.016     | 6.451         | 8 567          | 0.000  | 10.07/ | 14 052 | 2.002   |
| 1085                                  | 0.000 | 1 3 3 1 | 2.404 | 3 607          | 1 882     | 6 216         | 8 071          | 10 070 | 11 507 | 13 036 | 2 755   |
| 1086                                  | 0.713 | 1 383   | 2.020 | 3 171          | 5 363     | 6 964         | 8 500          | 0.817  | 12 524 | 14 260 | 2.755   |
| 1087                                  | 0.704 | 1.303   | 2.300 | 4 026          | 5 583     | 7 504         | 8 682          | 0.840  | 11 440 | 15.042 | 2.373   |
| 1088                                  | 0.000 | 1 4 1 0 | 2.400 | 3 323          | 5 145     | 6 708         | 8 674          | 10 051 | 11 462 | 14 488 | 2.407   |
| 1080                                  | 0.000 | 1 460   | 2.200 | 3 619          | 5 071     | 6 388         | 7 611          | 9 608  | 10.824 | 13 526 | 2.000   |
| 1000                                  | 0.400 | 1.400   | 2.104 | 3 4 5 6        | 4 782     | 6 156         | 8 080          | 10 870 | 11 245 | 13 525 | 2,303   |
| 1991                                  | 0.327 | 1 488   | 2.004 | 3 4 1 4        | 4 681     | 5 804         | 7 487          | 9 486  | 10 242 | 14 429 | 3 249   |
| 1992                                  | 0.788 | 1,399   | 2.402 | 3 753          | 4 4 3 5   | 6.023         | 7 000          | 8 873  | 11 305 | 15 712 | 2 786   |
| 1993                                  | 0.766 | 1 338   | 2 151 | 3 084          | 4 882     | 5 757         | 7 189          | 8 604  | 10.624 | 14 309 | 2 843   |
| 1994                                  | 0.323 | 1 210   | 2.101 | 3 4 1 3        | 4.582     | 6 867         | 6 557          | 8 720  | 8 807  | 15 728 | 3 108   |
| 1995                                  | 0.323 | 1.353   | 1 950 | 3 610          | 5 000     | 6.306         | 8 374          | 11 745 | 11 934 | 18 917 | 2 950   |
| 1996                                  | 0.514 | 1.379   | 2 323 | 3 145          | 4 802     | 6.379         | 7 737          | 9 532  | 11 024 | 10.844 | 3 074   |
| 1997                                  | 0 454 | 1 435   | 2 283 | 3 330          | 3 917     | 5 529         | 7 697          | 7 639  | 11 374 | 11 734 | 3 164   |
| 1998                                  | 0.551 | 1 408   | 2 201 | 3 349          | 4 4 3 0   | 5 4 1 8       | 7 834          | 7 629  | 11.086 | 13 599 | 2 797   |
| 1999                                  | 0.451 | 1.361   | 2.104 | 3.253          | 4,436     | 5.774         | 6.643          | 8.285  | 10.450 | 13,985 | 2.764   |
| 2000                                  | 0.521 | 1.550   | 2.356 | 3.350          | 4.488     | 5.321         | 6.953          | 8.081  | 8.404  | 13.254 | 2.862   |
| 2001                                  | 0.547 | 1.391   | 2.182 | 2.942          | 4.121     | 5.392         | 6.108          | 7.874  | 9.136  | 11.532 | 2.656   |
| 2002                                  | 0.462 | 1.435   | 2.101 | 2.952          | 3.948     | 5.162         | 6.495          | 8.085  | 9.293  | 11.500 | 3.125   |
| 2003                                  | 0.356 | 1.605   | 2.246 | 2.881          | 3.854     | 4.680         | 5.788          | 7.007  | 8.365  | 10.139 | 3.365   |
| 2004                                  | 0.203 | 1.619   | 2.397 | 3.100          | 3.851     | 4.799         | 5.606          | 7.396  | 8.785  | 11.293 | 3.501   |
| 2005                                  | 0.266 | 0.907   | 2.044 | 2.947          | 3.901     | 4.526         | 5.321          | 8.044  | 8.764  | 11.381 | 3.035   |
| 2006                                  | 0.295 | 1.128   | 2,179 | 3,100          | 3.632     | 4,519         | 6.434          | 6.382  | 7,383  | 9.001  | 2,925   |
| 2007                                  | 0.276 | 1.524   | 2.106 | 2.810          | 3.519     | 4.078         | 5.798          | 6.946  | 6.849  | 8.694  | 2.680   |
| 2008                                  | 0.537 | 1.680   | 2.351 | 2.831          | 3.646     | 5.391         | 5.696          | 8.140  | 8.177  | 10.268 | 2.812   |
| 2009                                  | 0.531 | 1.387   | 2.143 | 3.307          | 3.887     | 4.633         | 6.115          | 6.622  | 9.366  | 11.419 | 2.940   |
| 2010                                  | 0.365 | 1.214   | 2.208 | 2.875          | 3.654     | 3.759         | 4.769          | 5.889  | 6.182  | 12.270 | 2.742   |
| 2011                                  | 0.273 | 1.231   | 2.289 | 2.941          | 3.613     | 4.551         | 4.778          | 5.730  | 11.302 | 14.110 | 2.912   |
|                                       |       |         |       |                |           |               |                |        |        |        |         |

Table B12 - continued. Catch (thousands of fish; metric tons), mean weight (kg), and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      |      |      |      |       | лу        | 5          |      |       |       |       |      |
|------|------|------|------|-------|-----------|------------|------|-------|-------|-------|------|
| Year | 1    | 2    | 3    | 4     | 5         | 6          | 7    | 8     | 9     | 10+   | Mean |
|      |      |      |      | Catch | Mean Leng | th (cm) at | Age  |       |       |       |      |
| 1978 | 36.6 | 49.0 | 60.5 | 67.6  | 70.6      | 84.2       | 85.5 | 94.2  | 96.5  | 112.3 | 62.7 |
| 1979 | 38.5 | 50.9 | 57.0 | 72.9  | 76.9      | 87.9       | 96.5 | 99.4  | 98.7  | 111.3 | 67.0 |
| 1980 | 38.2 | 51.1 | 60.9 | 69.7  | 80.5      | 86.7       | 92.1 | 97.0  | 96.1  | 112.4 | 64.4 |
| 1981 | 38.8 | 51.3 | 60.3 | 68.8  | 77.1      | 88.1       | 93.5 | 97.2  | 109.5 | 117.7 | 63.6 |
| 1982 | 39.5 | 51.0 | 61.4 | 69.8  | 78.9      | 86.0       | 95.9 | 98.3  | 106.8 | 114.4 | 60.8 |
| 1983 | 39.7 | 51.7 | 60.8 | 67.9  | 76.8      | 84.8       | 93.0 | 100.9 | 103.9 | 114.4 | 63.1 |
| 1984 | 38.7 | 52.6 | 61.7 | 70.4  | 78.2      | 85.3       | 93.6 | 98.6  | 102.0 | 109.9 | 68.3 |
| 1985 | 40.6 | 50.3 | 57.6 | 70.7  | 77.6      | 84.4       | 92.1 | 99.1  | 104.1 | 110.5 | 60.9 |
| 1986 | 41.0 | 50.9 | 61.1 | 68.9  | 79.7      | 87.5       | 94.1 | 98.2  | 106.0 | 110.1 | 63.1 |
| 1987 | 39.9 | 51.6 | 61.4 | 72.6  | 81.2      | 90.4       | 94.4 | 98.5  | 103.8 | 112.7 | 59.2 |
| 1988 | 36.8 | 51.7 | 60.2 | 67.9  | 78.7      | 86.1       | 94.4 | 99.4  | 104.1 | 112.1 | 63.1 |
| 1989 | 35.2 | 52.1 | 58.9 | 70.0  | 78.3      | 84.5       | 89.4 | 98.4  | 102.4 | 111.1 | 63.7 |
| 1990 | 36.2 | 52.7 | 60.9 | 68.8  | 76.7      | 83.3       | 91.6 | 101.8 | 103.5 | 110.5 | 62.3 |
| 1991 | 40.6 | 52.3 | 61.6 | 68.4  | 76.0      | 81.6       | 89.5 | 96.7  | 99.1  | 112.6 | 65.9 |
| 1992 | 41.3 | 51.3 | 60.6 | 71.1  | 75.2      | 83.3       | 87.9 | 94.8  | 104.1 | 116.5 | 62.0 |
| 1993 | 31.5 | 50.3 | 59.3 | 66.7  | 77.5      | 82.3       | 89.3 | 95.1  | 99.4  | 112.8 | 63.0 |
| 1994 | 30.0 | 48.5 | 58.4 | 68.9  | 76.0      | 87.1       | 86.1 | 95.0  | 95.0  | 115.4 | 65.1 |
| 1995 | 29.8 | 50.6 | 57.4 | 70.1  | 79.4      | 83.9       | 94.9 | 105.3 | 106.6 | 121.3 | 63.7 |
| 1996 | 35.9 | 51.0 | 60.5 | 67.0  | 77.0      | 86.2       | 88.6 | 97.9  | 102.7 | 103.0 | 65.2 |
| 1997 | 34.0 | 51.4 | 60.3 | 68.2  | 72.3      | 81.6       | 91.6 | 91.1  | 104.8 | 105.9 | 65.6 |
| 1998 | 37.0 | 51.4 | 59.7 | 69.0  | 75.9      | 81.5       | 92.0 | 91.2  | 103.5 | 110.4 | 63.0 |
| 1999 | 34.1 | 50.7 | 59.0 | 68.4  | 76.0      | 83.1       | 87.6 | 93.5  | 101.5 | 111.7 | 63.2 |
| 2000 | 35.7 | 52.8 | 61.2 | 68.8  | 75.8      | 80.2       | 88.0 | 93.4  | 94.1  | 109.1 | 63.8 |
| 2001 | 35.7 | 51.1 | 59.5 | 65.7  | 73.5      | 80.7       | 83.9 | 91.8  | 97.4  | 104.3 | 62.4 |
| 2002 | 33.7 | 51.0 | 58.7 | 66.1  | 72.6      | 79.5       | 86.0 | 92.2  | 96.9  | 104.9 | 66.2 |
| 2003 | 32.0 | 52.7 | 60.0 | 65.4  | 72.3      | 76.9       | 82.9 | 88.3  | 93.4  | 99.3  | 68.1 |
| 2004 | 24.8 | 53.0 | 60.7 | 67.0  | 72.3      | 77.7       | 81.8 | 90.0  | 95.2  | 103.4 | 67.8 |
| 2005 | 29.4 | 43.1 | 57.7 | 65.7  | 73.1      | 76.7       | 80.4 | 92.1  | 94.8  | 103.6 | 64.5 |
| 2006 | 29.5 | 45.5 | 58.8 | 66 4  | 70.2      | 75.5       | 85.3 | 85.5  | 88.8  | 94.2  | 64 0 |
| 2007 | 29.8 | 52.0 | 58.5 | 64.4  | 69.2      | 72.7       | 81.9 | 87.5  | 86.9  | 93.5  | 62.7 |
| 2008 | 36.0 | 53.8 | 61.1 | 64.9  | 70.6      | 79.6       | 81.2 | 91.9  | 92.5  | 97.7  | 63.8 |
| 2009 | 35.2 | 50.3 | 59.1 | 68.7  | 72.4      | 76.4       | 83.1 | 85.8  | 96.9  | 104.3 | 64.7 |
| 2010 | 31.8 | 48.3 | 59.8 | 65.4  | 70.8      | 71.2       | 77.6 | 82.1  | 82.4  | 105.6 | 63.5 |
| 2011 | 28.3 | 47.9 | 60.3 | 65.7  | 70.7      | 76.6       | 76.9 | 82.4  | 105.0 | 112.2 | 64.5 |

Table B12 - continued. Catch (thousands of fish; metric tons), mean weight (kg), and mean length (cm), at age, of Atlantic cod from the Georges Bank and South stock (NAFO Division 5Z and Subarea 6), 1978-2011.

|      | calibration |      |
|------|-------------|------|
| cm   | coefficient | CV   |
| < 20 | 5.7237      | 0.16 |
| 21   | 5.6002      | 0.16 |
| 22   | 5.4767      | 0.16 |
| 23   | 5.3532      | 0.16 |
| 24   | 5.2297      | 0.15 |
| 25   | 5.1062      | 0.15 |
| 26   | 4.9827      | 0.15 |
| 27   | 4.8592      | 0.14 |
| 28   | 4.7357      | 0.14 |
| 29   | 4.6122      | 0.14 |
| 30   | 4.4887      | 0.14 |
| 31   | 4.3652      | 0.13 |
| 32   | 4.2417      | 0.13 |
| 33   | 4.1182      | 0.13 |
| 34   | 3.9947      | 0.12 |
| 35   | 3.8712      | 0.12 |
| 36   | 3.7477      | 0.11 |
| 37   | 3.6242      | 0.11 |
| 38   | 3.5007      | 0.11 |
| 39   | 3.3772      | 0.10 |
| 40   | 3.2537      | 0.10 |
| 41   | 3.1302      | 0.10 |
| 42   | 3.0067      | 0.09 |
| 43   | 2.8832      | 0.09 |
| 44   | 2.7597      | 0.09 |
| 45   | 2.6362      | 0.09 |
| 46   | 2.5127      | 0.09 |
| 47   | 2.3892      | 0.09 |
| 48   | 2.2657      | 0.10 |
| 49   | 2.1422      | 0.11 |
| 50   | 2.0187      | 0.12 |
| 51   | 1.8952      | 0.14 |
| 52   | 1.7717      | 0.16 |
| 53   | 1.6482      | 0.18 |
| 54   | 1.6016      | 0.20 |
| > 55 | 1.6016      | 0.20 |

Table B13. Length based calibration coefficients and coefficient of variation (CV) applied to spring and autumn survey Atlantic cod data to standardize *H.B.Bigelow* catches to *Albatross IV* units.



|      |            | Spring       |                      |             | Autumn                   |        |              |
|------|------------|--------------|----------------------|-------------|--------------------------|--------|--------------|
| Year | No/Tow     | No. CV       | Wt/Tow Wt CV         | No/Tow      | No. CV                   | Wt/Tow | Wt. CV       |
| 1963 | -          |              | -                    | 4.4         | 28.3                     | 17.8   | 27.2         |
| 1964 | -          |              | -                    | 2.8         | 22.1                     | 11.4   | 29.5         |
| 1965 | -          |              | -                    | 4.3         | 29.4                     | 11.8   | 31.7         |
| 1966 | -          |              | -                    | 4.9         | 25.3                     | 8.2    | 22.9         |
| 1967 | -          |              | -                    | 10.3        | 25.7                     | 13.6   | 22.7         |
| 1968 | 4.7        | 21.2         | 12.7 19.7            | 3.3         | 24.1                     | 8.5    | 25.1         |
| 1969 | 4.6        | 15.7         | 17.8 15.2            | 2.2         | 18.3                     | 8.0    | 20.1         |
| 1970 | 4.3        | 19.0         | 15.8 19.8            | 5.1         | 17.1                     | 12.6   | 18.7         |
| 1971 | 3.4        | 16.0         | 14.3 22.4            | 3.2         | 21.5                     | 9.8    | 25.5         |
| 1972 | 9.2        | 16.1         | 19.3 13.6            | 13.1        | 23.7                     | 23.0   | 36.4         |
| 1973 | 57.6       | 67.7         | 94.1 58.0            | 12.3        | 23.7                     | 30.8   | 29.3         |
| 1974 | 14.7       | 18.1         | 36.4 16.6            | 3.5         | 21.3                     | 8.2    | 21.3         |
| 1975 | 6.9<br>7 1 | 36.9         | 26.1 34.1            | 6.4<br>10.4 | 50.4                     | 14.1   | 41.1         |
| 1970 | 1.1        | 10.0         | 10.0 14.7            | 10.4        | 31.Z<br>16.1             | 17.7   | 23.9         |
| 1977 | 12.3       | 12.5         | 31.2 15.0            | 5.4<br>8.6  | 10.1                     | 12.0   | 14.1         |
| 1970 | 5.0        | 14.2         | 16.2 10.4            | 5.0         | 10. <del>4</del><br>10.4 | 16.5   | 12.0         |
| 1980 | 77         | 24.8         | 24.1 21.1            | 2.9         | 18.2                     | 67     | 24.6         |
| 1981 | 10.4       | 17.1         | 26.1 15.6            | 9.1         | 41.9                     | 20.3   | 43.5         |
| 1982 | 33.0       | 75.4         | 101.9 84.3           | 3.3         | 40.5                     | 6.1    | 41.5         |
| 1983 | 7.7        | 23.7         | 23.5 18.2            | 4.1         | 35.0                     | 7.4    | 30.3         |
| 1984 | 4.1        | 16.7         | 15.3 20.4            | 4.7         | 29.9                     | 10.0   | 31.8         |
| 1985 | 7.0        | 22.3         | 21.7 19.2            | 2.3         | 40.0                     | 3.1    | 45.7         |
| 1986 | 5.0        | 13.9         | 16.7 15.4            | 3.0         | 43.8                     | 3.7    | 27.5         |
| 1987 | 3.2        | 15.7         | 9.9 16.7             | 2.3         | 28.6                     | 4.4    | 30.2         |
| 1988 | 5.9        | 19.3         | 13.5 18.2            | 3.1         | 28.6                     | 5.6    | 34.4         |
| 1989 | 4.8        | 20.0         | 10.9 18.3            | 4.8         | 39.8                     | 4.7    | 29.2         |
| 1990 | 4.8        | 22.0         | 11.7 18.4            | 4.8         | 31.4                     | 11.5   | 41./         |
| 1991 | 4.3        | 11.2         | 8.9 13.8             | 1.0         | 25.2                     | 1.4    | 30.4         |
| 1992 | 2.7        | 18.0         | 7.4 20.8             | 1.7         | 25.6                     | 3.0    | 31.7         |
| 1993 | 2.4        | 20.5<br>27.0 | 7.0 ZO.4<br>1.2 27.7 | Z. I<br>1 9 | 04.4<br>27.2             | 2.2    | 34.4         |
| 1994 | 0.9        | 27.0         | 1.2 27.7             | 1.0         | 21.Z<br>18.A             | 5.5    | 33.4<br>17.1 |
| 1995 | 2.7        | 20.2         | 75 232               | 5.0<br>1 1  | 40.4<br>27 4             | 27     | 27.7         |
| 1997 | 2.7        | 17.5         | 52 267               | 0.9         | 44 8                     | 19     | 48.6         |
| 1998 | 4.4        | 34.4         | 11.7 36.1            | 1.9         | 23.7                     | 2.8    | 21.3         |
| 1999 | 2.1        | 16.0         | 4.7 19.5             | 1.0         | 31.9                     | 3.0    | 43.0         |
| 2000 | 3.6        | 25.7         | 8.2 24.0             | 1.3         | 65.5                     | 1.4    | 36.8         |
| 2001 | 1.9        | 26.1         | 5.5 33.2             | 1.0         | 33.3                     | 2.1    | 34.7         |
| 2002 | 2.1        | 23.4         | 5.0 19.9             | 4.7         | 37.3                     | 11.3   | 45.0         |
| 2003 | 2.0        | 36.9         | 4.2 39.8             | 1.2         | 42.9                     | 2.1    | 32.4         |
| 2004 | 5.4        | 50.3         | 14.3 59.4            | 4.2         | 41.7                     | 5.9    | 70.4         |
| 2005 | 2.0        | 17.7         | 4.5 19.4             | 1.0         | 30.8                     | 1.6    | 30.2         |
| 2006 | 3.2        | 27.0         | 6.1 24.3             | 1.4         | 43.1                     | 2.6    | 45.3         |
| 2007 | 3.4        | 25.1         | 5.1 24.2             | 0.6         | 29.4                     | 1.1    | 37.1         |
| 2008 | 3.6        | 31.6         | 4.3 22.5             | 3.6         | 74.6                     | 2.9    | 34.1         |
| 2009 | 2.3        | 24.5         | 3.5 22.3             | 2.5         | 50.3                     | 4.2    | 39.8         |
| 2010 | 1.9        | 21.2         | 3.8 19.5             | 1.6         | 34.9                     | 2.5    | 34.0         |
| 2011 | 1.0        | 21.0         | 1.9 23.9             | 1.8         | 30.4                     | 3.0    | 36.7         |
| 2012 | 1.7        | 24.3         | 3.5 23.7             |             |                          |        |              |
|      |            |              |                      |             |                          |        |              |

Table B14. Georges Bank Atlantic cod standardized stratified mean catch per tow in numbers and weight (kg) in NEFSC offshore spring and autumn research vessel bottom trawl surveys (strata 13-25), 1963 - 2012.

Table B15a. Georges Bank Atlantic cod standardized (for vessel and door changes) stratified mean catch per tow at age (numbers) in NEFSC offshore spring bottom trawl surveys (strata 13-25), 1963 - 2012.

|         |      |      |               |      | AGE  |      |      |      |      |      |      |         |
|---------|------|------|---------------|------|------|------|------|------|------|------|------|---------|
| Year    | 0    | 1    | 2             | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10+  | No./tow |
| SPRING  |      |      |               |      |      |      |      |      |      |      |      |         |
| 1968    | 0.51 | 0.14 | 1.62          | 0.83 | 0.67 | 0.39 | 0.25 | 0.14 | 0.08 | 0.06 | 0.06 | 4.72    |
| 1969    | 0.00 | 0.12 | 0.55          | 1 78 | 0.89 | 0.45 | 0.33 | 0.22 | 0.00 | 0.07 | 0.00 | 4 64    |
| 1970    | 0.00 | 0.38 | 0.81          | 0.48 | 1.30 | 0.16 | 0.66 | 0.27 | 0.06 | 0.16 | 0.06 | 4.34    |
| 1971    | 0.00 | 0.00 | 0.75          | 0.56 | 0.25 | 0.56 | 0.00 | 0.35 | 0.33 | 0.08 | 0.00 | 3.39    |
| 1972    | 0.06 | 3.01 | 1.87          | 2.67 | 0.52 | 0.00 | 0.32 | 0.00 | 0.00 | 0.00 | 0.10 | 9.16    |
| 1972    | 0.00 | 0.52 | 42 12         | 6 36 | 6 36 | 0.12 | 0.52 | 0.12 | 0.20 | 0.11 | 0.10 | 57 58   |
| 1973    | 0.00 | 0.02 | 4 68          | 5.84 | 0.30 | 1 07 | 0.00 | 0.07 | 0.04 | 0.20 | 0.41 | 14 74   |
| 1974    | 0.00 | 0.44 | -1.00<br>0.20 | 2.04 | 3 10 | 0.25 | 0.49 | 0.10 | 0.20 | 0.00 | 0.14 | 6.80    |
| 1975    | 0.00 | 1 20 | 1.05          | 2.04 | 0.66 | 1.60 | 0.09 | 0.13 | 0.11 | 0.13 | 0.00 | 7.06    |
| 1970    | 0.11 | 0.01 | 2.46          | 0.92 | 0.00 | 0.20 | 0.10 | 0.20 | 0.03 | 0.00 | 0.07 | 6.20    |
| 1977    | 0.00 | 0.01 | 0.40          | 1.11 | 0.09 | 0.20 | 0.71 | 0.00 | 0.07 | 0.00 | 0.02 | 10.30   |
| 1970    | 0.11 | 0.37 | 0.19          | 0.00 | 1.97 | 0.01 | 0.11 | 0.71 | 0.05 | 0.14 | 0.11 | 12.31   |
| 1979    | 0.11 | 0.42 | 1.29          | 0.28 | 1.87 | 0.53 | 0.22 | 0.09 | 0.13 | 0.01 | 0.04 | 4.99    |
| 1980    | 0.10 | 0.03 | 2.21          | 2.70 | 0.21 | 1.73 | 0.38 | 0.15 | 0.03 | 0.03 | 0.10 | 7.68    |
| 1981    | 0.30 | 2.30 | 1.85          | 2.82 | 1.70 | 0.11 | 0.85 | 0.26 | 0.13 | 0.00 | 0.11 | 10.44   |
| 1982    | 0.17 | 0.51 | 5.44          | 9.50 | 8.32 | 6.21 | 0.29 | 1.87 | 0.37 | 0.25 | 0.03 | 32.96   |
| 1983    | 0.08 | 0.33 | 1.95          | 3.02 | 0.80 | 0.70 | 0.44 | 0.03 | 0.22 | 0.00 | 0.14 | 7.70    |
| 1984    | 0.00 | 0.40 | 0.43          | 0.76 | 1.24 | 0.42 | 0.40 | 0.21 | 0.00 | 0.21 | 0.00 | 4.08    |
| 1985    | 0.24 | 0.11 | 2.65          | 0.66 | 1.11 | 1.41 | 0.27 | 0.19 | 0.18 | 0.04 | 0.16 | 7.03    |
| 1986    | 0.09 | 0.87 | 0.41          | 1.84 | 0.37 | 0.54 | 0.62 | 0.06 | 0.13 | 0.10 | 0.02 | 5.04    |
| 1987    | 0.00 | 0.02 | 1.61          | 0.38 | 0.76 | 0.06 | 0.18 | 0.14 | 0.03 | 0.03 | 0.02 | 3.24    |
| 1988    | 0.18 | 0.72 | 0.61          | 3.15 | 0.41 | 0.64 | 0.06 | 0.04 | 0.05 | 0.00 | 0.01 | 5.87    |
| 1989    | 0.00 | 0.31 | 1.41          | 0.67 | 1.58 | 0.24 | 0.35 | 0.05 | 0.04 | 0.05 | 0.09 | 4.79    |
| 1990    | 0.04 | 0.17 | 0.92          | 1.74 | 0.67 | 0.91 | 0.13 | 0.14 | 0.01 | 0.02 | 0.03 | 4.79    |
| 1991    | 0.19 | 1.03 | 0.53          | 0.69 | 0.93 | 0.48 | 0.33 | 0.05 | 0.04 | 0.00 | 0.04 | 4.31    |
| 1992    | 0.00 | 0.12 | 1.25          | 0.47 | 0.17 | 0.27 | 0.14 | 0.16 | 0.02 | 0.04 | 0.03 | 2.67    |
| 1993    | 0.11 | 0.01 | 0.40          | 1.31 | 0.21 | 0.09 | 0.14 | 0.03 | 0.03 | 0.02 | 0.05 | 2.40    |
| 1994    | 0.03 | 0.12 | 0.27          | 0.20 | 0.22 | 0.03 | 0.01 | 0.04 | 0.00 | 0.02 | 0.00 | 0.95    |
| 1995    | 0.48 | 0.05 | 0.38          | 0.85 | 0.53 | 0.60 | 0.11 | 0.22 | 0.04 | 0.02 | 0.00 | 3.29    |
| 1996    | 0.00 | 0.07 | 0.21          | 0.74 | 1.25 | 0.17 | 0.21 | 0.03 | 0.02 | 0.00 | 0.00 | 2.70    |
| 1997    | 0.30 | 0.29 | 0.44          | 0.17 | 0.49 | 0.42 | 0.05 | 0.13 | 0.02 | 0.00 | 0.00 | 2.31    |
| 1998    | 0.02 | 0.11 | 0.67          | 1.30 | 0.85 | 0.75 | 0.53 | 0.10 | 0.03 | 0.00 | 0.00 | 4.36    |
| 1999    | 0.07 | 0.21 | 0.29          | 0.61 | 0.51 | 0.24 | 0.12 | 0.06 | 0.02 | 0.01 | 0.00 | 2.15    |
| 2000    | 0.05 | 0.22 | 0.81          | 0.83 | 1.14 | 0.37 | 0.10 | 0.03 | 0.02 | 0.00 | 0.00 | 3.57    |
| 2001    | 0.00 | 0.06 | 0.23          | 0.79 | 0.16 | 0.38 | 0.18 | 0.02 | 0.02 | 0.01 | 0.00 | 1.86    |
| 2002    | 0.02 | 0.06 | 0.09          | 0.38 | 0.99 | 0.24 | 0.22 | 0.04 | 0.00 | 0.00 | 0.03 | 2.08    |
| 2003    | 0.00 | 0.02 | 0.21          | 0.26 | 0.61 | 0.71 | 0.08 | 0.08 | 0.01 | 0.00 | 0.00 | 1.98    |
| 2004    | 0.00 | 0.64 | 0.06          | 0.58 | 1.41 | 1.35 | 0.89 | 0.18 | 0.26 | 0.01 | 0.00 | 5.38    |
| 2005    | 0.06 | 0.01 | 0.48          | 0.14 | 0.63 | 0.27 | 0.21 | 0.13 | 0.03 | 0.00 | 0.00 | 1.96    |
| 2006    | 0.01 | 0.18 | 0.23          | 1.31 | 0.33 | 0.72 | 0.21 | 0.12 | 0.05 | 0.00 | 0.00 | 3.17    |
| 2007    | 0.00 | 0.13 | 0.64          | 0.38 | 1.79 | 0.18 | 0.21 | 0.03 | 0.02 | 0.00 | 0.00 | 3.37    |
| 2008    | 0.13 | 0.63 | 0.83          | 0.58 | 0.35 | 0.96 | 0.04 | 0.05 | 0.00 | 0.00 | 0.00 | 3.57    |
| 2009    | 0.00 | 0.62 | 0.35          | 0.58 | 0.28 | 0.15 | 0.25 | 0.02 | 0.01 | 0.01 | 0.00 | 2.26    |
| 2010    | 0.00 | 0.10 | 0.58          | 0.37 | 0.58 | 0.14 | 0.03 | 0.12 | 0.00 | 0.01 | 0.00 | 1.94    |
| 2011    | 0.00 | 0.07 | 0.26          | 0.18 | 0.28 | 0.14 | 0.05 | 0.01 | 0.02 | 0.00 | 0.00 | 1 02    |
| 20112   | 0.00 | 0.03 | 0.34          | 0.52 | 0.57 | 0.14 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 1.02    |
|         | 0.00 | 0.00 | 0.01          | 0.02 | 0.07 | 0.11 | 0.10 | 0.02 | 0.00 | 0.00 | 0.00 |         |
| Average | 0.25 | 0.39 | 1.97          | 1.53 | 1.10 | 0.66 | 0.28 | 0.17 | 0.09 | 0.07 | 0.09 | 6.42    |

|         |      |      |      |      | AGE  |      |      |      |      |      |      |         |
|---------|------|------|------|------|------|------|------|------|------|------|------|---------|
| Year    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10+  | No /tow |
| AUTUMN  |      |      |      |      |      |      |      |      |      |      |      |         |
|         |      |      |      |      |      |      |      |      |      |      |      |         |
| 1963    | 0.0  | 0.7  | 0.8  | 0.9  | 0.9  | 0.4  | 0.3  | 0.2  | 0.1  | 0.0  | 0.07 | 4.37    |
| 1964    | 0.0  | 0.6  | 0.7  | 0.6  | 0.5  | 0.1  | 0.1  | 0.1  | 0.1  | 0.0  | 0.08 | 2.98    |
| 1965    | 0.2  | 1.3  | 1.0  | 0.7  | 0.5  | 0.2  | 0.2  | 0.1  | 0.1  | 0.0  | 0.02 | 4.25    |
| 1966    | 1.0  | 1.7  | 1.0  | 0.5  | 0.3  | 0.1  | 0.1  | 0.1  | 0.0  | 0.0  | 0.02 | 4.81    |
| 1967    | 0.1  | 7.6  | 1.3  | 0.5  | 0.4  | 0.1  | 0.1  | 0.1  | 0.1  | 0.0  | 0.07 | 10.39   |
| 1968    | 0.1  | 0.3  | 1.6  | 0.8  | 0.3  | 0.1  | 0.1  | 0.0  | 0.0  | 0.0  | 0.05 | 3.30    |
| 1969    | 0.0  | 0.3  | 0.6  | 0.6  | 0.3  | 0.1  | 0.1  | 0.0  | 0.0  | 0.0  | 0.06 | 2.20    |
| 1970    | 0.43 | 1.70 | 1.36 | 0.53 | 0.70 | 0.15 | 0.00 | 0.03 | 0.06 | 0.05 | 0.10 | 5.12    |
| 1971    | 0.40 | 0.60 | 0.63 | 0.40 | 0.31 | 0.48 | 0.16 | 0.04 | 0.09 | 0.00 | 0.07 | 3.19    |
| 1972    | 0.91 | 7.48 | 1.34 | 1.73 | 0.40 | 0.24 | 0.55 | 0.14 | 0.16 | 0.02 | 0.11 | 13.09   |
| 1973    | 0.19 | 1.76 | 6.03 | 1.26 | 1.94 | 0.24 | 0.19 | 0.21 | 0.06 | 0.14 | 0.25 | 12.28   |
| 1974    | 0.46 | 0.41 | 0.65 | 1.52 | 0.16 | 0.09 | 0.13 | 0.00 | 0.06 | 0.00 | 0.00 | 3.49    |
| 1975    | 2.34 | 1.03 | 0.42 | 0.63 | 1.68 | 0.11 | 0.16 | 0.00 | 0.00 | 0.00 | 0.04 | 6.41    |
| 1976    | 0.00 | 6.14 | 2.07 | 0.76 | 0.28 | 0.74 | 0.05 | 0.27 | 0.04 | 0.05 | 0.02 | 10.43   |
| 1977    | 0.14 | 0.12 | 3.55 | 0.70 | 0.25 | 0.22 | 0.35 | 0.01 | 0.03 | 0.00 | 0.08 | 5.44    |
| 1978    | 0.38 | 1.87 | 0.25 | 4.1/ | 0.98 | 0.35 | 0.16 | 0.33 | 0.05 | 0.03 | 0.01 | 8.59    |
| 1979    | 0.12 | 1.61 | 1.68 | 0.16 | 1.69 | 0.32 | 0.18 | 0.03 | 0.11 | 0.01 | 0.03 | 5.95    |
| 1980    | 0.28 | 0.82 | 0.56 | 0.77 | 0.05 | 0.27 | 0.05 | 0.07 | 0.02 | 0.00 | 0.00 | 2.91    |
| 1981    | 0.26 | 3.53 | 2.20 | 1.52 | 0.76 | 0.06 | 0.60 | 0.09 | 0.04 | 0.00 | 0.09 | 9.15    |
| 1982    | 0.38 | 0.56 | 1.91 | 0.24 | 0.07 | 0.12 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 3.34    |
| 1983    | 1.28 | 0.85 | 1.09 | 0.74 | 0.07 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.04 | 4.14    |
| 1984    | 0.18 | 1.91 | 0.08 | 0.93 | 0.83 | 0.02 | 0.06 | 0.04 | 0.00 | 0.04 | 0.04 | 4.73    |
| 1900    | 0.10 | 0.10 | 0.04 | 0.07 | 0.11 | 0.07 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 2.31    |
| 1900    | 0.10 | 2.20 | 1 25 | 0.31 | 0.03 | 0.05 | 0.07 | 0.02 | 0.00 | 0.01 | 0.02 | 2.99    |
| 1907    | 0.20 | 0.41 | 1.55 | 0.11 | 0.20 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 2.33    |
| 1900    | 0.00 | 0.07 | 1.05 | 0.90 | 0.00 | 0.19 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 | 3.07    |
| 1969    | 0.20 | 2.00 | 1.00 | 1 91 | 0.01 | 0.05 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 4.04    |
| 1990    | 0.10 | 0.30 | 0.18 | 0.27 | 0.41 | 0.29 | 0.04 | 0.02 | 0.03 | 0.01 | 0.02 | 4.70    |
| 1991    | 0.04 | 0.41 | 0.10 | 0.27 | 0.05 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 72    |
| 1993    | 0.04 | 0.41 | 0.53 | 0.38 | 0.10 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 2 15    |
| 1994    | 0.10 | 0.07 | 0.66 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 1.82    |
| 1995    | 0.07 | 0.41 | 1 81 | 1 25 | 0.10 | 0.05 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 3.62    |
| 1996    | 0.02 | 0.24 | 0.20 | 0.41 | 0.00 | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 1 10    |
| 1997    | 0.01 | 0.24 | 0.32 | 0.11 | 0.13 | 0.05 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.87    |
| 1998    | 0.07 | 0.34 | 1.03 | 0.35 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.87    |
| 1999    | 0.07 | 0.14 | 0.15 | 0.31 | 0.25 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.02    |
| 2000    | 0.02 | 0.58 | 0.53 | 0.07 | 0.08 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.31    |
| 2001    | 0.03 | 0.05 | 0.38 | 0.46 | 0.06 | 0.05 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 1.04    |
| 2002    | 0.23 | 0.48 | 0.71 | 1.40 | 1.63 | 0.12 | 0.13 | 0.01 | 0.00 | 0.00 | 0.00 | 4.70    |
| 2003    | 0.33 | 0.14 | 0.33 | 0.21 | 0.16 | 0.08 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 1.25    |
| 2004    | 1.69 | 0.74 | 0.14 | 0.71 | 0.25 | 0.32 | 0.25 | 0.06 | 0.02 | 0.00 | 0.02 | 4.21    |
| 2005    | 0.05 | 0.06 | 0.58 | 0.13 | 0.18 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 1.02    |
| 2006    | 0.10 | 0.43 | 0.16 | 0.51 | 0.03 | 0.12 | 0.01 | 0.04 | 0.01 | 0.01 | 0.00 | 1.44    |
| 2007    | 0.07 | 0.11 | 0.21 | 0.05 | 0.13 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59    |
| 2008    | 2.22 | 0.39 | 0.62 | 0.18 | 0.01 | 0.11 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 3.57    |
| 2009    | 0.12 | 1.29 | 0.64 | 0.36 | 0.07 | 0.03 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 2.55    |
| 2010    | 0.31 | 0.38 | 0.59 | 0.13 | 0.14 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.61    |
| 2011    | 0.10 | 0.47 | 0.69 | 0.27 | 0.17 | 0.09 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 1.81    |
| Average | 0.37 | 1.19 | 0.99 | 0.66 | 0.38 | 0.14 | 0.11 | 0.06 | 0.05 | 0.03 | 0.06 | 3.90    |

Table B15b. Georges Bank Atlantic cod standardized (for vessel and door changes) stratified mean catch per tow at age (numbers) in NEFSC offshore autumn bottom trawl surveys (strata 13-25), 1963 - 2011.

|         |      |      |      | 4    | AGE  |      |      |      |      |      |          |      |
|---------|------|------|------|------|------|------|------|------|------|------|----------|------|
| Year    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10+  | No./ tow | CV   |
| SPRING  |      |      |      |      |      |      |      |      |      |      |          |      |
| 1986    | 0.60 | 2.27 | 2.81 | 0.37 | 0.65 | 0.44 | 0.26 | 0.04 | 0.07 | 0.03 | 7.54     | 0.35 |
| 1987    | 0.25 | 2.13 | 0.92 | 1.09 | 0.33 | 0.12 | 0.21 | 0.07 | 0.03 | 0.07 | 5.22     | 0.26 |
| 1988    | 0.28 | 0.99 | 4.67 | 0.59 | 1.02 | 0.13 | 0.08 | 0.17 | 0.04 | 0.05 | 8.02     | 0.24 |
| 1989    | 1.52 | 2.70 | 1.35 | 2.81 | 0.36 | 0.42 | 0.05 | 0.10 | 0.12 | 0.07 | 9.49     | 0.16 |
| 1990    | 0.45 | 2.62 | 3.85 | 2.11 | 3.89 | 0.42 | 0.93 | 0.12 | 0.12 | 0.35 | 14.86    | 0.17 |
| 1991    | 1.17 | 1.16 | 1.84 | 2.14 | 1.04 | 1.30 | 0.16 | 0.22 | 0.03 | 0.09 | 9.15     | 0.13 |
| 1992    | 0.11 | 2.86 | 1.77 | 0.80 | 0.98 | 0.60 | 0.43 | 0.12 | 0.07 | 0.02 | 7.76     | 0.18 |
| *1993   | 0.05 | 0.60 | 2.83 | 1.04 | 0.62 | 1.23 | 0.44 | 0.42 | 0.07 | 0.12 | 7.42     | 0.23 |
| *1994   | 0.02 | 0.80 | 0.89 | 1.65 | 0.60 | 0.23 | 0.45 | 0.11 | 0.15 | 0.04 | 4.94     | 0.39 |
| 1995    | 0.07 | 0.67 | 1.50 | 0.86 | 0.60 | 0.19 | 0.04 | 0.05 | 0.02 | 0.02 | 4.02     | 0.26 |
| 1996    | 0.14 | 0.49 | 2.31 | 4.02 | 1.09 | 0.79 | 0.33 | 0.08 | 0.11 | 0.03 | 9.39     | 0.26 |
| 1997    | 0.32 | 0.53 | 0.55 | 1.25 | 1.23 | 0.27 | 0.06 | 0.03 | 0.02 | 0.01 | 4.27     | 0.19 |
| 1998    | 0.01 | 0.67 | 0.95 | 0.35 | 0.35 | 0.28 | 0.07 | 0.02 | 0.00 | 0.02 | 2.72     | 0.19 |
| 1999    | 0.33 | 0.32 | 1.49 | 1.09 | 0.41 | 0.26 | 0.15 | 0.01 | 0.02 | 0.01 | 4.06     | 0.19 |
| 2000    | 0.10 | 0.44 | 1.05 | 3.89 | 1.74 | 0.79 | 0.39 | 0.24 | 0.01 | 0.02 | 8.69     | 0.49 |
| 2001    | 0.00 | 0.06 | 0.64 | 0.42 | 1.11 | 0.52 | 0.26 | 0.17 | 0.16 | 0.05 | 3.39     | 0.33 |
| 2002    | 0.01 | 0.09 | 0.57 | 2.05 | 0.68 | 1.22 | 0.40 | 0.17 | 0.05 | 0.08 | 5.32     | 0.26 |
| 2003    | -    | 0.02 | 0.30 | 0.65 | 1.21 | 0.32 | 0.34 | 0.16 | 0.01 | -    | 3.01     | 0.15 |
| 2004    | 0.54 | 0.10 | 0.39 | 0.42 | 0.45 | 0.39 | 0.07 | 0.12 | 0.02 | 0.01 | 2.50     | 0.18 |
| **2005  | 0.02 | 1.43 | 0.62 | 2.69 | 1.21 | 0.53 | 0.32 | 0.03 | 0.01 | -    | 6.86     | 0.44 |
| 2006    | -    | 0.04 | 1.40 | 0.62 | 1.59 | 0.66 | 0.19 | 0.19 | 0.07 | 0.05 | 4.81     | 0.32 |
| 2007    | 0.14 | 0.52 | 0.94 | 2.94 | 0.39 | 0.60 | 0.10 | 0.08 | 0.04 | 0.00 | 5.75     | 0.20 |
| 2008    | 0.01 | 0.32 | 0.90 | 0.59 | 2.18 | 0.14 | 0.28 | 0.03 | 0.00 | 0.01 | 4.47     | 0.24 |
| 2009    | 0.03 | 0.27 | 2.24 | 1.99 | 0.42 | 2.38 | -    | 0.07 | -    | 0.01 | 7.40     | 0.53 |
| 2010    | 0.00 | 0.14 | 1.10 | 4.68 | 2.07 | 0.82 | 2.12 | 0.07 | 0.10 | 0.00 | 11.12    | 0.62 |
| 2011    | 0.13 | 0.44 | 0.67 | 0.78 | 1.00 | 0.19 | 0.05 | 0.08 | 0.01 | 0.00 | 3.34     | 0.19 |
| *2012   | 0.01 | 0.22 | 0.51 | 0.44 | 0.25 | 0.21 | 0.01 | 0.02 | 0.01 | -    | 1.67     | 0.17 |
| average | 0.30 | 0.89 | 1.45 | 1.63 | 1.08 | 0.57 | 0.32 | 0.10 | 0.05 | 0.04 | 6.37     | 0.28 |

Table B15c. Georges Bank Atlantic cod stratified mean catch per tow at age (numbers) in Canadian Department of Fisheries and Oceans (DFO) February research bottom trawl survey, 1986-2012.

\* not used in assessment calibration; entire Bank not surveyed;5Z5,6,7 missing \*\*R/V Teleost ( R/V Needler indices not used since entire GB not surveyed)

| YEAR | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10+  | A50 |  |  |
|------|------|------|------|------|------|------|------|------|------|------|-----|--|--|
|      |      |      |      |      |      |      |      |      |      |      |     |  |  |
| 1970 | 0.03 | 0.20 | 0.69 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.6 |  |  |
| 1971 | 0.03 | 0.20 | 0.69 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.6 |  |  |
| 1972 | 0.02 | 0.20 | 0.73 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.6 |  |  |
| 1973 | 0.02 | 0.19 | 0.70 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.6 |  |  |
| 1974 | 0.02 | 0.17 | 0.68 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.7 |  |  |
| 1975 | 0.05 | 0.25 | 0.67 | 0.93 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.6 |  |  |
| 1976 | 0.06 | 0.28 | 0.71 | 0.94 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.5 |  |  |
| 1977 | 0.09 | 0.34 | 0.73 | 0.94 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.4 |  |  |
| 1978 | 0.08 | 0.33 | 0.75 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.4 |  |  |
| 1979 | 0.07 | 0.34 | 0.78 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 1980 | 0.09 | 0.38 | 0.79 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 1981 | 0.09 | 0.38 | 0.79 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 1982 | 0.08 | 0.36 | 0.79 | 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 1983 | 0.08 | 0.41 | 0.85 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.2 |  |  |
| 1984 | 0.13 | 0.49 | 0.87 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 1985 | 0.18 | 0.59 | 0.91 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.8 |  |  |
| 1986 | 0.16 | 0.58 | 0.91 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.8 |  |  |
| 1987 | 0.20 | 0.59 | 0.89 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.8 |  |  |
| 1988 | 0.25 | 0.64 | 0.90 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.7 |  |  |
| 1989 | 0.20 | 0.61 | 0.91 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.8 |  |  |
| 1990 | 0.12 | 0.46 | 0.85 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.1 |  |  |
| 1991 | 0.13 | 0.53 | 0.89 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.9 |  |  |
| 1992 | 0.09 | 0.47 | 0.89 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.1 |  |  |
| 1993 | 0.04 | 0.43 | 0.93 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.1 |  |  |
| 1994 | 0.04 | 0.41 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.1 |  |  |
| 1995 | 0.04 | 0.50 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 1996 | 0.05 | 0.48 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 1997 | 0.10 | 0.57 | 0.94 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.9 |  |  |
| 1998 | 0.09 | 0.56 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.9 |  |  |
| 1999 | 0.07 | 0.51 | 0.93 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 2000 | 0.07 | 0.51 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 2001 | 0.08 | 0.50 | 0.93 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.0 |  |  |
| 2002 | 0.07 | 0.43 | 0.88 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.1 |  |  |
| 2003 | 0.04 | 0.33 | 0.84 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 2004 | 0.07 | 0.38 | 0.83 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.2 |  |  |
| 2005 | 0.06 | 0.36 | 0.83 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 2006 | 0.05 | 0.35 | 0.84 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 2007 | 0.04 | 0.37 | 0.88 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.2 |  |  |
| 2008 | 0.04 | 0.35 | 0.86 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 2009 | 0.03 | 0.31 | 0.87 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.3 |  |  |
| 2010 | 0.02 | 0.27 | 0.85 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.4 |  |  |
| 2011 | 0.02 | 0.25 | 0.83 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.4 |  |  |
| 2012 | 0.02 | 0.21 | 0.82 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.5 |  |  |

Table B16. Georges Bank Atlantic cod female median age at maturity (A50) and maturity ogives for ages 1-10+ from the NEFSC spring research survey data, 1970- 2012.

| Table B17a. Georges Bank Atlantic cod January 1 stock weights at age, 197 | 8-2011. |
|---------------------------------------------------------------------------|---------|
|---------------------------------------------------------------------------|---------|

|           |        |        |        |        | Age    |        |        |        |         |         |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
| stock waa | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9       | 10+     |
| 1978      | 0.3048 | 0.9566 | 1.7695 | 2.777  | 2.8866 | 5.1593 | 5.4354 | 7.8834 | 9.0644  | 14.0744 |
| 1979      | 0.3866 | 0.8281 | 1.5285 | 3.1251 | 4.0109 | 5.2565 | 7.6079 | 8.2732 | 9.1521  | 14.0065 |
| 1980      | 0.3673 | 0.9055 | 1.8061 | 2.5954 | 4.7801 | 5.7141 | 7.6426 | 9.4851 | 9.7511  | 14.0451 |
| 1981      | 0.403  | 0.9004 | 1.7866 | 2.8614 | 4.081  | 6.2448 | 7.5589 | 8.8461 | 11.5989 | 17.096  |
| 1982      | 0.4358 | 0.9129 | 1.8687 | 2.8914 | 4.2008 | 5.6315 | 8.0441 | 9.1448 | 10.9339 | 15.6291 |
| 1983      | 0.4461 | 0.9569 | 1.8036 | 2.8699 | 4.1665 | 5.7176 | 7.3979 | 9.8044 | 10.6807 | 15.5762 |
| 1984      | 0.4576 | 1.0108 | 1.8692 | 2.9437 | 4.0841 | 5.5548 | 7.374  | 9.0704 | 10.7499 | 14.0524 |
| 1985      | 0.5138 | 0.9323 | 1.7546 | 3.0181 | 4.2271 | 5.5839 | 7.2158 | 9.2882 | 10.7579 | 13.9359 |
| 1986      | 0.4943 | 0.9941 | 1.7827 | 2.651  | 4.4526 | 5.8309 | 7.3113 | 8.9014 | 11.2299 | 14.2689 |
| 1987      | 0.4609 | 1.0023 | 1.8353 | 3.1007 | 4.4038 | 6.382  | 7.7757 | 9.203  | 10.6012 | 15.0424 |
| 1988      | 0.3422 | 0.9714 | 1.7981 | 2.8454 | 4.551  | 6.1198 | 8.1159 | 9.3412 | 10.6247 | 14.488  |
| 1989      | 0.2821 | 0.9038 | 1.7347 | 2.8634 | 4.1052 | 5.733  | 7.1453 | 9.129  | 10.4303 | 13.526  |
| 1990      | 0.3133 | 0.86   | 1.8712 | 2.7158 | 4.1602 | 5.5872 | 7.1845 | 9.0993 | 10.3944 | 13.525  |
| 1991      | 0.5748 | 0.8852 | 1.919  | 2.8526 | 4.0224 | 5.2684 | 6.789  | 8.7547 | 10.5554 | 14.4293 |
| 1992      | 0.6044 | 1.0401 | 1.855  | 3.0336 | 3.8909 | 5.3099 | 6.3741 | 8.1504 | 10.3556 | 15.7121 |
| 1993      | 0.2012 | 1.0266 | 1.7347 | 2.6707 | 4.2804 | 5.0529 | 6.5803 | 7.761  | 9.7092  | 14.3095 |
| 1994      | 0.1575 | 0.6652 | 1.6656 | 2.7093 | 3.7594 | 5.7903 | 6.1439 | 7.9178 | 8.7052  | 15.7281 |
| 1995      | 0.1564 | 0.6608 | 1.5358 | 2.736  | 4.1309 | 5.3755 | 7.5832 | 8.7756 | 10.2014 | 18.9171 |
| 1996      | 0.3077 | 0.6676 | 1.773  | 2.4766 | 4.1639 | 5.6477 | 6.9847 | 8.934  | 11.3789 | 10.8441 |
| 1997      | 0.2577 | 0.859  | 1.7745 | 2.7812 | 3.51   | 5.1528 | 7.0073 | 7.6875 | 10.4119 | 11.7344 |
| 1998      | 0.3506 | 0.7995 | 1.7774 | 2.7649 | 3.841  | 4.6068 | 6.5813 | 7.6632 | 9.2023  | 13.5989 |
| 1999      | 0.2433 | 0.8661 | 1.7214 | 2.6761 | 3.8543 | 5.0577 | 5.9993 | 8.0562 | 8.9291  | 13.9853 |
| 2000      | 0.3191 | 0.836  | 1.7908 | 2.6553 | 3.8212 | 4.8583 | 6.3362 | 7.3264 | 8.3444  | 13.254  |
| 2001      | 0.3379 | 0.8514 | 1.8389 | 2.6324 | 3.7159 | 4.9193 | 5.7007 | 7.399  | 8.5923  | 11.5319 |
| 2002      | 0.2479 | 0.8862 | 1.7091 | 2.538  | 3.408  | 4.6124 | 5.9175 | 7.0272 | 8.5539  | 11.5002 |
| 2003      | 0.167  | 0.8613 | 1.7953 | 2.4601 | 3.3729 | 4.2986 | 5.4659 | 6.746  | 8.2242  | 10.1391 |
| 2004      | 0.0963 | 0.7593 | 1.9617 | 2.6385 | 3.3308 | 4.3003 | 5.1223 | 6.5429 | 7.8459  | 11.2934 |
| 2005      | 0.1294 | 0.4293 | 1.819  | 2.6579 | 3.4776 | 4.1748 | 5.0532 | 6.7156 | 8.0512  | 11.3806 |
| 2006      | 0.1297 | 0.5481 | 1.4055 | 2.5173 | 3.2717 | 4.1987 | 5.3964 | 5.8277 | 7.7064  | 9.0013  |
| 2007      | 0.1122 | 0.6703 | 1.5414 | 2.4741 | 3.3031 | 3.8488 | 5.1184 | 6.685  | 6.6114  | 8.6937  |
| 2008      | 0.3346 | 0.6815 | 1.8927 | 2.4415 | 3.2005 | 4.3555 | 4.8198 | 6.8698 | 7.5365  | 10.2684 |
| 2009      | 0.3508 | 0.8636 | 1.8974 | 2.7881 | 3.3172 | 4.11   | 5.7415 | 6.1416 | 8.7314  | 11.4192 |
| 2010      | 0.1986 | 0.8026 | 1.7502 | 2.4822 | 3.4761 | 3.8224 | 4.7009 | 6.0012 | 6.3982  | 12.2702 |
| 2011      | 0.1112 | 0.6703 | 1.667  | 2.5482 | 3.223  | 4.0777 | 4.2376 | 5.2278 | 8.1584  | 14.1104 |

Table B17b. Georges Bank Atlantic cod Lorenzen (1996) age based natural mortality (M) estimates derived from January 1 stock weights at age with annual and time series mean, 1978-2011.

| Lorenzen M |      |      |      | AGE  |      |      |      |      |       |      |      |
|------------|------|------|------|------|------|------|------|------|-------|------|------|
|            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9 10+ |      | Mean |
| 1978       | 0.64 | 0.45 | 0.38 | 0.33 | 0.32 | 0.27 | 0.27 | 0.24 | 0.23  | 0.20 | 0.33 |
| 1979       | 0.60 | 0.48 | 0.39 | 0.32 | 0.29 | 0.27 | 0.24 | 0.24 | 0.23  | 0.20 | 0.33 |
| 1980       | 0.61 | 0.46 | 0.37 | 0.34 | 0.28 | 0.26 | 0.24 | 0.23 | 0.22  | 0.20 | 0.32 |
| 1981       | 0.59 | 0.46 | 0.38 | 0.33 | 0.29 | 0.26 | 0.24 | 0.23 | 0.21  | 0.19 | 0.32 |
| 1982       | 0.58 | 0.46 | 0.37 | 0.32 | 0.29 | 0.26 | 0.24 | 0.23 | 0.22  | 0.19 | 0.32 |
| 1983       | 0.57 | 0.45 | 0.37 | 0.33 | 0.29 | 0.26 | 0.24 | 0.22 | 0.22  | 0.19 | 0.32 |
| 1984       | 0.57 | 0.45 | 0.37 | 0.32 | 0.29 | 0.27 | 0.24 | 0.23 | 0.22  | 0.20 | 0.32 |
| 1985       | 0.55 | 0.46 | 0.38 | 0.32 | 0.29 | 0.27 | 0.25 | 0.23 | 0.22  | 0.20 | 0.32 |
| 1986       | 0.56 | 0.45 | 0.38 | 0.33 | 0.28 | 0.26 | 0.24 | 0.23 | 0.21  | 0.20 | 0.32 |
| 1987       | 0.57 | 0.45 | 0.37 | 0.32 | 0.29 | 0.25 | 0.24 | 0.23 | 0.22  | 0.20 | 0.31 |
| 1988       | 0.62 | 0.45 | 0.38 | 0.33 | 0.28 | 0.26 | 0.24 | 0.23 | 0.22  | 0.20 | 0.32 |
| 1989       | 0.66 | 0.46 | 0.38 | 0.33 | 0.29 | 0.26 | 0.25 | 0.23 | 0.22  | 0.20 | 0.33 |
| 1990       | 0.64 | 0.47 | 0.37 | 0.33 | 0.29 | 0.27 | 0.25 | 0.23 | 0.22  | 0.20 | 0.33 |
| 1991       | 0.53 | 0.47 | 0.37 | 0.33 | 0.29 | 0.27 | 0.25 | 0.23 | 0.22  | 0.20 | 0.32 |
| 1992       | 0.52 | 0.44 | 0.37 | 0.32 | 0.30 | 0.27 | 0.26 | 0.24 | 0.22  | 0.19 | 0.31 |
| 1993       | 0.73 | 0.45 | 0.38 | 0.33 | 0.29 | 0.27 | 0.25 | 0.24 | 0.22  | 0.20 | 0.34 |
| 1994       | 0.79 | 0.51 | 0.38 | 0.33 | 0.30 | 0.26 | 0.26 | 0.24 | 0.23  | 0.19 | 0.35 |
| 1995       | 0.79 | 0.51 | 0.39 | 0.33 | 0.29 | 0.27 | 0.24 | 0.23 | 0.22  | 0.18 | 0.35 |
| 1996       | 0.64 | 0.51 | 0.38 | 0.34 | 0.29 | 0.26 | 0.25 | 0.23 | 0.21  | 0.22 | 0.33 |
| 1997       | 0.68 | 0.47 | 0.38 | 0.33 | 0.31 | 0.27 | 0.25 | 0.24 | 0.22  | 0.21 | 0.34 |
| 1998       | 0.62 | 0.48 | 0.38 | 0.33 | 0.30 | 0.28 | 0.25 | 0.24 | 0.23  | 0.20 | 0.33 |
| 1999       | 0.69 | 0.47 | 0.38 | 0.33 | 0.30 | 0.27 | 0.26 | 0.24 | 0.23  | 0.20 | 0.34 |
| 2000       | 0.64 | 0.47 | 0.38 | 0.33 | 0.30 | 0.28 | 0.26 | 0.24 | 0.23  | 0.20 | 0.33 |
| 2001       | 0.62 | 0.47 | 0.37 | 0.33 | 0.30 | 0.28 | 0.26 | 0.24 | 0.23  | 0.21 | 0.33 |
| 2002       | 0.69 | 0.47 | 0.38 | 0.34 | 0.31 | 0.28 | 0.26 | 0.25 | 0.23  | 0.21 | 0.34 |
| 2003       | 0.77 | 0.47 | 0.38 | 0.34 | 0.31 | 0.29 | 0.27 | 0.25 | 0.24  | 0.22 | 0.35 |
| 2004       | 0.92 | 0.49 | 0.37 | 0.33 | 0.31 | 0.29 | 0.27 | 0.25 | 0.24  | 0.21 | 0.37 |
| 2005       | 0.84 | 0.58 | 0.37 | 0.33 | 0.31 | 0.29 | 0.27 | 0.25 | 0.24  | 0.21 | 0.37 |
| 2006       | 0.84 | 0.54 | 0.40 | 0.34 | 0.31 | 0.29 | 0.27 | 0.26 | 0.24  | 0.23 | 0.37 |
| 2007       | 0.87 | 0.51 | 0.39 | 0.34 | 0.31 | 0.30 | 0.27 | 0.25 | 0.25  | 0.23 | 0.37 |
| 2008       | 0.63 | 0.50 | 0.37 | 0.34 | 0.31 | 0.29 | 0.28 | 0.25 | 0.24  | 0.22 | 0.34 |
| 2009       | 0.62 | 0.47 | 0.37 | 0.33 | 0.31 | 0.29 | 0.26 | 0.26 | 0.23  | 0.21 | 0.34 |
| 2010       | 0.73 | 0.48 | 0.38 | 0.34 | 0.31 | 0.30 | 0.28 | 0.26 | 0.25  | 0.21 | 0.35 |
| 2011       | 0.88 | 0.51 | 0.38 | 0.34 | 0.31 | 0.29 | 0.29 | 0.27 | 0.24  | 0.20 | 0.37 |
| Mean       | 0.7  | 0.5  | 0.4  | 0.3  | 0.3  | 0.3  | 0.3  | 0.2  | 0.2   | 0.2  |      |
|            |      |      |      |      |      |      |      |      |       |      |      |

Table B18. Selected VPA diagnostics, including predicted beginning year stock numbers for ages 1-8, standard error and CV, and catchability estimates of each survey index, with standard error and CV for Model comparison Run A (terminal year 2010) and Run B (terminal year 2011) for the Georges Bank Atlantic cod stock.

|       | F      | RUN A   |      |       |                  |      |             |      |       |        | RUN B   |      |       |                  |      |             |      |
|-------|--------|---------|------|-------|------------------|------|-------------|------|-------|--------|---------|------|-------|------------------|------|-------------|------|
| FEB   | 2012 T | Y 2010  |      |       | Survey Index     | (    | Catchabilit | y    | NOV   | 2012 T | Y 2011  |      |       | Survey Index     | C    | atchability | /    |
|       |        |         |      |       |                  | q    | Std. Err    | CV   |       |        |         |      |       |                  | q    | Std. Err    | CV   |
|       |        |         |      |       | spr_36_us_1      | 0.02 | 0.01        | 0.34 |       |        |         |      |       | spr_36_us_1      | 0.02 | 0.01        | 0.34 |
|       |        |         |      |       | spr_36_us_2      | 0.09 | 0.01        | 0.12 |       |        |         |      |       | spr_36_us_2      | 0.09 | 0.01        | 0.12 |
|       | RSS    | 384.38  |      |       | spr_36_us_3      | 0.17 | 0.03        | 0.18 |       | RSS    | 389.3   |      |       | spr_36_us_3      | 0.16 | 0.03        | 0.18 |
|       |        |         |      |       | spr_36_us_4      | 0.21 | 0.04        | 0.20 |       |        |         |      |       | spr_36_us_4      | 0.21 | 0.04        | 0.20 |
| age   | N      | std err | CV   | F2012 | spr_36_us_5      | 0.26 | 0.06        | 0.22 | age   | N      | std err | CV   | F2012 | spr_36_us_5      | 0.25 | 0.05        | 0.22 |
| 1     | 8075   | 3711.7  | 0.46 | 0.00  | spr_36_us_6      | 0.27 | 0.05        | 0.18 | 1     |        |         |      | 0.00  | spr_36_us_6      | 0.25 | 0.05        | 0.20 |
| 2     | 2704   | 881.2   | 0.33 | 0.03  | spr_36_us_7      | 0.27 | 0.05        | 0.18 | 2     | 5639   | 2001    | 0.35 | 0.16  | spr_36_us_7      | 0.26 | 0.05        | 0.18 |
| 3     | 4857   | 1320.6  | 0.27 | 0.28  | spr_36_us_8      | 0.33 | 0.06        | 0.19 | 3     | 2379   | 691     | 0.29 | 0.43  | spr_36_us_8      | 0.31 | 0.06        | 0.19 |
| 4     | 1366   | 396.2   | 0.29 | 0.44  | post-spr_36_us_1 | 0.04 | 0.01        | 0.21 | 4     | 2851   | 776     | 0.27 | 0.70  | post-spr_36_us_1 | 0.04 | 0.01        | 0.21 |
| 5     | 937    | 302.5   | 0.32 | 0.52  | post-spr_36_us_2 | 0.12 | 0.01        | 0.11 | 5     | 681    | 237     | 0.35 | 0.75  | post-spr_36_us_2 | 0.12 | 0.01        | 0.11 |
| 6     | 211    | 77.3    | 0.37 | 0.41  | post-spr_36_us_3 | 0.23 | 0.03        | 0.15 | 6     | 439    | 165     | 0.38 | 0.90  | post-spr_36_us_3 | 0.24 | 0.03        | 0.14 |
| 7     | 44     | 17.8    | 0.41 | 0.42  | post-spr_36_us_4 | 0.54 | 0.09        | 0.17 | 7     | 54     | 32      | 0.59 | 0.95  | post-spr_36_us_4 | 0.50 | 0.08        | 0.16 |
| 8     | 122    | 52.5    | 0.43 | 0.45  | post-spr_36_us_5 | 0.73 | 0.13        | 0.17 | 8     | 20     | 15      | 0.74 | 0.97  | post-spr_36_us_5 | 0.67 | 0.11        | 0.17 |
| F 5-8 | ;      |         |      | 0.45  | post-spr_36_us_6 | 0.76 | 0.12        | 0.16 | F 5-8 | 3      |         |      | 0.69  | post-spr_36_us_6 | 0.71 | 0.11        | 0.15 |
| SSB   |        |         |      | 11289 | post-spr_36_us_7 | 0.82 | 0.17        | 0.21 | SSB   |        |         |      | 12532 | post-spr_36_us_7 | 0.75 | 0.14        | 0.19 |
|       |        |         |      |       | post-spr_36_us_8 | 0.77 | 0.17        | 0.22 |       |        |         |      |       | post-spr_36_us_8 | 0.80 | 0.16        | 0.20 |
|       |        |         |      |       | spr_41_us_1      | 0.01 | 0.01        | 0.75 |       |        |         |      |       | spr_41_us_1      | 0.01 | 0.01        | 0.76 |
|       |        |         |      |       | spr_41_us_2      | 0.09 | 0.02        | 0.26 |       |        |         |      |       | spr_41_us_2      | 0.08 | 0.02        | 0.31 |
|       |        |         |      |       | spr_41_us_3      | 0.19 | 0.05        | 0.26 |       |        |         |      |       | spr_41_us_3      | 0.17 | 0.05        | 0.30 |
|       |        |         |      |       | spr_41_us_4      | 0.17 | 0.02        | 0.14 |       |        |         |      |       | spr_41_us_4      | 0.15 | 0.02        | 0.16 |
|       |        |         |      |       | spr_41_us_5      | 0.20 | 0.06        | 0.28 |       |        |         |      |       | spr_41_us_5      | 0.19 | 0.05        | 0.28 |
|       |        |         |      |       | spr_41_us_6      | 0.19 | 0.03        | 0.18 |       |        |         |      |       | spr_41_us_6      | 0.16 | 0.04        | 0.26 |
|       |        |         |      |       | spr_41_us_7      | 0.27 | 0.10        | 0.38 |       |        |         |      |       | spr_41_us_7      | 0.25 | 0.09        | 0.37 |
|       |        |         |      |       | spr_41_us_8      | 0.27 | 0.16        | 0.60 |       |        |         |      |       | spr_41_us_8      | 0.23 | 0.12        | 0.53 |
|       |        |         |      |       | spr_dfo_1        | 0.03 | 0.01        | 0.32 |       |        |         |      |       | spr_dfo_1        | 0.03 | 0.01        | 0.32 |
|       |        |         |      |       | spr_dfo_2        | 0.18 | 0.04        | 0.21 |       |        |         |      |       | spr_dfo_2        | 0.18 | 0.04        | 0.21 |
|       |        |         |      |       | spr_dfo_3        | 0.32 | 0.04        | 0.11 |       |        |         |      |       | spr_dfo_3        | 0.31 | 0.04        | 0.11 |
|       |        |         |      |       | spr_dfo_4        | 0.36 | 0.05        | 0.13 |       |        |         |      |       | spr_dfo_4        | 0.35 | 0.04        | 0.13 |
|       |        |         |      |       | spr_dfo_5        | 0.57 | 0.07        | 0.12 |       |        |         |      |       | spr_dfo_5        | 0.55 | 0.07        | 0.12 |
|       |        |         |      |       | spr_dfo_6        | 0.54 | 0.11        | 0.21 |       |        |         |      |       | spr_dfo_6        | 0.52 | 0.11        | 0.21 |
|       |        |         |      |       | spr_dfo_7        | 0.69 | 0.20        | 0.28 |       |        |         |      |       | spr_dfo_7        | 0.66 | 0.19        | 0.28 |
|       |        |         |      |       | spr_dfo_8        | 0.84 | 0.23        | 0.27 |       |        |         |      |       | spr_dfo_8        | 0.80 | 0.22        | 0.27 |
|       |        |         |      |       | post-spr_dfo_1   | 0.01 | 0.00        | 0.34 |       |        |         |      |       | post-spr_dfo_1   | 0.01 | 0.01        | 0.35 |
|       |        |         |      |       | post-spr_dfo_2   | 0.09 | 0.02        | 0.24 |       |        |         |      |       | post-spr_dfo_2   | 0.09 | 0.02        | 0.24 |
|       |        |         |      |       | post-spr_dfo_3   | 0.42 | 0.07        | 0.16 |       |        |         |      |       | post-spr_dfo_3   | 0.43 | 0.07        | 0.16 |
|       |        |         |      |       | post-spr_dfo_4   | 1.09 | 0.17        | 0.15 |       |        |         |      |       | post-spr_dfo_4   | 1.07 | 0.16        | 0.15 |
|       |        |         |      |       | post-spr_dfo_5   | 1.76 | 0.27        | 0.15 |       |        |         |      |       | post-spr_dfo_5   | 1.71 | 0.27        | 0.16 |
|       |        |         |      |       | post-spr_dfo_6   | 2.52 | 0.45        | 0.18 |       |        |         |      |       | post-spr_dfo_6   | 2.45 | 0.44        | 0.18 |
|       |        |         |      |       | post-spr_dfo_7   | 2.41 | 0.51        | 0.21 |       |        |         |      |       | post-spr_dfo_7   | 2.31 | 0.55        | 0.24 |
|       |        |         |      |       | post-spr_dfo_8   | 2.45 | 0.50        | 0.21 |       |        |         |      |       | post-spr_dfo_8   | 2.50 | 0.49        | 0.20 |
|       |        |         |      |       | aut_1            | 0.02 | 0.00        | 0.20 |       |        |         |      |       | aut_1            | 0.02 | 0.00        | 0.20 |
|       |        |         |      |       | aut_2            | 0.08 | 0.01        | 0.14 |       |        |         |      |       | aut_2            | 0.07 | 0.01        | 0.16 |
|       |        |         |      |       | aut_3            | 0.12 | 0.02        | 0.15 |       |        |         |      |       | aut_3            | 0.11 | 0.02        | 0.15 |
|       |        |         |      |       | aut_4            | 0.12 | 0.02        | 0.18 |       |        |         |      |       | aut_4            | 0.12 | 0.02        | 0.18 |
| 1     |        |         |      |       | aut_5            | 0.09 | 0.02        | 0.24 |       |        |         |      |       | aut_5            | 0.09 | 0.02        | 0.22 |
| 1     |        |         |      |       | aut_6            | 0.10 | 0.02        | 0.16 |       |        |         |      |       | aut_6            | 0.09 | 0.01        | 0.15 |
| 1     |        |         |      |       | post-aut_1       | 0.03 | 0.01        | 0.41 | 1     |        |         |      |       | post-aut_1       | 0.03 | 0.01        | 0.42 |
| 1     |        |         |      |       | post-aut_2       | 0.10 | 0.02        | 0.19 |       |        |         |      |       | post-aut_2       | 0.10 | 0.02        | 0.19 |
|       |        |         |      |       | post-aut_3       | 0.20 | 0.03        | 0.15 |       |        |         |      |       | post-aut_3       | 0.21 | 0.03        | 0.15 |
|       |        |         |      |       | post-aut_4       | 0.26 | 0.05        | 0.18 |       |        |         |      |       | post-aut_4       | 0.24 | 0.04        | 0.17 |
|       |        |         |      |       | post-aut_5       | 0.23 | 0.05        | 0.21 |       |        |         |      |       | post-aut_5       | 0.22 | 0.04        | 0.19 |
|       |        |         |      |       | post-aut_6       | 0.31 | 0.06        | 0.20 |       |        |         |      |       | post-aut_6       | 0.30 | 0.06        | 0.18 |

Table B19a. Beginning year stock size (thousands of fish) and instantaneous fishing mortality (F) of Georges Bank cod, estimated from virtual population analysis (**VPA**), calibrated using split survey swept area estimates for the commercial catch at age ADAPT formulation, 1978-2011.

Stock Numbers (Jan 1 ) in thousands

|                   | 1078   | 1070   | 1080   | 1081   | 1082   | 1083   | 108/   | 1085  | 1086  | 1087  | 1088   | 1080  | 1000  | 1001  | 1002  | 1003  | 100/  |       |
|-------------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| ۸ се              | 1970   | 1919   | 1900   | 1301   | 1302   | 1905   | 1304   | 1905  | 1300  | 1907  | 1900   | 1909  | 1990  | 1991  | 1992  | 1990  | 1994  |       |
| - Age<br>1        | 10161  | 11100  | 9676   | 10617  | 9600   | 1059   | 12202  | 5142  | 22742 | 9502  | 9055   | 5102  | 2401  | 11021 | 4707  | 1075  | 004   |       |
| 1                 | 6757   | 01044  | 205020 | 16770  | 22202  | 4900   | 0702   | 0140  | 7001  | 27507 | 14577  | 19060 | 10261 | 7016  | 4/2/  | 6337  | 504   |       |
| 2                 | 40074  | 21044  | 20502  | 10//0  | 33392  | 14713  | 0/03   | 22325 | 1001  | 0040  | 14077  | 10900 | 12301 | 1010  | 0707  | 0337  | 0300  |       |
| 3                 | 40971  | 7095   | 34032  | 20011  | 21043  | 30072  | 10000  | 9900  | 23322 | 9310  | 41909  | 1/040 | 27730 | 12914 | 9/0/  | 10745 | 0195  |       |
| 4                 | 24383  | 45623  | 6770   | 2//25  | 20377  | 15256  | 27658  | 11048 | 5686  | 20155 | /99/   | 31638 | 15103 | 19949 | 6768  | 5971  | 9544  |       |
| 5                 | 9751   | 18738  | 36030  | 5639   | 22157  | 12945  | 9066   | 19695 | 6526  | 4190  | 14998  | 5284  | 21225 | 10876 | 10939 | 3687  | 2518  |       |
| 6                 | 8/63   | 10158  | 15729  | 24165  | 4479   | 13682  | 7695   | 5798  | 10625 | 4431  | 3059   | /195  | 3806  | 11005 | 4802  | 4785  | 1416  |       |
| 7                 | 7426   | 8189   | 7829   | 9166   | 15739  | 2871   | 8154   | 4188  | 2750  | 6937  | 2658   | 1499  | 3614  | 2397  | 4770  | 2072  | 1584  |       |
| 8                 | 798    | 7113   | 6642   | 3770   | 5531   | 9104   | 1411   | 4388  | 2021  | 2021  | 4395   | 1078  | 833   | 1810  | 1349  | 1929  | 701   |       |
| 9                 | 1522   | 382    | 3974   | 5633   | 2281   | 3251   | 5092   | 815   | 1918  | 1217  | 1326   | 1828  | 464   | 564   | 868   | 802   | 564   |       |
| 10+               | 1876   | 3050   | 1642   | 3923   | 3620   | 5051   | 3784   | 3364  | 1139  | 1197  | 1532   | 1064  | 1096  | 823   | 386   | 825   | 144   |       |
| Total             | 120407 | 133915 | 141776 | 140950 | 137819 | 117903 | 100299 | 86731 | 84611 | 95557 | 101487 | 91573 | 89633 | 80075 | 61949 | 45128 | 28923 |       |
|                   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002  | 2003  | 2004  | 2005   | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  |
| Age               |        |        |        |        |        |        |        |       |       |       |        |       |       |       |       |       |       |       |
| 1                 | 532    | 1590   | 2010   | 1409   | 2784   | 1834   | 679    | 733   | 195   | 610   | 180    | 456   | 521   | 1144  | 2217  | 760   | 794   | 772   |
| 2                 | 3354   | 2148   | 4363   | 6326   | 3331   | 8288   | 4020   | 1493  | 2516  | 728   | 2257   | 624   | 1899  | 2577  | 2364  | 4088  | 2055  | 4185  |
| 3                 | 9371   | 6784   | 4446   | 7040   | 10986  | 5424   | 13707  | 5589  | 2405  | 4880  | 1336   | 5756  | 1367  | 3724  | 5332  | 3651  | 6708  | 4158  |
| 4                 | 4365   | 9170   | 6152   | 3601   | 5363   | 8880   | 4599   | 9225  | 4076  | 1881  | 4365   | 1053  | 6630  | 1150  | 2693  | 4354  | 3344  | 7257  |
| 5                 | 4201   | 2679   | 6501   | 3100   | 2268   | 3308   | 6057   | 2597  | 5420  | 2063  | 1234   | 2348  | 520   | 3491  | 738   | 1321  | 2900  | 2249  |
| 6                 | 805    | 2309   | 1514   | 3062   | 1425   | 1083   | 1969   | 3253  | 1257  | 2150  | 941    | 481   | 981   | 265   | 1690  | 334   | 670   | 1777  |
| 7                 | 833    | 492    | 1167   | 664    | 1569   | 740    | 574    | 954   | 1315  | 524   | 925    | 305   | 155   | 408   | 174   | 688   | 203   | 267   |
| 8                 | 557    | 312    | 304    | 238    | 320    | 618    | 397    | 234   | 381   | 463   | 226    | 301   | 123   | 66    | 162   | 81    | 272   | 127   |
| 9                 | 248    | 321    | 179    | 89     | 70     | 91     | 291    | 178   | 93    | 168   | 120    | 57    | 111   | 43    | 33    | 59    | 64    | 160   |
| 10+               | 61     | 12     | 86     | 54     | 22     | 20     | 41     | 187   | 54    | 113   | 70     | 58    | 18    | 26    | 20    | 16    | 43    | 51    |
| Total             | 24328  | 25817  | 26722  | 25584  | 28138  | 30283  | 32334  | 24443 | 17711 | 13582 | 11656  | 11439 | 12325 | 12894 | 15422 | 15351 | 17053 | 21003 |
| Fishing Mortality |        |        |        |        |        |        |        |       |       |       |        |       |       |       |       |       |       |       |
|                   | 1978   | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   | 1985  | 1986  | 1987  | 1988   | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  |       |
| Age               | 0.01   | 0.02   | 0.02   | 0.02   | 0.04   | 0.05   | 0.01   | 0.02  | 0.02  | 0.00  | 0.01   | 0.02  | 0.00  | 0.01  | 0.01  | 0.00  | 0.01  |       |
| 1                 | 0.01   | 0.02   | 0.03   | 0.02   | 0.04   | 0.05   | 0.01   | 0.02  | 0.02  | 0.00  | 0.01   | 0.03  | 0.00  | 0.01  | 0.01  | 0.00  | 0.01  |       |
| 2                 | 0.14   | 0.13   | 0.25   | 0.20   | 0.40   | 0.41   | 0.22   | 0.42  | 0.25  | 0.20  | 0.10   | 0.14  | 0.55  | 0.31  | 0.30  | 0.30  | 0.07  |       |
| 3                 | 0.44   | 0.46   | 0.47   | 0.51   | 0.58   | 0.50   | 0.62   | 0.78  | 0.50  | 0.40  | 0.55   | 0.42  | 0.55  | 0.91  | 0.00  | 0.81  | 0.05  |       |
| 4                 | 0.43   | 0.46   | 0.44   | 0.41   | 0.62   | 0.67   | 0.50   | 0.72  | 0.61  | 0.48  | 0.58   | 0.57  | 0.52  | 0.71  | 0.75  | 1.01  | 1.04  |       |
| 5                 | 0.36   | 0.33   | 0.47   | 0.35   | 0.59   | 0.61   | 0.56   | 0.74  | 0.55  | 0.45  | 0.77   | 0.44  | 0.69  | 0.90  | 0.89  | 1.06  | 1.30  |       |
| 6                 | 0.26   | 0.44   | 0.62   | 0.48   | 0.52   | 0.57   | 0.67   | 0.82  | 0.51  | 0.55  | 0.67   | 0.71  | 0.46  | 0.83  | 0.86  | 1.10  | 0.60  |       |
| 7                 | 0.26   | 0.23   | 0.68   | 0.50   | 0.55   | 0.71   | 0.65   | 0.74  | 0.34  | 0.44  | 0.82   | 0.63  | 0.69  | 0.56  | 0.90  | 1.07  | 1.20  |       |
| 8                 | 0.69   | 0.55   | 0.17   | 0.51   | 0.49   | 0.47   | 0.52   | 0.82  | 0.48  | 0.37  | 0.79   | 0.77  | 0.34  | 0.70  | 0.50  | 1.14  | 1.09  |       |
| 9                 | 0.31   | 0.34   | 0.52   | 0.46   | 0.57   | 0.60   | 0.61   | 0.75  | 0.51  | 0.47  | 0.76   | 0.57  | 0.66  | 0.84  | 0.88  | 1.08  | 1.09  |       |
| 10+               | 0.31   | 0.34   | 0.52   | 0.46   | 0.57   | 0.60   | 0.61   | 0.75  | 0.51  | 0.47  | 0.76   | 0.57  | 0.66  | 0.84  | 0.88  | 1.08  | 1.09  |       |
| F 5-8             | 0.39   | 0.39   | 0.48   | 0.46   | 0.53   | 0.59   | 0.60   | 0.78  | 0.47  | 0.45  | 0.76   | 0.64  | 0.54  | 0.75  | 0.79  | 1.09  | 1.05  |       |
|                   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002  | 2003  | 2004  | 2005   | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  |       |
| Age               |        |        |        |        |        |        |        |       |       |       |        |       |       |       |       |       |       |       |
| 1                 | 0.00   | 0.00   | 0.00   | 0.01   | 0.00   | 0.01   | 0.01   | 0.00  | 0.00  | 0.01  | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |       |
| 2                 | 0.12   | 0.10   | 0.14   | 0.12   | 0.11   | 0.11   | 0.17   | 0.04  | 0.05  | 0.07  | 0.06   | 0.05  | 0.16  | 0.10  | 0.06  | 0.03  | 0.05  |       |
| 3                 | 0.29   | 0.34   | 0.43   | 0.48   | 0.44   | 0.34   | 0.51   | 0.48  | 0.42  | 0.21  | 0.36   | 0.22  | 0.43  | 0.51  | 0.27  | 0.26  | 0.15  |       |
| 4                 | 0.71   | 0.49   | 0.81   | 0.59   | 0.64   | 0.52   | 0.63   | 0.62  | 0.78  | 0.50  | 0.63   | 0.78  | 0.70  | 0.55  | 0.73  | 0.47  | 0.46  |       |
| 5                 | 0.71   | 0.58   | 0.82   | 0.85   | 0.77   | 0.57   | 0.64   | 0.76  | 0.97  | 0.81  | 0.93   | 0.84  | 0.75  | 0.78  | 0.73  | 0.64  | 0.52  |       |
| 6                 | 0.55   | 0.70   | 0.87   | 0.73   | 0.68   | 0.60   | 0.71   | 0.88  | 0.85  | 0.81  | 1.18   | 1.13  | 0.90  | 0.49  | 0.83  | 0.40  | 0.91  |       |
| 7                 | 0.94   | 0.38   | 1.48   | 0.73   | 0.93   | 0.58   | 0.90   | 0.85  | 1.02  | 0.91  | 1.06   | 0.92  | 0.95  | 0.97  | 0.61  | 0.83  | 0.65  |       |
| 8                 | 0.61   | 0.51   | 1.20   | 1.18   | 1.10   | 0.71   | 0.75   | 0.88  | 0.77  | 1.35  | 1.32   | 0.92  | 0.97  | 0.73  | 0.85  | 0.33  | 0.69  |       |
| 9                 | 0.71   | 0.61   | 0.87   | 0.79   | 0.78   | 0.58   | 0.66   | 0.82  | 0.96  | 0.82  | 1.03   | 0.87  | 0.85  | 0.77  | 0.79  | 0.64  | 0.69  |       |
| 10+               | 0.71   | 0.61   | 0.87   | 0.79   | 0.78   | 0.58   | 0.66   | 0.82  | 0.96  | 0.82  | 1.03   | 0.87  | 0.85  | 0.77  | 0.79  | 0.64  | 0.69  |       |
| F 5-8             | 0.71   | 0.54   | 1.09   | 0.87   | 0.87   | 0.61   | 0.75   | 0.84  | 0.90  | 0.97  | 1.12   | 0.95  | 0.89  | 0.74  | 0.76  | 0.55  | 0.69  |       |

Table B19b. Spawning stock biomass (mt) and female percent mature (5-year moving window) of Georges Bank cod, estimated from virtual population analysis (**VPA**), calibrated using split survey swept area estimates for the commercial catch at age ADAPT formulation, 1978-2011.

SSB at start of spawning season

|        |           | 1978     | 1979   | 1980   | 1981  | 1982  | 1983  | 1984  | 1985  | 1986  | 1987  | 1988  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  |      |
|--------|-----------|----------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|        | Age       |          |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
|        | 1         | 883      | 858    | 581    | 1618  | 743   | 381   | 1020  | 644   | 3949  | 1315  | 1731  | 1248  | 657   | 1382  | 593   | 172   | 35    |      |
|        | 2         | 2170     | 6825   | 6463   | 5888  | 11487 | 4782  | 3329  | 9873  | 4317  | 20125 | 8073  | 11465 | 6655  | 3300  | 8477  | 2742  | 2199  |      |
|        | 3         | 32126    | 5170   | 23746  | 17907 | 15007 | 25119 | 11514 | 7369  | 18886 | 7676  | 32982 | 14485 | 22263 | 9130  | 7548  | 12601 | 5001  |      |
|        | 4         | 20632    | 38814  | 5846   | 24047 | 17063 | 12660 | 24110 | 9295  | 4916  | 17816 | 6878  | 27256 | 13122 | 16623 | 5659  | 4836  | 7759  |      |
|        | 5         | 8793     | 16985  | 31916  | 5091  | 19227 | 11200 | 7987  | 16842 | 5762  | 3763  | 12768 | 4752  | 18289 | 9061  | 9124  | 2989  | 1962  |      |
|        | 6         | 8121     | 9137   | 13719  | 21568 | 3974  | 12029 | 6656  | 4895  | 9432  | 3909  | 2647  | 6178  | 3411  | 9274  | 4027  | 3852  | 1239  |      |
|        | 7         | 6874     | 7622   | 6765   | 8163  | 13900 | 2465  | 7076  | 3581  | 2514  | 6235  | 2243  | 1306  | 3116  | 2113  | 3969  | 1677  | 1254  |      |
|        | 8         | 688      | 6281   | 6249   | 3347  | 4933  | 8137  | 1251  | 3703  | 1804  | 1840  | 3728  | 916   | 762   | 1557  | 1202  | 1542  | 565   |      |
|        | 9         | 1397     | 349    | 3525   | 5050  | 2006  | 2846  | 4447  | 695   | 1704  | 1089  | 1130  | 1608  | 402   | 474   | 724   | 648   | 455   |      |
|        | 10+       | 1723     | 2787   | 1456   | 3517  | 3183  | 4420  | 3305  | 2871  | 1013  | 1070  | 1306  | 936   | 949   | 692   | 322   | 666   | 116   |      |
|        | Total     | 83407    | 94828  | 100266 | 96196 | 91524 | 84040 | 70697 | 59769 | 54297 | 64837 | 73486 | 70150 | 69626 | 53605 | 41645 | 31725 | 20585 |      |
|        | ٨٩٩       | 1995     | 1996   | 1997   | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  |      |
|        | Aye<br>1  | 21       | 61     | 97     | 136   | 242   | 124   | 46    | 57    | 13    | 24    | 12    | 26    | 25    | 11    | 86    | 22    | 15    |      |
|        | 2         | 1303     | 1022   | 1080   | 3420  | 1771  | /015  | 1026  | 717   | 1038  | 24    | 822   | 20    | 626   | 908   | 702   | 1220  | 533   |      |
|        | 3         | 7941     | 5949   | 3803   | 5911  | 9282  | 4610  | 11442 | 4640  | 1907  | 3830  | 1010  | 4453  | 1033  | 2011  | 4237  | 2940  | 5383  |      |
|        | 4         | 3752     | 8171   | 5202   | 3123  | 4662  | 7798  | 4005  | 7971  | 3426  | 1641  | 3727  | 877   | 5593  | 1004  | 2282  | 3856  | 2967  |      |
|        | 5         | 3609     | 2351   | 5481   | 2601  | 1929  | 2909  | 5267  | 2214  | 4462  | 1744  | 1022  | 1976  | 443   | 2967  | 631   | 1149  | 2573  |      |
|        | 6         | 710      | 1988   | 1267   | 2621  | 1231  | 949   | 1692  | 2719  | 1055  | 1819  | 747   | 386   | 816   | 236   | 1423  | 302   | 557   |      |
|        | 7         | 688      | 447    | 882    | 568   | 1299  | 650   | 477   | 801   | 1072  | 436   | 749   | 253   | 128   | 336   | 152   | 580   | 176   |      |
|        | 8         | 487      | 278    | 240    | 189   | 258   | 531   | 339   | 196   | 324   | 357   | 175   | 250   | 101   | 56    | 136   | 74    | 235   |      |
|        | 9         | 213      | 280    | 150    | 76    | 59    | 80    | 252   | 151   | 77    | 142   | 98    | 47    | 93    | 36    | 28    | 51    | 55    |      |
|        | 10+       | 52       | 10     | 72     | 46    | 19    | 17    | 35    | 158   | 45    | 96    | 57    | 48    | 15    | 22    | 17    | 14    | 37    |      |
|        | Total     | 18777    | 20557  | 19174  | 18691 | 20753 | 21681 | 25482 | 19623 | 13418 | 10317 | 8420  | 8531  | 8875  | 8521  | 9783  | 10208 | 12531 |      |
| Boroon | 4 moture  | . (fomal | )<br>) |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| Fercen | it mature | 1078     | 1070   | 1080   | 1091  | 1082  | 1083  | 109/  | 1095  | 1086  | 1097  | 1099  | 1080  | 1000  | 1001  | 1002  | 1003  | 1004  |      |
|        | Δne ·     | 1370     | 1373   | 1300   | 1301  | 1302  | 1300  | 130-  | 1305  | 1300  | 1307  | 1300  | 1303  | 1330  | 1331  | 1332  | 1335  | 1334  |      |
|        | 1<br>1    | 0.08     | 0.07   | 0.09   | 0.09  | 0.08  | 0.08  | 0.13  | 0 18  | 0 16  | 0.20  | 0.25  | 0.20  | 0 12  | 0.13  | 0.09  | 0.04  | 0.04  |      |
|        | 2         | 0.00     | 0.34   | 0.38   | 0.38  | 0.36  | 0.00  | 0.10  | 0.10  | 0.58  | 0.59  | 0.64  | 0.61  | 0.46  | 0.53  | 0.00  | 0.01  | 0.01  |      |
|        | 3         | 0.00     | 0.78   | 0.79   | 0.00  | 0.79  | 0.85  | 0.87  | 0.00  | 0.00  | 0.89  | 0.90  | 0.91  | 0.85  | 0.89  | 0.89  | 0.93  | 0.92  |      |
|        | 4         | 0.95     | 0.96   | 0.96   | 0.96  | 0.96  | 0.98  | 0.98  | 0.99  | 0.99  | 0.98  | 0.98  | 0.98  | 0.97  | 0.98  | 0.99  | 1 00  | 1 00  |      |
|        | 5         | 0.99     | 0.99   | 0.99   | 0.99  | 0.99  | 1.00  | 1 00  | 1 00  | 1 00  | 1 00  | 1 00  | 1 00  | 1.00  | 1 00  | 1 00  | 1 00  | 1.00  |      |
|        | 6+        | 1.00     | 1.00   | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  |      |
|        |           | 1005     | 1006   | 1007   | 1008  | 1000  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2000  | 2010  | 2011  | 2012 |
|        | Δne       | 1990     | 1330   | 1331   | 1330  | 1333  | 2000  | 2001  | 2002  | 2005  | 2004  | 2005  | 2000  | 2007  | 2000  | 2003  | 2010  | 2011  | 2012 |
|        | , ge<br>1 | 0.04     | 0.05   | 0 10   | 0.09  | 0.07  | 0.07  | 0.08  | 0.07  | 0.04  | 0.07  | 0.06  | 0.05  | 0.04  | 0.04  | 0.03  | 0.02  | 0.02  | 0.02 |
|        | י<br>כ    | 0.04     | 0.00   | 0.10   | 0.05  | 0.07  | 0.07  | 0.00  | 0.07  | 0.04  | 0.07  | 0.00  | 0.00  | 0.04  | 0.04  | 0.00  | 0.02  | 0.02  | 0.02 |
|        | 2         | 0.00     | 0.40   | 0.07   | 0.00  | 0.01  | 0.01  | 0.00  | 0.43  | 0.00  | 0.00  | 0.00  | 0.00  | 0.07  | 0.00  | 0.31  | 0.21  | 0.20  | 0.21 |
|        | 3         | 1.00     | 1.00   | 0.94   | 0.94  | 0.95  | 1.00  | 0.93  | 0.00  | 0.04  | 0.00  | 0.00  | 0.04  | 0.00  | 0.00  | 0.07  | 0.00  | 0.00  | 0.02 |
|        | 4         | 1.00     | 1.00   | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 0.90  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 0.99  | 1.00 |
|        | 5         | 1.00     | 1.00   | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 |
|        | 07        | 1.00     | 1.00   | 1.00   | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 |

Table B20. ASAP model diagnostics for the VPA-like, BASE, MRamp, and Catch Multiplier model formulations: number of parameters, total objective function (OF) value, contribution to the OF by components, root mean square error (RMSE) of the standardized residuals, and the spawning stock biomass (SSB 2011) and fishing mortality of unweighted ages 5+ (F2011 for terminal year 2011).

| Model               |                       | vpa like | BASE  | Mramp | CatMult |
|---------------------|-----------------------|----------|-------|-------|---------|
| number of parameter | ers                   | 158      | 94    | 94    | 94      |
| objective function  |                       | 5989     | 2269  | 2271  | 2298    |
| components of       | catch total           | 280      | 260   | 260   | 279     |
| obj. function       | index fit total       | 4991     | 840   | 833   | 848     |
|                     | catch age composition | 344      | 430   | 431   | 430     |
|                     | Index age composition | 0        | 739   | 747   | 741     |
|                     | Recruit deviations    | 374      | 0     | 0     | 0       |
| RMSE                | Catch fleet           | 1.09     | 0.14  | 0.08  | 0.18    |
|                     | DFO                   |          | 0.92  | 0.84  | 1.14    |
|                     | Autumn                |          | 1.01  | 0.94  | 1.07    |
|                     | Spring 41             |          | 1.11  | 1.11  | 1.10    |
|                     | Spring 36             |          | 0.92  | 0.79  | 0.94    |
|                     | Index total           |          | 0.96  | 0.87  | 1.05    |
| SSB 2011            |                       | 13109    | 22217 | 21536 | 36323   |
| F 2011 (age 5+)     |                       | 0.51     | 0.23  | 0.26  | 0.45    |

Table B21. ASAP model with freely estimated selectivity at age for the DFO, NEFSC autumn and NEFSC spring surveys (and freely estimated fleet selectivity).

| Run 15w    | value | std dev | CV   |        |    |
|------------|-------|---------|------|--------|----|
| index_sel_ | 0.04  | 0.01    | 0.25 | dfo    | 1  |
| index_sel_ | 0.16  | 0.03    | 0.17 |        | 2  |
| index_sel_ | 0.38  | 0.06    | 0.15 |        | 3  |
| index_sel_ | 0.80  | 0.11    | 0.14 |        | 4  |
| index_sel_ | 1.00  | 0.00    | 0.00 |        | 5  |
| index_sel_ | 1.00  | 0.00    | 0.00 |        | 6  |
| index_sel_ | 0.90  | 0.22    | 0.24 |        | 7  |
| index_sel_ | 0.39  | 0.22    | 0.55 |        | 9  |
| index_sel_ | 0.02  | 0.04    | 1.62 |        | 10 |
| index_sel_ | 0.19  | 0.03    | 0.15 | autumn | 1  |
| index_sel_ | 0.54  | 0.06    | 0.12 |        | 2  |
| index_sel_ | 0.86  | 0.10    | 0.11 |        | 3  |
| index_sel_ | 1.00  | 0.00    | 0.00 |        | 4  |
| index_sel_ | 0.93  | 0.14    | 0.15 |        | 5  |
| index_sel_ | 0.11  | 0.02    | 0.19 | spr    | 1  |
| index_sel_ | 0.32  | 0.05    | 0.15 |        | 2  |
| index_sel_ | 0.63  | 0.09    | 0.14 |        | 3  |
| index_sel_ | 0.88  | 0.12    | 0.14 |        | 4  |
| index_sel_ | 1.00  | 0.00    | 0.00 |        | 5  |
| index_sel_ | 0.99  | 0.19    | 0.19 |        | 6  |
| index_sel_ | 0.84  | 0.21    | 0.25 |        | 7  |
| index_sel_ | 0.43  | 0.23    | 0.54 |        | 9  |
| index_sel_ | 0.01  | 0.03    | 1.88 |        | 10 |

| run16w         | value | std  | CV   |      |      |
|----------------|-------|------|------|------|------|
| sel_params[1]  | 0.04  | 0.02 | 0.36 | 1978 | age1 |
| sel_params[2]  | 0.46  | 0.08 | 0.18 |      | 2    |
| sel_params[3]  | 0.97  | 0.17 | 0.18 |      | 3    |
| sel_params[5]  | 0.87  | 0.22 | 0.25 |      | 5    |
| sel_params[6]  | 1.00  | 0.00 | 0.00 |      | 6    |
| sel_params[7]  | 0.89  | 0.37 | 0.42 |      | 7    |
| sel_params[8]  | 1.00  | 0.01 | 0.01 |      | 8    |
| sel_params[9]  | 0.97  | 0.97 | 1.00 |      | 9    |
| sel_params[10] | 0.55  | 0.77 | 1.40 |      | 10   |
| sel_params[11] | 0.02  | 0.01 | 0.34 | 1983 | 1    |
| sel_params[12] | 0.45  | 0.07 | 0.15 |      | 2    |
| sel_params[13] | 0.93  | 0.13 | 0.14 |      | 3    |
| sel_params[14] | 0.98  | 0.16 | 0.16 |      | 4    |
| sel_params[16] | 0.94  | 0.21 | 0.23 |      | 6    |
| sel_params[17] | 0.95  | 0.30 | 0.31 |      | 7    |
| sel_params[18] | 0.79  | 0.34 | 0.43 |      | 8    |
| sel_params[19] | 1.00  | 0.01 | 0.01 |      | 9    |
| sel_params[20] | 0.85  | 0.80 | 0.94 |      | 10   |
| sel_params[21] | 0.01  | 0.00 | 0.67 | 1994 | 1    |
| sel_params[22] | 0.13  | 0.03 | 0.20 |      | 2    |
| sel_params[23] | 0.52  | 0.08 | 0.16 |      | 3    |
| sel_params[24] | 0.87  | 0.15 | 0.17 |      | 4    |
| sel_params[26] | 0.87  | 0.26 | 0.30 |      | 6    |
| sel_params[27] | 1.00  | 0.00 | 0.00 |      | 7    |
| sel_params[28] | 1.00  | 0.00 | 0.00 |      | 8    |
| sel_params[29] | 1.00  | 0.00 | 0.00 |      | 9    |
| sel_params[30] | 1.00  | 0.03 | 0.03 |      | 10   |
| sel_params[31] | 0.01  | 0.00 | 0.48 | 2000 | 1    |
| sel_params[32] | 0.13  | 0.02 | 0.17 |      | 2    |
| sel_params[33] | 0.54  | 0.07 | 0.13 |      | 3    |
| sel_params[34] | 0.90  | 0.12 | 0.13 |      | 4    |
| sel_params[35] | 1.00  | 0.00 | 0.00 |      | 5    |
| sel_params[36] | 0.99  | 0.18 | 0.18 |      | 6    |
| sel_params[38] | 0.68  | 0.30 | 0.44 |      | 8    |
| sel_params[39] | 0.41  | 0.33 | 0.82 |      | 9    |
| sel_params[40] | 0.06  | 0.08 | 1.29 |      | 10   |

Table B22. ASAP results of freely estimated selectivity at age for four fishery blocks.

| Table B23a. ASAP BASE model results for January 1 biomass, spawning stock biomass (SSB), average | F |
|--------------------------------------------------------------------------------------------------|---|
| (unweighted, ages 5+), and recruitment (000s, age 1 fish), 1978-2011.                            |   |

|      | Biomass | (mt)  | Favg.   | Recruitment  |
|------|---------|-------|---------|--------------|
| Year | Jan. 1  | SSB   | age 5-8 | Age 1 (000s) |
| 1978 | 118945  | 83600 | 0.40    | 29399        |
| 1979 | 130430  | 93607 | 0.41    | 27836        |
| 1980 | 136837  | 96864 | 0.52    | 22073        |
| 1981 | 134210  | 90633 | 0.51    | 44386        |
| 1982 | 131938  | 85290 | 0.69    | 20472        |
| 1983 | 110035  | 75533 | 0.68    | 10357        |
| 1984 | 94391   | 64591 | 0.62    | 29539        |
| 1985 | 81683   | 55094 | 0.87    | 9211         |
| 1986 | 80074   | 49640 | 0.58    | 47147        |
| 1987 | 89884   | 59852 | 0.55    | 16436        |
| 1988 | 94936   | 68021 | 0.64    | 26484        |
| 1989 | 85008   | 64395 | 0.54    | 18656        |
| 1990 | 83209   | 63060 | 0.73    | 11028        |
| 1991 | 76140   | 47513 | 0.89    | 24732        |
| 1992 | 59873   | 38311 | 0.85    | 8319         |
| 1993 | 44115   | 30554 | 0.93    | 9970         |
| 1994 | 28960   | 20581 | 1.10    | 7082         |
| 1995 | 25102   | 19220 | 0.68    | 3913         |
| 1996 | 27254   | 21311 | 0.60    | 7142         |
| 1997 | 28706   | 20202 | 0.87    | 10299        |
| 1998 | 27481   | 20042 | 0.79    | 4766         |
| 1999 | 29153   | 21636 | 0.76    | 11895        |
| 2000 | 30976   | 22256 | 0.62    | 6106         |
| 2001 | 32877   | 25624 | 0.83    | 2605         |
| 2002 | 25761   | 20459 | 0.76    | 3962         |
| 2003 | 19435   | 14960 | 0.80    | 1256         |
| 2004 | 15164   | 11860 | 0.54    | 6959         |
| 2005 | 13465   | 10121 | 0.65    | 1526         |
| 2006 | 13471   | 10441 | 0.50    | 3985         |
| 2007 | 14835   | 10970 | 0.65    | 5848         |
| 2008 | 17117   | 11520 | 0.58    | 5327         |
| 2009 | 22168   | 14725 | 0.42    | 8079         |
| 2010 | 24447   | 17168 | 0.29    | 8136         |
| 2011 | 29077   | 22217 | 0.23    | 7334         |

## Table B23b. ASAP BASE model results for stock numbers (000s) and fishing mortality (F,unweighted, average ages 5+) at age, 1978-2011.

Stock Numbers (Jan 1 ) in thousands

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979                                                                                                                                                                                              | 1980                                                                                 | 1981                                                                                                                                                 | 1982                                                                                                 | 1983                                                                                 | 1984                                                                                 | 1985                                                                                                 | 1986                                                                                         | 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988                                                                                         | 1989                                                                                         | 1990                                                                                                                                                                                                                                                                                                                                          | 1991                                                                                         | 1992                                                                                         | 1993                                                                                                                                                                                                                                                                                                                     | 1994                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27836                                                                                                                                                                                             | 22073                                                                                | 44386                                                                                                                                                | 20472                                                                                                | 10357                                                                                | 29539                                                                                | 9211                                                                                                 | 47147                                                                                        | 16436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26484                                                                                        | 18656                                                                                        | 11028                                                                                                                                                                                                                                                                                                                                         | 24732                                                                                        | 8319                                                                                         | 9970                                                                                                                                                                                                                                                                                                                     | 7082                                                                                                                                                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23844                                                                                                                                                                                             | 22573                                                                                | 17853                                                                                                                                                | 35906                                                                                                | 16492                                                                                | 8346                                                                                 | 23835                                                                                                | 7389                                                                                         | 38080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13285                                                                                        | 21359                                                                                        | 15081                                                                                                                                                                                                                                                                                                                                         | 8876                                                                                         | 19829                                                                                        | 6677                                                                                                                                                                                                                                                                                                                     | 7986                                                                                                                                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3495                                                                                                                                                                                              | 16172                                                                                | 14538                                                                                                                                                | 11541                                                                                                | 21379                                                                                | 9878                                                                                 | 5133                                                                                                 | 13081                                                                                        | 4631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24218                                                                                        | 8088                                                                                         | 13612                                                                                                                                                                                                                                                                                                                                         | 8826                                                                                         | 4809                                                                                         | 10961                                                                                                                                                                                                                                                                                                                    | 3549                                                                                                                                                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16212                                                                                                                                                                                             | 1020                                                                                 | 8008                                                                                                                                                 | 7256                                                                                                 | 4848                                                                                 | 0010                                                                                 | 4441                                                                                                 | 1817                                                                                         | 6118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2234                                                                                         | 10658                                                                                        | 3018                                                                                                                                                                                                                                                                                                                                          | 5515                                                                                         | 3042                                                                                         | 1720                                                                                                                                                                                                                                                                                                                     | 3631                                                                                                                                                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4404                                                                                                                                                                                              | 1929                                                                                 | 0000                                                                                                                                                 | 2005                                                                                                 | 2004                                                                                 | 2032                                                                                 | 4044                                                                                                 | 1017                                                                                         | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2204                                                                                         | 10000                                                                                        | 5910                                                                                                                                                                                                                                                                                                                                          | 4550                                                                                         | 1050                                                                                         | 1005                                                                                                                                                                                                                                                                                                                     | 5051                                                                                                                                                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4131                                                                                                                                                                                              | 8830                                                                                 | 940                                                                                                                                                  | 3935                                                                                                 | 2984                                                                                 | 2019                                                                                 | 4011                                                                                                 | 1531                                                                                         | 835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2902                                                                                         | 964                                                                                          | 5077                                                                                                                                                                                                                                                                                                                                          | 1552                                                                                         | 1850                                                                                         | 1005                                                                                                                                                                                                                                                                                                                     | 557                                                                                                                                                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1904                                                                                                                                                                                              | 2251                                                                                 | 4304                                                                                                                                                 | 462                                                                                                  | 1617                                                                                 | 1242                                                                                 | 890                                                                                                  | 1382                                                                                         | 703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 396                                                                                          | 1251                                                                                         | 459                                                                                                                                                                                                                                                                                                                                           | 2011                                                                                         | 520                                                                                          | 647                                                                                                                                                                                                                                                                                                                      | 343                                                                                                                                                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 581                                                                                                                                                                                               | 1037                                                                                 | 1096                                                                                                                                                 | 2114                                                                                                 | 190                                                                                  | 673                                                                                  | 548                                                                                                  | 307                                                                                          | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 333                                                                                          | 171                                                                                          | 596                                                                                                                                                                                                                                                                                                                                           | 182                                                                                          | 674                                                                                          | 182                                                                                                                                                                                                                                                                                                                      | 208                                                                                                                                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 955                                                                                                                                                                                               | 317                                                                                  | 505                                                                                                                                                  | 538                                                                                                  | 869                                                                                  | 79                                                                                   | 297                                                                                                  | 189                                                                                          | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 301                                                                                          | 144                                                                                          | 81                                                                                                                                                                                                                                                                                                                                            | 236                                                                                          | 61                                                                                           | 236                                                                                                                                                                                                                                                                                                                      | 59                                                                                                                                                   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87                                                                                                                                                                                                | 520                                                                                  | 154                                                                                                                                                  | 248                                                                                                  | 221                                                                                  | 362                                                                                  | 35                                                                                                   | 102                                                                                          | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67                                                                                           | 130                                                                                          | 68                                                                                                                                                                                                                                                                                                                                            | 32                                                                                           | 79                                                                                           | 21                                                                                                                                                                                                                                                                                                                       | 76                                                                                                                                                   |
| 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 302                                                                                                                                                                                               | 212                                                                                  | 357                                                                                                                                                  | 251                                                                                                  | 205                                                                                  | 178                                                                                  | 238                                                                                                  | 94                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84                                                                                           | 65                                                                                           | 93                                                                                                                                                                                                                                                                                                                                            | 64                                                                                           | 32                                                                                           | 39                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79345                                                                                                                                                                                             | 75919                                                                                | 92142                                                                                                                                                | 82723                                                                                                | 59162                                                                                | 61407                                                                                | 48637                                                                                                | 73039                                                                                        | 67756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70302                                                                                        | 61484                                                                                        | 50014                                                                                                                                                                                                                                                                                                                                         | 52026                                                                                        | 39214                                                                                        | 31527                                                                                                                                                                                                                                                                                                                    | 23509                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      | 02.20                                                                                                | 00.02                                                                                | 00.                                                                                  |                                                                                                      |                                                                                              | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              | 00.                                                                                          |                                                                                                                                                                                                                                                                                                                                               | 02020                                                                                        | 002                                                                                          | 0.02.                                                                                                                                                                                                                                                                                                                    | 20000                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1006                                                                                                                                                                                              | 1007                                                                                 | 1008                                                                                                                                                 | 1000                                                                                                 | 2000                                                                                 | 2001                                                                                 | 2002                                                                                                 | 2003                                                                                         | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005                                                                                         | 2006                                                                                         | 2007                                                                                                                                                                                                                                                                                                                                          | 2008                                                                                         | 2000                                                                                         | 2010                                                                                                                                                                                                                                                                                                                     | 2011                                                                                                                                                 |
| A go -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1330                                                                                                                                                                                              | 1337                                                                                 | 1330                                                                                                                                                 | 1333                                                                                                 | 2000                                                                                 | 2001                                                                                 | 2002                                                                                                 | 2005                                                                                         | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005                                                                                         | 2000                                                                                         | 2007                                                                                                                                                                                                                                                                                                                                          | 2000                                                                                         | 2003                                                                                         | 2010                                                                                                                                                                                                                                                                                                                     | 2011                                                                                                                                                 |
| Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.40                                                                                                                                                                                             | 40000                                                                                | 4700                                                                                                                                                 | 44005                                                                                                | 0400                                                                                 | 0005                                                                                 | 0000                                                                                                 | 4050                                                                                         | 0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4500                                                                                         | 0005                                                                                         | 5040                                                                                                                                                                                                                                                                                                                                          | 5007                                                                                         | 0070                                                                                         | 0400                                                                                                                                                                                                                                                                                                                     | 7004                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7142                                                                                                                                                                                              | 10299                                                                                | 4766                                                                                                                                                 | 11895                                                                                                | 6106                                                                                 | 2605                                                                                 | 3962                                                                                                 | 1256                                                                                         | 6959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1526                                                                                         | 3985                                                                                         | 5848                                                                                                                                                                                                                                                                                                                                          | 5327                                                                                         | 8079                                                                                         | 8136                                                                                                                                                                                                                                                                                                                     | 7334                                                                                                                                                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3174                                                                                                                                                                                              | 5801                                                                                 | 8335                                                                                                                                                 | 3861                                                                                                 | 9641                                                                                 | 4958                                                                                 | 2109                                                                                                 | 3211                                                                                         | 1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5657                                                                                         | 1238                                                                                         | 3241                                                                                                                                                                                                                                                                                                                                          | 4746                                                                                         | 4327                                                                                         | 6577                                                                                                                                                                                                                                                                                                                     | 6635                                                                                                                                                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4352                                                                                                                                                                                              | 2440                                                                                 | 4333                                                                                                                                                 | 6276                                                                                                 | 2917                                                                                 | 7392                                                                                 | 3717                                                                                                 | 1594                                                                                         | 2417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 787                                                                                          | 4326                                                                                         | 961                                                                                                                                                                                                                                                                                                                                           | 2476                                                                                         | 3654                                                                                         | 3388                                                                                                                                                                                                                                                                                                                     | 5221                                                                                                                                                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3367                                                                                                                                                                                              | 2631                                                                                 | 1285                                                                                                                                                 | 2372                                                                                                 | 3492                                                                                 | 1743                                                                                 | 3963                                                                                                 | 2070                                                                                         | 871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1501                                                                                         | 464                                                                                          | 2744                                                                                                                                                                                                                                                                                                                                          | 565                                                                                          | 1508                                                                                         | 2412                                                                                                                                                                                                                                                                                                                     | 2391                                                                                                                                                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 734                                                                                                                                                                                               | 1609                                                                                 | 984                                                                                                                                                  | 515                                                                                                  | 978                                                                                  | 1633                                                                                 | 672                                                                                                  | 1636                                                                                         | 826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 437                                                                                          | 686                                                                                          | 241                                                                                                                                                                                                                                                                                                                                           | 1245                                                                                         | 273                                                                                          | 842                                                                                                                                                                                                                                                                                                                      | 1517                                                                                                                                                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 458                                                                                                                                                                                               | 333                                                                                  | 557                                                                                                                                                  | 367                                                                                                  | 198                                                                                  | 433                                                                                  | 585                                                                                                  | 260                                                                                          | 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 395                                                                                          | 188                                                                                          | 341                                                                                                                                                                                                                                                                                                                                           | 103                                                                                          | 572                                                                                          | 147                                                                                                                                                                                                                                                                                                                      | 516                                                                                                                                                  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                | 206                                                                                  | 114                                                                                                                                                  | 206                                                                                                  | 140                                                                                  | 87                                                                                   | 154                                                                                                  | 224                                                                                          | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289                                                                                          | 169                                                                                          | 93                                                                                                                                                                                                                                                                                                                                            | 145                                                                                          | 47                                                                                           | 306                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38                                                                                                                                                                                                | 28                                                                                   | 71                                                                                                                                                   | 42                                                                                                   | 70                                                                                   | 62                                                                                   | 31                                                                                                   | 50                                                                                           | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45                                                                                           | 124                                                                                          | 84                                                                                                                                                                                                                                                                                                                                            | 40                                                                                           | 66                                                                                           | 25                                                                                                                                                                                                                                                                                                                       | 187                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                | 17                                                                                   | 10                                                                                                                                                   | 26                                                                                                   | 16                                                                                   | 25                                                                                   | 22                                                                                                   | 10                                                                                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                           | 10                                                                                           | 61                                                                                                                                                                                                                                                                                                                                            | 26                                                                                           | 10                                                                                           | 25                                                                                                                                                                                                                                                                                                                       | 107                                                                                                                                                  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                                                                                                                                                | 17                                                                                   | 10                                                                                                                                                   | 20                                                                                                   | 10                                                                                   | 10                                                                                   | 47                                                                                                   | 12                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39                                                                                           | 19                                                                                           | 01                                                                                                                                                                                                                                                                                                                                            | 30                                                                                           | 10                                                                                           | 07                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                   |
| 10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                | 18                                                                                   | 12                                                                                                                                                   | 8                                                                                                    | 13                                                                                   | 13                                                                                   | 17                                                                                                   | 15                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                           | 23                                                                                           | 21                                                                                                                                                                                                                                                                                                                                            | 35                                                                                           | 32                                                                                           | 21                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19371                                                                                                                                                                                             | 23384                                                                                | 20467                                                                                                                                                | 25569                                                                                                | 23580                                                                                | 18960                                                                                | 15233                                                                                                | 10337                                                                                        | 12910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10690                                                                                        | 11223                                                                                        | 13636                                                                                                                                                                                                                                                                                                                                         | 14718                                                                                        | 18577                                                                                        | 21895                                                                                                                                                                                                                                                                                                                    | 23946                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
| Fishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g Mortal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ity                                                                                                                                                                                               |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                      |                                                                                      |                                                                                      |                                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979                                                                                                                                                                                              | 1980                                                                                 | 1981                                                                                                                                                 | 1982                                                                                                 | 1983                                                                                 | 1984                                                                                 | 1985                                                                                                 | 1986                                                                                         | 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988                                                                                         | 1989                                                                                         | 1990                                                                                                                                                                                                                                                                                                                                          | 1991                                                                                         | 1992                                                                                         | 1993                                                                                                                                                                                                                                                                                                                     | 1994                                                                                                                                                 |
| Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979                                                                                                                                                                                              | 1980                                                                                 | 1981                                                                                                                                                 | 1982                                                                                                 | 1983                                                                                 | 1984                                                                                 | 1985                                                                                                 | 1986                                                                                         | 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988                                                                                         | 1989                                                                                         | 1990                                                                                                                                                                                                                                                                                                                                          | 1991                                                                                         | 1992                                                                                         | 1993                                                                                                                                                                                                                                                                                                                     | 1994                                                                                                                                                 |
| Age<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1978<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01                                                                                                                                                                                      | 1980<br>0.01                                                                         | 1981<br>0.01                                                                                                                                         | 1982<br>0.02                                                                                         | 1983<br>0.02                                                                         | 1984<br>0.01                                                                         | 1985<br>0.02                                                                                         | 1986<br>0.01                                                                                 | 1987<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02                                                                                 | 1989<br>0.01                                                                                 | 1990<br>0.02                                                                                                                                                                                                                                                                                                                                  | 1991<br>0.02                                                                                 | 1992<br>0.02                                                                                 | 1993<br>0.02                                                                                                                                                                                                                                                                                                             | 1994<br>0.01                                                                                                                                         |
| Age<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1978<br>0.01<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979<br>0.01<br>0.19                                                                                                                                                                              | 1980<br>0.01<br>0.24                                                                 | 1981<br>0.01<br>0.24                                                                                                                                 | 1982<br>0.02<br>0.32                                                                                 | 1983<br>0.02<br>0.31                                                                 | 1984<br>0.01<br>0.29                                                                 | 1985<br>0.02<br>0.40                                                                                 | 1986<br>0.01<br>0.27                                                                         | 1987<br>0.01<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988<br>0.02<br>0.30                                                                         | 1989<br>0.01<br>0.25                                                                         | 1990<br>0.02<br>0.34                                                                                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41                                                                         | 1992<br>0.02<br>0.39                                                                         | 1993<br>0.02<br>0.43                                                                                                                                                                                                                                                                                                     | 1994<br>0.01<br>0.12                                                                                                                                 |
| Age<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1978<br>0.01<br>0.19<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01<br>0.19<br>0.39                                                                                                                                                                      | 1980<br>0.01<br>0.24<br>0.50                                                         | 1981<br>0.01<br>0.24<br>0.49                                                                                                                         | 1982<br>0.02<br>0.32<br>0.67                                                                         | 1983<br>0.02<br>0.31<br>0.66                                                         | 1984<br>0.01<br>0.29<br>0.60                                                         | 1985<br>0.02<br>0.40<br>0.84                                                                         | 1986<br>0.01<br>0.27<br>0.56                                                                 | 1987<br>0.01<br>0.25<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02<br>0.30<br>0.62                                                                 | 1989<br>0.01<br>0.25<br>0.52                                                                 | 1990<br>0.02<br>0.34<br>0.70                                                                                                                                                                                                                                                                                                                  | 1991<br>0.02<br>0.41<br>0.87                                                                 | 1992<br>0.02<br>0.39<br>0.82                                                                 | 1993<br>0.02<br>0.43<br>0.90                                                                                                                                                                                                                                                                                             | 1994<br>0.01<br>0.12<br>0.56                                                                                                                         |
| Age<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1978<br>0.01<br>0.19<br>0.39<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979<br>0.01<br>0.19<br>0.39<br>0.41                                                                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52                                                 | 1981<br>0.01<br>0.24<br>0.49<br>0.51                                                                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69                                                                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68                                                 | 1984<br>0.01<br>0.29<br>0.60<br>0.62                                                 | 1985<br>0.02<br>0.40<br>0.84<br>0.86                                                                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58                                                         | 1987<br>0.01<br>0.25<br>0.53<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988<br>0.02<br>0.30<br>0.62<br>0.64                                                         | 1989<br>0.01<br>0.25<br>0.52<br>0.54                                                         | 1990<br>0.02<br>0.34<br>0.70<br>0.73                                                                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89                                                         | 1992<br>0.02<br>0.39<br>0.82<br>0.85                                                         | 1993<br>0.02<br>0.43<br>0.90<br>0.93                                                                                                                                                                                                                                                                                     | 1994<br>0.01<br>0.12<br>0.56<br>0.99                                                                                                                 |
| Age<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41                                                                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52                                         | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51                                                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69                                                         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68                                         | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62                                         | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87                                                         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58                                                 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64                                                 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54                                                 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73                                                                                                                                                                                                                                                                                                  | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89                                                 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85                                                 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93                                                                                                                                                                                                                                                                             | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09                                                                                                         |
| Age<br>1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41                                                                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52                                 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51                                                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69                                                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68                                 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62                                 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87                                                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58                                         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64                                                 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54                                         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89                                         | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85                                         | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                                                     | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09                                                                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41                                                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52                                 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51                                                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69                                                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68                                 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62                                 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87                                                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58                                         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64                                         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54                                         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                                                  | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89                                         | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85                                         | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                                             | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10                                                                                                 |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41                                                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52                         | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51                                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69                                                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68                                 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62                         | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87                                         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58                                 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64                                         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54                                 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                                                  | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89                                 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85                                 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                                             | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10                                                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52                 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69                                         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68                         | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62                 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87                                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58                         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64                                 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54                         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89                 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85                         | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                                     | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10                                                                                 |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69                         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68         | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87                         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58                 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64                         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54                 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                                  | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89         | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85                 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                             | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10                                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64                 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85         | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                                 |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52         | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68         | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64                         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54                 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85         | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                                 |
| Age .<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87                 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                              | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69                 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58         | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54         | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                                 |
| Age -<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011                                                         |
| Age -<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.86<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87 | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990   0.02   0.34   0.70   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73                                                                                                                                                                                                     | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011<br>0.00                                                 |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.70<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>Age<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>1996<br>0.01<br>0.06                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.02                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>1999<br>0.01 | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>1996<br>0.01<br>0.06<br>0.30                                                                              | 1980<br>0.01<br>0.24<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.08<br>0.40                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011<br>0.00<br>0.02<br>0.12                                 |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>Age<br>1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>1996<br>0.01<br>0.06<br>0.30<br>0.54                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.08<br>0.40<br>0.72                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1978   0.01   0.19   0.39   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.01   0.07   0.62   0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.08<br>0.40<br>0.72<br>0.79                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990   0.02   0.34   0.70   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.74   0.75   0.65 | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.08<br>0.40<br>0.72<br>0.79<br>0.79                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011<br>0.00<br>0.02<br>0.12<br>0.21<br>0.23<br>0.23         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.08<br>0.40<br>0.72<br>0.79<br>0.79<br>0.80 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.30<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>2011<br>0.00<br>0.02<br>0.12<br>0.21<br>0.23<br>0.23<br>0.23 |
| Age -<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>Age -<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>1998<br>0.01<br>0.72<br>0.79<br>0.79<br>0.80<br>0.80                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.60<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>7<br>7<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>7<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>9<br>10<br>8<br>10<br>8                                                                                                                                                 | 1978   0.01   0.19   0.39   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.61   0.62   0.68   0.69   0.69   0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.60<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993   0.02   0.43   0.90   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29               | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>F 5+<br>Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1978   0.01   0.19   0.39   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.61   0.62   0.69   0.69   0.69   0.69   0.69   0.69   0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1979<br>0.01<br>0.19<br>0.39<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                      | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.49<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                         | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.60<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993   0.02   0.43   0.90   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29   0.29 | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>8<br>8<br>9<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+                                                                                 | 1978   0.01   0.19   0.39   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.62   0.69   0.69   0.69   0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1979   0.01   0.19   0.39   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.60   0.54   0.59   0.60   0.60   0.60   0.60 | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1988<br>0.02<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64                 | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990<br>0.02<br>0.34<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73<br>0.73                                                                                                                                                                                                                                                          | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993   0.02   0.43   0.90   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.93   0.15   0.26   0.29   0.29   0.29   0.29   0.29               | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |
| Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>Age<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10+<br>F 5+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>6<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>5<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>7<br>8<br>9<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+<br>10+ | 1978<br>0.01<br>0.19<br>0.39<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.62<br>0.68<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69 | 1979   0.01   0.19   0.39   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.41   0.59   0.60   0.60   0.60   0.60   0.60               | 1980<br>0.01<br>0.24<br>0.50<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | 1981<br>0.01<br>0.24<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                 | 1982<br>0.02<br>0.32<br>0.67<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69<br>0.69         | 1983<br>0.02<br>0.31<br>0.66<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68<br>0.68 | 1984<br>0.01<br>0.29<br>0.60<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62 | 1985<br>0.02<br>0.40<br>0.84<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87         | 1986<br>0.01<br>0.27<br>0.56<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58<br>0.58 | 1987<br>0.01<br>0.25<br>0.53<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55 | 1988<br>0.02<br>0.62<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64<br>0.64         | 1989<br>0.01<br>0.25<br>0.52<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54 | 1990   0.02   0.34   0.70   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.73   0.61   0.65   0.66   0.66   0.66   0.66   0.66   0.66   0.66   0.66   0.66                      | 1991<br>0.02<br>0.41<br>0.87<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89<br>0.89 | 1992<br>0.02<br>0.39<br>0.82<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 1993<br>0.02<br>0.43<br>0.90<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.9                                                                                                                                                                                                                                      | 1994<br>0.01<br>0.12<br>0.56<br>0.99<br>1.09<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                         |

Table B24. Input data for yield-per-recruit and projection analysis computed from 5-year averages of 2007-2011 data.

|     |    | ASAP        |           |        |       |        |            |          |
|-----|----|-------------|-----------|--------|-------|--------|------------|----------|
| Age |    | selectivity | selx on M | stk wt |       | catch  | spw stk wt | % mature |
|     | 1  | 0.01        | 1         |        | 0.221 | 0.397  | 0.221      | 0.02     |
|     | 2  | 0.11        | 1         |        | 0.738 | 1.407  | 0.738      | 0.27     |
|     | 3  | 0.51        | 1         |        | 1.750 | 2.219  | 1.750      | 0.85     |
|     | 4  | 0.90        | 1         | :      | 2.547 | 2.953  | 2.547      | 0.99     |
|     | 5  | 0.99        | 1         | :      | 3.304 | 3.664  | 3.304      | 1.00     |
|     | 6  | 1.00        | 1         | 4      | 4.043 | 4.482  | 4.043      | 1.00     |
|     | 7  | 1.00        | 1         | 4      | 4.924 | 5.431  | 4.924      | 1.00     |
|     | 8  | 1.00        | 1         | (      | 6.185 | 6.666  | 6.185      | 1.00     |
|     | 9  | 1.00        | 1         |        | 7.487 | 8.375  | 7.487      | 1.00     |
|     | 10 | 1.00        | 1         | 1      | 1.352 | 11.352 | 11.352     | 1.00     |

Table B25. Yield-per-recruit (YPR) analysis results: spawning stock biomass per recruit (SSB/R), total stock weight per recruit (TSB/R), mean age and mean generation time (mn gen) at four fishing mortality rates for the BASE ASAP model.

| BASE      |      |      |       |       |          |        |
|-----------|------|------|-------|-------|----------|--------|
| Reference | F    | YPR  | SSB/R | TSB/R | mean age | mn gen |
| F zero    | 0.00 | 0.00 | 19.72 | 21.24 | 5.52     | 7.29   |
| F-01      | 0.18 | 1.28 | 7.81  | 9.14  | 3.54     | 4.98   |
| F-Max     | 0.46 | 1.43 | 3.75  | 4.96  | 2.70     | 3.91   |
| F40%      | 0.18 | 1.28 | 7.89  | 9.22  | 3.55     | 5.00   |

Table B26. Biological reference points based on yield-per-recruit (YPR) analysis and long term projection of  $F_{MSY}$  proxies for the BASE ASAP model results.

| BASE                 |             |      |       |             |         |        |
|----------------------|-------------|------|-------|-------------|---------|--------|
| Model                | F40%        | Y/R  | SSB/R | Recruitment | SSBmsy  | MSY    |
| YPR                  | 0.18        | 1.28 | 7.89  | 13,596      | 107,291 | 17,391 |
| Projection (CDF >50K | ) 12 values |      |       | 24,327      | 186,535 | 30,622 |

Table B27. Projection of spawning stock biomass (SSB), fishing mortality (F), and catch during 2013 -2015 of Georges Bank Atlantic cod for F=F75% for the Base ASAP preferred model.

| Year | Catch | 8 8B   | F    |
|------|-------|--------|------|
|      |       |        |      |
| 2012 | 2.910 | 18,184 | 0.17 |
| 2013 | 2.694 | 20.174 | 0.14 |
| 2014 | 2.816 | 21.415 | 0.14 |
| 2015 | 3.265 | 26.005 | 0.14 |



Figure B1. Stock area of Georges Bank cod as defined by Northwest Atlantic Fisheries Organization (NAFO) Div 5Z and Subarea 6 (NMFS statistical areas: 521-526, 551-552, 561-562, 537-539 and south.



Figure B2a. Total commercial landings (1893-1977) and catch (1978-2011) of Georges Bank and South Atlantic cod (NAFO Div. 5Z and Subarea 6).



Figure B2a. Total catch of Georges Bank Atlantic cod including USA commercial and recreational landings and discards and Canadian commercial landings and discards, 1960-2011.



Figure B3. Landings of Georges Bank cod by market category by metric ton (upper panel) and percent of total landings (lower panel).

## **USA Landings at Age**



Figure B4. USA landings at age of Atlantic cod, 1978-2011

## CA GB Cod Landings at Age



Figure B5. Canadian landings (SA 551,552) at age of Atlantic cod, 1978-2011



Figure B6. Proportion at length of USA otter trawl discards in western and eastern Georges Bank (left panel) and the proportion at length by half year for large mesh otter trawl discards in western Georges Bank for Atlantic cod, 1989-2011.



Commercial Discards at Age (USA + CAN)

Figure B7. Georges Bank Atlantic cod combined USA and Canadian discards at age (SA 521-522,561-562,551-552,525-526), 1978-2011.

**Recreational Landings at Age** 

**Recreational Discards at Age** 





Figure B8. USA recreational landings and discards at age of Georges Bank Atlantic cod, 1981-2011.



## Georges Bank Cod Catch at Age

Figure B9. Georges Bank Atlantic cod total catch at age: combined USA and Canadian commercial landings and discards and USA recreational landings and discards, 1978-2011.

Georges Bank Cod



Figure B10a. Georges Bank Atlantic cod January 1 mean weight at age (1-10+) for the total catch at age: combined USA and Canadian commercial landings and discards and USA recreational landings and discards, 1978-2011.




Figure B10b. Georges Bank Atlantic cod mean length at age (1-10+) for the total catch at age: combined USA and Canadian commercial landings and discards and USA recreational landings and discards, 1978-2011.



Figure B11. Georges Bank Atlantic cod standardized landings per unit effort for commercial landings (landings (mt)/day fished (24 hours)) and recreational landings (number cod landed/angler hour), 1978-2011.



Figure B12a. NEFSC offshore strata for the Gulf of Maine, Georges Bank and southern New England area. The black line is the Hague Line, delineating the USA and CA exclusive economic zone (EEZ). Shaded boxes are year round closed areas - west to east: Nantucket Lightship Area (NLA), Closed Area I, Closed Area II, and north of Cape Cod, the Western Gulf of Maine Closure.



Figure B12b. DFO strata area on Georges Bank



Figure B13a. Georges Bank Atlantic cod standardized stratified mean catch per tow (kg) in the NEFSC spring and autumn research survey vessel bottom trawl surveys (strata 13-25), 1963-2012.



Figure B13b. Georges Bank Atlantic cod standardized stratified mean number per tow in the NEFSC spring, DFO, and NEFSC autumn research survey vessel bottom trawl surveys (NEFSC strata 13-25; DFO strata 5Z1-5Z8), 1963-2012.



Figure B14. Georges Bank Atlantic cod relative year class strength of age 1 (upper panel) and age 2 (lower panel) (stratified mean numbers per tow) from NEFSC autumn research survey vessel bottom trawl surveys, 1963-2011.

## Spring Survey Numbers at Age



Figure B15. Georges Bank Atlantic cod standardized stratified mean catch per tow at age (numbers) in the NEFSC spring and autumn research survey bottom trawl surveys (strata 13-25), 1970-2012.





Figure B16. Georges Bank Atlantic cod relative year class strength of age 1 (upper panel) and age 2 (lower panel) (stratified mean numbers per tow) from DFO research survey vessel bottom trawl surveys, 1986-2012.

## **DFO Numbers at Age**



Figure B17. Georges Bank Atlantic cod standardized stratified mean catch per tow at age (numbers) in DFO research survey bottom trawl surveys (strata 5Z1-5Z8), 1986-2012.



Figure B18. Length weight equations with 95% confidence intervals based on research survey data for cod from Georges Bank and Southern New England for spring and autumn during 1992-2007 and 1992-2011 compared to the historical length-weight relationship for cod.



Figure B19. Length weight equations based on research survey data for cod from Georges Bank and Southern New England for spring and autumn during 1992-2007 and 1992-2011 compared to the historical length-weight relationship for cod.



Figure B20. Length weight equations based on research survey data for cod from Georges Bank and Southern New England by 5-year blocks for spring and autumn during 1992-2011 compared to the 1992-2007 and 1992-2011 time series length-weight relationships. N=sample size.



Figure B21. Von Bertalanffy growth curves fit to NEFSC spring and autumn research survey age and length data for Georges Bank cod during three time periods: 1970-2011, 1970-1979, and 2001-2011.

NEFSC Spring Georges Bank Cod

NEFSC Spring Georges Bank Cod



Figure B22a. Mean length and weight of Georges Bank cod from NEFSC spring research bottom trawl surveys for ages 0-9, 1970-2011.

NEFSC Autumn Georges Bank Cod

NEFSC Autumn Georges Bank Cod



Figure B22b. Mean length and weight of Georges Bank cod from NEFSC autumn research bottom trawl surveys for ages 0-9, 1970-2011.

55th SAW Assessment Report



Figure B23. Fulton's condition factor (K) of Georges Bank cod for females and sexes combined from NEFSC spring and autumn research survey length and weight data, 1992-2011.





Figure B24. Proportion mature at age for ages 1-5 (upper panel) with 95% confidence intervals for female Georges Bank Atlantic cod using a 5-year moving window, median age at maturity (A50) for males (middle left panel) and females (middle right panel) with 95% confidence intervals, and number of samples in the combined 5-year moving average for males (lower left panel) and females (lower right panel).



Figure B25. Annual total mortality (Z) estimated from DFO, NEFSC spring, and NEFSC autumn surveys, 1963-2011. Solid line is three-year centered moving average.



Figure B26. Lorenzen (1986) estimate of unadjusted- M based on times series average of January 1 stock weights of Georges Bank cod, 1978-2011. (Dashed line =0.336 total M)



Figure B27. Comparison of spawning stock biomass (SSB) and fishing mortality (F) of an MRIP + 100 % discard mortality VPA (100%) with an MRIP+Delphi mortality rate (delphi) VPA.





Figure B28. Comparison of spawning stock biomass (SSB) and fishing mortality (F) of the February 2012 VPA (Feb 2012), the MRIP + 100 % discard mortality VPA (Oct12-MRIP), and the MRIP+Delphi mortality rate VPA (Oct12-Delphi rates).



Figure B29. Spawning stock biomass (SSB) and fishing mortality (F) of terminal year 2011 VPA.



Figure B30. Retrospective bias of spawning stock biomass and fishing mortality of terminal year 2011 VPA for surveys split VPA (left) and survey not split VPA (right).





Figure B31. Comparison of spawning stock biomass and fishing mortality for VPA and VPAlike ASAP formulation, 1978-2011.





Figure B32. Spawning stock biomass and fishing mortality retrospective for VPA-like ASAP formulation, 1978-2011.



Figure B33. Survey selectivity at age (Run 42) for DFO (logistic), NEFSC spring (logistic) and autumn (fixed age 3=1) surveys.



Figure B34. Fishery selectivity for four blocks (run 18).



Figure B35. Fishery selectivity for two blocks (run 19).

Fleet 1 Catch (FLEET-1)



Figure B36. ASAP base model fit to total catch of Georges Bank cod, 1978-2011.



## Age Comp Residuals for Catch by Fleet 1 (FLEET-1)

Figure B37. ASAP base model residuals for commercial catch age composition for Georges Bank cod, 1978-2011.



Figure B38. ASAP base model predicted mean age of Georges Bank cod in the total catch (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure B39. ASAP base model fit to DFO survey indices of Georges Bank cod, 1986-2011.



Age Comp Residuals for Index 1 (dfo)

Figure B40. ASAP base model residuals for DFO survey index age composition for Georges Bank cod, 1986-2011.



Figure B41. ASAP base model predicted mean age of Georges Bank cod in the DFO survey (blue line) compared to observed mean age (top plot) and the residuals about the mean (bottom plot).

Index 2 (autumn)



Figure B42. ASAP base model fit to autumn survey indices of Georges Bank cod, 1978-2011.



## Age Comp Residuals for Index 2 (autumn)

Figure B43. ASAP base model residuals for NEFSC autumn survey index age composition for Georges Bank cod, 1986-2011.



Figure B44. ASAP base model predicted mean age (blue line) of Georges Bank cod in the NEFSC autumn survey compared to observed mean age (top plot) and the residuals about the mean (bottom plot).


Figure B45. ASAP base model fit to NEFSC spring (Yankee #41) survey indices of Georges Bank cod, 1978-1981.



Age Comp Residuals for Index 3 (spr41\_w)

Figure B46. ASAP base model residuals for NEFSC spring (Yankee #41) age composition for Georges Bank cod, 1978-1981.



Figure B47. ASAP base model predicted mean age (blue line) of Georges Bank cod in the NEFSC spring (Yankee #41 compared to observed mean age (top plot) and the residuals about the mean (bottom plot).

Index 4 (spr36\_w)



Figure B48. ASAP base model fit to NEFSC spring (Yankee #36) survey indices for Georges Bank cod, 1982-2011



#### Age Comp Residuals for Index 4 (spr36\_w)

Figure B49. ASAP base model residuals for NEFSC spring (Yankee #36) survey index age composition for Georges Bank cod, 1982-2011.



Figure B50. ASAP base model predicted mean age (blue line) of Georges Bank cod in the NEFSC spring (Yankee #36) survey compared to observed mean age (top plot) and the residuals about the mean (bottom plot).



Figure B51a. BASE ASAP model results for spawning stock biomass, fishing mortality (ages 5-8), and recruitment (age 1, 000s), 1978-2011.



Figure B51b. BASE ASAP model results for spawning stock biomass and recruitment (age 1, 000s), 1978-2011.



Figure B51c. Upper and lower bound estimates of total biomass from 'envelope analysis' with BASE ASAP spawning stock biomass estimate.





Figure B52. Retrospective bias of spawning stock biomass (SSB) and fishing mortality from BASE ASAP model. Retrospective rho for SSB = 0.681 and for F= -0.459.



Figure B53. BASE ASAP trace of MCMC chains for Georges Bank Atlantic cod 1978 and 2011 spawning stock biomass. Each chain had initial length of 2,500,000 and was thinned at a rate of one out of every 2,500<sup>th</sup> resulting in a final chain length of 1000.



Figure B54. BASE ASAP trace of MCMC chains for Georges Bank Atlantic cod 1978 and 2011 fishing mortality (average 5-8). Each chain had initial length of 2,500,000 and was thinned at a rate of one out of every 2,500<sup>th</sup> resulting in a final chain length of 1000.



Figure B55. Autocorrelation within the 1978 and 2011 Georges Bank Atlantic cod spawning stock biomass (SSB) MCMC chains from the BASE ASAP model.



Figure B56. Autocorrelation within the 1978 and 2011 Georges Bank Atlantic cod fishing mortality (average, ages 5-8) MCMC chains from the BASE ASAP model.



Figure B57. A 90% probability interval for Georges Bank Atlantic cod spawning stock biomass from the BASE ASAP model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is shown in the thin green line with filled triangles.



Figure B58. MCMC distribution of Georges Bank Atlantic cod spawning stock biomass in 1978 and 2011 estimated from the BASE ASAP model. The model point estimate is indicated by the dashed red line.



Figure B59. A 90% probability interval for Georges Bank Atlantic cod fishing mortality (average ages 5-8) from the BASE ASAP model. The median value is in red, while the 5<sup>th</sup> and 95<sup>th</sup> percentiles are in dark grey. The point estimate from the base model (joint posterior modes) is shown in the thin green line with filled triangles.



Figure B60. MCMC distribution of Georges Bank Atlantic cod fishing mortality (average ages 5-8) in 1978 and 2011 estimated from the BASE ASAP model. The model point estimate is indicated by the dashed red line.



Figure B61. Yield- and Spawning Stock Biomass per-recruit analysis for Georges Bank Atlantic cod .  $F_{0.1}$  =0.18 ,  $F_{max}$  = 0.46 and  $F_{40\%}$ = 0.18.



## **Replacement Lines Using Recent Productivity**

Figure B62. Replacement lines using recent productivity from the BASE ASAP model results for a range of fishing mortalities for Georges Bank Atlantic cod, 1978-2011.



Figure B63. BASE ASAP spawning stock biomass – age 1 recruitment for Georges Bank Atlantic cod, 1978-2011.



Figure B64. Status of 2011 fishing mortality (F) and spawning stock biomass (SSB) of Georges Bank Atlantic cod relative to  $F_{MSY}$  and  $SSB_{MSY}$  from ASAP BASE model results.

Appendix B.1.

| Date             | Regulatory                                                                                                                               | Cod end min.                     | Minimur                         | n fish size (in)                   | Commerci                 | Recreational                           | Closures                                          | Differential        |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------|--------------------------|----------------------------------------|---------------------------------------------------|---------------------|--|--|--|--|
|                  | Action                                                                                                                                   | mesh size (in)                   | Commercia                       | l Recreational                     | al trip                  | trip limits-lbs                        |                                                   | <b>DAS</b> Counting |  |  |  |  |
|                  |                                                                                                                                          |                                  | Inches (cm)                     | ) Inches (cm)                      | limits-lbs               |                                        |                                                   | <u> </u>            |  |  |  |  |
| 1953             | ICNAF era                                                                                                                                | 4.5 inch                         |                                 |                                    |                          |                                        |                                                   |                     |  |  |  |  |
| 1970             |                                                                                                                                          |                                  |                                 |                                    | 1*                       |                                        | 2*                                                |                     |  |  |  |  |
| 1*               | TAC regulations in                                                                                                                       | nplemented for E                 | Div 5Zcod on a                  | an annual basis beg                | ginning in 1973          | 3-1986; set at 35,                     | 000 mt per ye                                     | ar                  |  |  |  |  |
| 2*               | Areas 1(A) & 2(B)                                                                                                                        | Mar-Apr (haddo                   | ck spawning s                   | eason); 1972-1974                  | Areas 1(A) &             | 2(B) closure ext                       | ended to Marc                                     | ch- May.            |  |  |  |  |
| 1975             |                                                                                                                                          |                                  |                                 |                                    |                          |                                        | 1A, 2B                                            |                     |  |  |  |  |
| 1/1/77           | Crown dfiah EMD                                                                                                                          | 5 125 in ch                      | 16 in                           | 16 in                              | Haddaala                 | Haddaala                               | $\frac{1 \times 2 \times 2 \times 2}{1 \times 2}$ |                     |  |  |  |  |
| 1/1///           | Groundlish FMP                                                                                                                           | 5.125 Inch                       | 10  In.                         | 10  In.                            | Haddock                  | Haddock                                | 1*, 2*, 3*                                        |                     |  |  |  |  |
|                  | MSCMA                                                                                                                                    |                                  | (40.6 cm)                       | (40.0cm)                           | 6,200, Cod               | 0,200 cod                              |                                                   |                     |  |  |  |  |
| 14               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                   |                                  |                                 |                                    |                          |                                        |                                                   |                     |  |  |  |  |
| 1"<br>2*         | Seasonal spawning closure (Areas 1 & 2)<br>(00551  W + 420101  W + 410101  W + 600201  W + 410251  W + 410501  W + 410501  W + 410501  W |                                  |                                 |                                    |                          |                                        |                                                   |                     |  |  |  |  |
| <u>2</u> "<br>2* | 69°55 W., 42°10 F                                                                                                                        | $N_{,69}^{-10} W_{,41}^{-10}$    | $10 \text{ N}$ ; $68^{\circ}30$ | $W_{.,41}$ 35 N.; 0                | $8^{-43} W., 41^{-3}$    | $\frac{0}{10}$ N.; $\frac{09}{00}$ W.; | 41 50 N.                                          |                     |  |  |  |  |
| 3"<br>1/1/92     | 0/*00 W., 42*20 F                                                                                                                        | N., 07°00 W.,41                  | $15^{\circ}$ N.; $65^{\circ}40$ | W., 41 0 15 N.; (                  | 55 40 W.,42              | JU N.; 66°00° W.                       | $, 42^{\circ}20^{\circ}$ N.                       |                     |  |  |  |  |
| 1/1/82           | Interim Plan                                                                                                                             | 5.5 in ch                        | 17 (43.2)                       | 15(38.1 cm)                        |                          |                                        |                                                   |                     |  |  |  |  |
| 1/1/83           | TT T'                                                                                                                                    | 5.5 inch                         |                                 |                                    |                          |                                        |                                                   |                     |  |  |  |  |
| 10/1/84          | Hague Line                                                                                                                               | <i></i>                          | 17 1                            | 1.7 1                              |                          |                                        | A 1.0.0                                           | 1 15 1 1            |  |  |  |  |
| 8/30/85          | Multispecies                                                                                                                             | 5.5 in. yr 1 &                   | 1 / yr 1;                       | 15 yr 1;                           |                          |                                        | Areas 1 & 2                                       | closed Feb 1-       |  |  |  |  |
|                  | FMP                                                                                                                                      | 2;                               | 19 yr 2+                        | 1 / yr 2 & 3; 19                   |                          |                                        | May 31                                            |                     |  |  |  |  |
|                  |                                                                                                                                          | 6 in. yr 3                       |                                 | yr 4+                              |                          |                                        | 1 .4                                              |                     |  |  |  |  |
| 5/1/8/           |                                                                                                                                          |                                  | (0000NV) 1                      |                                    | 60000HH                  |                                        |                                                   | 2450 1              |  |  |  |  |
| 1*               | Change regulated n                                                                                                                       | nesh area on GB $1$              | $10, 69^{\circ}00'W, th$        | ien northward alon                 | $1g 69^{\circ}00'W to 1$ | its intersection w                     | ith LORAN 4                                       | 3450, then          |  |  |  |  |
|                  | eastward along LO                                                                                                                        | $\operatorname{RAN} 43450$ to th | e intersection                  | with $68^{\circ}00^{\circ}W$ , the | n northward al           | ong 68°00'W to t                       | he intersectio                                    | n with LORAN        |  |  |  |  |
|                  | 43500, then eastwa                                                                                                                       | rd as currently sp               | ecified; Mod                    | ITY Closed Area I t                | o overlap with           | distribution of m                      | lature temale                                     | naddock; nook &     |  |  |  |  |
| 10/1/00          | The exempt from S                                                                                                                        | NE closed area                   | 10 :                            | 10 :                               |                          |                                        |                                                   |                     |  |  |  |  |
| 10/1/88          |                                                                                                                                          | Postponed GB                     | 19  In                          | 19  In                             |                          |                                        |                                                   |                     |  |  |  |  |
| 1/1/00           | A mandurant 2                                                                                                                            | 6 III. IIICIease                 | (48.5 CIII)                     | (48.5 CIII)                        |                          |                                        |                                                   |                     |  |  |  |  |
| 1/1/09           | Amendment 2                                                                                                                              | in mash                          | (48.2  cm)                      | (48.2  cm)                         |                          |                                        |                                                   |                     |  |  |  |  |
|                  |                                                                                                                                          | in. mesn                         | (48.3 cm)                       | (48.3 cm)                          |                          |                                        |                                                   |                     |  |  |  |  |
| 4/1/02           | Shrimp travel fisher                                                                                                                     | Increase                         | to regulation                   | aroundfich byzatal                 | nrahihitad               |                                        |                                                   |                     |  |  |  |  |
| 4/1/92           | Shiring trawi fisher                                                                                                                     | y. Nordinore gra                 | te regulation,                  | groundrish bycatch                 | i promoned               |                                        | Area 2 alagu                                      | ma Ian 1 Juna 20    |  |  |  |  |
| 1993             | Emorgones Dul-                                                                                                                           |                                  |                                 |                                    | Haddeal                  |                                        | Area 2 clost                                      | ne jan 1-june 30    |  |  |  |  |
| 1/3/94           | Emergency Kule                                                                                                                           |                                  |                                 |                                    | FIAULUOCK                |                                        | 1*                                                | l                   |  |  |  |  |
| 1*               | Ian May alogura                                                                                                                          |                                  | vnandad: CA                     | I closed to all year               | JUU<br>als avcent sink   | gillnet: noir trou                     | ling ban                                          |                     |  |  |  |  |
| 1*               | Jan – May closure                                                                                                                        | DI CA II; CA II e                | xpanded; CA                     | I closed to all vess               | eis except sink          | gillnet; pair traw                     | ling ban                                          |                     |  |  |  |  |

| Date        | <b>Regulatory Action</b>                                             | Cod end min.          | Minimum           | fish size (in)       | Commercial           | Recreational        | Closures       | <b>Differential DAS</b> |  |  |
|-------------|----------------------------------------------------------------------|-----------------------|-------------------|----------------------|----------------------|---------------------|----------------|-------------------------|--|--|
|             |                                                                      | mesh size (in)        | Commercial        | Recreational         | trip limits-lbs      | trip limits-lbs     |                | Counting                |  |  |
| 5/1/94      | Amendment 5                                                          | 6 inch                |                   |                      | 1*                   |                     | 2*             | 3*                      |  |  |
| 1*          | Non-groundfish vess                                                  | els limited to 500 l  | bs combined w     | t of 10 large mes    | sh spp incl cod;     |                     |                |                         |  |  |
| 2*          | Haddock Area I closu                                                 | ure suspended; Had    | ddock Area II c   | losure extended      |                      |                     |                |                         |  |  |
| 3*          | DAS monitoring with                                                  | n reduction schedu    | le, mandatory r   | eporting             |                      |                     |                |                         |  |  |
| 5/1/94      | Framework 3                                                          |                       |                   |                      | Small mesh limit     | ed to lesser of 10% | 6 non-regulate | ed GF or 500 lbs        |  |  |
| 6/22/94     | Amendment 6 Haddock 500 lbs limit                                    |                       |                   |                      |                      |                     |                |                         |  |  |
| 8/2/94      | Framework 6 Cultivator Shoal Whiting Fishery mesh increased to 3 in. |                       |                   |                      |                      |                     |                |                         |  |  |
| 12/12/94    | Emergency Rule                                                       |                       |                   |                      |                      |                     | CA I, CA II    | & Nantucket             |  |  |
|             |                                                                      |                       |                   |                      |                      |                     | Lightship Ar   | ea closed yr-round      |  |  |
|             |                                                                      |                       |                   |                      |                      |                     | to all fishing | incl scallop dredge     |  |  |
| 3/6/95      | Framework 9                                                          |                       |                   |                      |                      |                     | *1             |                         |  |  |
| 1*          | Closures in previous                                                 | emergency action      | made permaner     | nt; recreational &   | c charter boats perr | nitted in Nantucke  | t Lightship    |                         |  |  |
| 5/1/96      | Amendment 7                                                          |                       |                   | 20 in.               |                      |                     |                | Accelerated DAS         |  |  |
|             |                                                                      |                       |                   |                      |                      |                     |                | reduction               |  |  |
| 10/1/96     | SFA                                                                  |                       |                   |                      |                      |                     |                |                         |  |  |
| 2/20/97     | Framework 21                                                         |                       |                   |                      |                      |                     | 1*             |                         |  |  |
| 1*          | Gen cat scallop & lin                                                | nited access scallo   | p vessels not un  | der DAS allowe       | d into Small Mesh    | Northern Shrimp     | Exemption Ar   | ea if dredge or         |  |  |
|             | combined dredges <                                                   | 0.5 ft width          |                   | 21 :                 | 1.4                  |                     |                |                         |  |  |
| 5/1/97      | Framework 20                                                         |                       |                   | 21 in.               |                      | 100011 // : 0       |                | 21. 0 1.1000            |  |  |
| 1*          | Cod: 1000 lbs/ day for $10000 \text{ J}$                             | or day 1-4 of trip, 1 | 1500  lbs/day  5+ | of trip north of     | 4200'N; Haddock:     | 1000 lbs/trip from  | n May I – Aug  | 31; Sept 1 1000         |  |  |
| 0/5/05      | Ibs/day, 10000 lbs/tri                                               | p reverts to 1000 I   | bs limit when I   | ,150 mt projecte     | d<br>1 *             | -                   | []             | 10 D 4 C                |  |  |
| 9/5/97      | Framework 24                                                         | A.G. 10000 11 // ·    | C M 1             | A 21 C (1 C          |                      | 00.11 // .          |                | 10 DAS carryover        |  |  |
| <u> </u>    | Haddock: 1000 lbs/D                                                  | DAS, 10000 lbs/trip   | from May I –      | Aug 31; Sept 1 3     | 3000 Ibs/DAS, 300    | 00 lbs/trip         | 1*             |                         |  |  |
| 5/1/98      | Framework 25                                                         |                       |                   |                      |                      |                     | 1*             |                         |  |  |
| 1*          | WGOM (Jeffreys Le                                                    | dge, Stellwagen Ba    | ank)              |                      |                      |                     |                |                         |  |  |
| 2/1/99      | Framework 26                                                         |                       |                   |                      |                      |                     | 1*             |                         |  |  |
| 1*          | Additional month-blo                                                 | ock offshore closur   | res for February  | <sup>,</sup> & April | 1                    |                     |                |                         |  |  |
| 5/1/99      | Framework 27                                                         | 6.5 sq/6.0            |                   |                      | Haddock:             |                     |                |                         |  |  |
|             |                                                                      | diamond               |                   |                      | 2,000/DAS,           |                     |                |                         |  |  |
| < /1 = 10.0 |                                                                      |                       |                   |                      | 20,000/trip          |                     |                |                         |  |  |
| 6/15/99     |                                                                      |                       |                   |                      |                      |                     | Scallopers al  | lowed limited           |  |  |
|             |                                                                      |                       |                   |                      |                      |                     | access to Are  | ea 2                    |  |  |

| Date     | <b>Regulatory Action</b>                                                                                     | Cod end min.         | Minimum                                                | fish size (in)    | Commercial                       | Recreational         | Closures      | <b>Differential DAS</b> |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------|-------------------|----------------------------------|----------------------|---------------|-------------------------|--|--|--|
|          |                                                                                                              | mesh size (in)       | Commercial                                             | Recreational      | trip limits-lbs                  | trip limits-lbs      |               | Counting                |  |  |  |
| 8/15/99  | Framework 30                                                                                                 |                      |                                                        |                   | 1*                               |                      |               |                         |  |  |  |
| 1*       | 2,000 lbs/DAS, 20,0                                                                                          | 00 lbs/trip for vess | els with GOM                                           | Cod Landing Lin   | nit Exception Auth               | orization certificat | e             |                         |  |  |  |
| 11/5/99  |                                                                                                              |                      |                                                        |                   | Haddock:                         |                      |               |                         |  |  |  |
|          |                                                                                                              |                      |                                                        |                   | 5,000/DAS,                       |                      |               |                         |  |  |  |
|          |                                                                                                              |                      |                                                        |                   | 50,000/trip                      |                      |               |                         |  |  |  |
| 11/15/99 | Amendment 9                                                                                                  |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 4/28/00  | Framework 32                                                                                                 |                      |                                                        |                   |                                  |                      | 1*            |                         |  |  |  |
| 1*       | Cultivator Shoal Whiting Fishery Exemption Area season shorted, 3 in. mesh                                   |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 5/1/00   | 1* 2*                                                                                                        |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 1*       | Proposed SQ Trip limit: 2000 lb/ day, 20,000 lb/trip without trigger                                         |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 2*       | Additional closures on Georges Bank for May only (109-114, 98-99), Adjacent to Area 1                        |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 6/1/00   | Framework 33                                                                                                 | 6.5 square/6.5 di    | amond                                                  |                   |                                  |                      |               |                         |  |  |  |
| 11/1/00  |                                                                                                              |                      |                                                        |                   |                                  |                      | 1 month clos  | sure Cashes Ledge       |  |  |  |
| 11/1/01  |                                                                                                              |                      |                                                        |                   | Haddock 5,000/E                  | DAS suspended fro    | m 11/6 to 3/1 | / 2002, 50,000/trip     |  |  |  |
| 2/27/02  |                                                                                                              |                      |                                                        |                   | 1*                               |                      |               | 2*                      |  |  |  |
| 1*       | * Haddock: 5,000 lbs/DAS reinstated, 50,000 lbs/trip until Apr 30, 2002, then 3,000 lbs/DAS, 30,000 lbs/trip |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 2*       | 20 consecutive day b                                                                                         | lock during which    | vessels will no                                        | t fish under mult | ispecies DAS betw                | een Mar 1 & May      | 31            |                         |  |  |  |
| 5/1/02   | Interim Rule                                                                                                 | 6.5 diamond/sq       | 22                                                     | 23                | 1*                               | 2*                   | 3*            | 4*                      |  |  |  |
|          |                                                                                                              | cod end; 6.5         |                                                        |                   |                                  |                      |               |                         |  |  |  |
|          |                                                                                                              | gillnet              |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 1*       | 500 lbs/day (4000 lb                                                                                         | s/trip); Haddock 3   | ,000 lbs/DAS, 3                                        | 80,000 lbs/trip   |                                  |                      |               |                         |  |  |  |
| 2*       | 10 cod or haddock co                                                                                         | ombined/person       |                                                        |                   |                                  |                      |               |                         |  |  |  |
| 3*       | Additional month-bl                                                                                          | ock closures for M   | ay-June 2003; (                                        | Cashes Ledge clo  | osed year round                  |                      |               |                         |  |  |  |
| 4*       | 20% reduction in DA                                                                                          | S; First day of DA   | AS trip counted                                        | as minimum of 1   | 5 hours; limited to              | 25% of annual D      | AS between N  | 1ay 1 – July 31;        |  |  |  |
| 6/1/02   | Revised interim                                                                                              |                      | 19                                                     |                   |                                  |                      | Cashes Ledg   | ge East & West          |  |  |  |
|          | rule                                                                                                         |                      |                                                        |                   |                                  |                      | removed       |                         |  |  |  |
| 7/4/02   |                                                                                                              |                      |                                                        |                   | 1*                               |                      |               |                         |  |  |  |
| 1*       | Haddock daily limit                                                                                          | suspended; 30,000    | lbs/trip betwee                                        | n July 4, 2002 th | rough Sept 30, 200               | 02, 50,000 lbs/trip  | Oct 1 2002 to | Apr 30, 2003            |  |  |  |
| 8/1/02   | Emergency Rule                                                                                               | 1*                   | 22                                                     |                   |                                  | 2*                   | 3*            | 20% DAS<br>reduction    |  |  |  |
| 1*       |                                                                                                              |                      |                                                        |                   |                                  |                      |               |                         |  |  |  |
|          | 6.5 in diamond or so                                                                                         | cod end from Au      | g 15 2002 <sup>.</sup> Hoo                             | bk GB 3 600 rig   | gged hooks                       |                      |               |                         |  |  |  |
| 2*       | 6.5 in. diamond or so<br>Party/charter: 10 cod                                                               | l cod end from Au    | g 15, 2002; <i>Hoc</i><br>ed per person <sup>.</sup> D | ok: GB: 3,600 rig | gged hooks<br>than 5 cod /person | 1                    |               |                         |  |  |  |

#### Date **Regulatory Action** Cod end min. Minimum fish size (in) Commercial Recreational Closures **Differential DAS** mesh size (in) Commercial Recreational trip limits-lbs trip limits-lbs Counting 1/31/03 1\* Emergency rule (implemented Aug 1, 2002) extended for another 180 days 1\* 3/13/03 Haddock trip limit suspended from Mar 17 2003 to Apr 30 2003 5/1/03 21 1\* 2\* 1\* Haddock; daily landing limit suspended, 30,000/trip May 3- Sept 30, 2003 & 50,000/trip Oct 1, 2003 to April 30, 2004; Party/charter: GOM: Apr-Nov, 10 cod /person, Dec-Mar., 5 cod /person. Private: GOM: Dec-Mar., 10 cod/haddock combined, no more than 5 cod. Other areas: 10 cod/haddock combined Extension of Cultivator Shoal whiting fishery by one month (June 15-October 31) 2\* 6/27/03 Final Emergency Interim Measures Rule published 8/1/02 10/1/03 Haddock trip limit suspended Oct 3, 2003 through Apr 30, 2004 Emergency Rule (6/27/03) extended another 180 days 12/29/03 1/31/04 1\* Change Category B DAS used in CA II YTF SAP prior to Nov 19, 2004 (FW 40-A) to B Reserve DAS 1\* Amendment 13 5/1/04 1,000/day 1\* 2\* 22 inch 10.000/trip WGOM, Cashes Ledge & rolling closures continued 1\* Further reduction in DAS; DAS leasing; SAP to catch U.S. share of EGB cod, haddock; GB Cod Hook Sector established; US/Canada Area: 2\* hard TAC on cod, haddock (SAs 561, 562), Cod possession limit: 500 lbs-DAS/5,000 lbs-trip, not more than 5 percent of catch. No DAS charged to/from SAs 561, 562; Leasing & transfer programs allow DAS exchanges between vessels under limited conditions 5/14/04 Haddock suspended for remainder of FY 2014 6/1/04 CL II SAP Yellowtail 8/6/04 1\* YTF trip limit 1,500 lbs/day, 15,000 lbs/trip in western or eastern US/Canada Area including CAII YTF SAP area 1\* 9/3/04 YT SAP closed 10/1/04 1\* Closure of SAs 561 & 562 to all fishing on a multispecies DAS 1\* 11/2/04 1\* Scallop dredge vessel access to portions of groundfish mortality CAII & NLCA in 2004, CAI & CAII in 2005, & CAI & NLCA in 1\* 2006.

|          | Season: June 15 - Jan 31. Possession limits: 1,000 lbs. regulated groundfish, no more than 100 lbs. cod. |                           |                        |                         |                                |                      |                 |                    |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-------------------------|--------------------------------|----------------------|-----------------|--------------------|--|--|--|--|
| Date     | <b>Regulatory Action</b>                                                                                 | Cod end min.              | Minimum                | fish size (in)          | Commercial                     | Recreational         | Closures        | Differential DAS   |  |  |  |  |
|          |                                                                                                          | mesh size (in)            | Commercial             | Recreational            | trip limits-lbs                | trip limits-lbs      |                 | Counting           |  |  |  |  |
| 11/19/04 |                                                                                                          |                           |                        |                         |                                |                      | 1*              | DAS counted as     |  |  |  |  |
|          |                                                                                                          |                           |                        |                         |                                |                      |                 | EST not GMT on     |  |  |  |  |
|          |                                                                                                          |                           |                        |                         |                                |                      |                 | VMS                |  |  |  |  |
| 1*       | Eastern US/CA Are                                                                                        | ea Haddock SAP            | Pilot Program          | ı                       |                                |                      |                 |                    |  |  |  |  |
|          | Access to northern co                                                                                    | orner of CAII & ac        | ljacent area to t      | arget haddock us        | ing separator trawl            | . Season: May 1 t    | hrough Decem    | ber 31. Authorized |  |  |  |  |
|          | use of Category B DA                                                                                     | AS; CA II YTF SA          | AP cod possessi        | on limit 1,000 lb       | s/trip, B DAS proh             | ibition of legal siz | e cod.          |                    |  |  |  |  |
| 1/13/05  |                                                                                                          |                           |                        |                         |                                |                      | 1*              |                    |  |  |  |  |
| 1*       | Eastern US/Canada A                                                                                      | Area to limited acc       | ess DAS vessel         | <u>s, YTF 15,000 lb</u> | s/trip, cod 5,000 lt           | os/trip in this area |                 |                    |  |  |  |  |
| 2/7/05   |                                                                                                          |                           |                        |                         | YTF 5,000 /trip                |                      |                 |                    |  |  |  |  |
| 4/1/05   |                                                                                                          |                           |                        |                         |                                |                      | Eastern US/C    | Canada Area closed |  |  |  |  |
|          |                                                                                                          |                           |                        |                         |                                |                      | until Apr 30,   | , 2005             |  |  |  |  |
| 4/22/05  | 1*                                                                                                       |                           |                        |                         | 2*                             |                      | 3*              | 4*                 |  |  |  |  |
| 1*       | Return to Amd 13 regs unless modified in FW 40-A                                                         |                           |                        |                         |                                |                      |                 |                    |  |  |  |  |
| 2*       | GB cod: 500 lbs/DAS                                                                                      | S or 5,000 lbs/trip       | in Eastern US/C        | Canada area, 1,00       | 00 lbs/DAS, 10,000             | ) lbs/trip in Wester | rn US/Canada    | Area; GB haddock:  |  |  |  |  |
| 21       | 3,000 lbs/DAS, 30,00                                                                                     | <u>00 lbs/trip; GB Y1</u> | R no possession        | n outside of SAP        | 1 111 - 01                     |                      |                 | : CD 11000         |  |  |  |  |
| 3*       | May 1, 2005 Eastern                                                                                      | US/Canada reope           | ns to all limited      | access DAS ves          | sels; Western; CA              | II YTF SAP: GB       | YTF 30,000/tr   | ip, GB cod 1,000   |  |  |  |  |
| 4.4      | IDS/trip                                                                                                 | Drag gran CD as d         | $100 \ln \alpha / DAC$ | 1.000 lb a/taria        |                                |                      |                 |                    |  |  |  |  |
| 4*       | Regular B DAS Pliot                                                                                      | Program: GB coo           | 100 lbs/DAS,           | 1,000 lbs/trip          | Hedde als trin                 |                      |                 |                    |  |  |  |  |
| 5/3/05   |                                                                                                          |                           |                        |                         | Haddock trip                   |                      |                 |                    |  |  |  |  |
|          |                                                                                                          |                           |                        |                         | suspended                      |                      |                 |                    |  |  |  |  |
| 6/1/05   |                                                                                                          |                           |                        |                         |                                |                      |                 | DAS transfor       |  |  |  |  |
| 0/1/03   |                                                                                                          |                           |                        |                         | 1                              |                      |                 | program revisions  |  |  |  |  |
| 1*       | CA II VTE San revis                                                                                      | ions: GB VTF 10           | 000 lbs/trip_1 t       | rin/month               |                                |                      |                 | program revisions  |  |  |  |  |
| 6/28/05  |                                                                                                          |                           | 000 103/1110, 1 1      | np/month                |                                |                      | No trips into   | the CA II VTE SAP  |  |  |  |  |
| 0/20/05  |                                                                                                          |                           |                        |                         |                                |                      | for FY 2005     |                    |  |  |  |  |
| 7/12/05  | Temporary rule                                                                                           |                           |                        |                         |                                |                      | 1*              |                    |  |  |  |  |
| 1*       | DAS vessels limited                                                                                      | to one trip/month         | into Eastern US        | /Canada Area ur         | til Apr 30 2006 <sup>.</sup> 1 | imited access DAS    | S vessels requi | red to use haddock |  |  |  |  |
| ·        | separator trawl in the                                                                                   | area                      |                        | , cullulu i liou ul     |                                |                      |                 | ite to use nucleon |  |  |  |  |
| 7/18/05  |                                                                                                          |                           |                        |                         |                                |                      |                 | 1*                 |  |  |  |  |
| 1*       | Prohibited use of reg                                                                                    | ular B DAS under          | regular b DAS          | pilot program in        | GB cod stock area              | through 7/31/05      | II              |                    |  |  |  |  |

| Date     | <b>Regulatory Action</b>                                          | Cod end min.          | Minimum          | fish size (in)         | Commercial                | Recreational              | Closures       | <b>Differential DAS</b> |  |  |
|----------|-------------------------------------------------------------------|-----------------------|------------------|------------------------|---------------------------|---------------------------|----------------|-------------------------|--|--|
|          |                                                                   | mesh size (in)        | Commercial       | Recreational           | trip limits-lbs           | trip limits-lbs           |                | Counting                |  |  |
| 8/26/05  |                                                                   |                       |                  |                        |                           |                           | 1*             |                         |  |  |
| 1*       | Eastern US/Canada A                                               | Area closed to all l  | imited access D  | AS vessels until       | Apr 30, 2006              |                           |                |                         |  |  |
| 9/13/05  | Framework 41                                                      |                       |                  |                        |                           |                           | 1*             |                         |  |  |
| 1*       | CA I Hook Gear Had                                                | ldock SAP: allows     | non-Sector ves   | sels into SAP on       | B DAS between N           | Nov 16 & Dec 31,          | 2005, cod: 1,0 | 00 lbs/trip; GB cod     |  |  |
|          | hook sector: Oct 1 –                                              | Nov 15 can't fish     | inside & outside | e SAP on same ti       | rip                       |                           |                |                         |  |  |
| 10/3/05  |                                                                   |                       |                  |                        |                           |                           |                | 1*                      |  |  |
| 1*       | Prohibition the use of                                            | f Regular B DAS u     | under Regular E  | BDAS pilot prog        | ram from Oct 6, 20        | 005 to Oct 31, 200        | 5              |                         |  |  |
| 12/21/05 |                                                                   |                       |                  |                        | GB YTF 15,000             | lbs/trip                  |                |                         |  |  |
| 2/9/06   |                                                                   |                       |                  |                        | GB YTF 1,500 lt           | os/day up to 15,00        | 0 lbs/trip     |                         |  |  |
| 2/22/06  |                                                                   |                       |                  |                        | GB YTF daily tri          | p limit removed, 1        | 5,000 lbs/trip |                         |  |  |
| 3/24/06  |                                                                   |                       |                  |                        | No trip limit for (       | GB YTF for limite         | d access DAS   | vessels in              |  |  |
|          |                                                                   |                       |                  |                        | US/Canada Management Area |                           |                |                         |  |  |
| 3/30/06  | Control Date established for charter & party recreational fishery |                       |                  |                        |                           |                           |                |                         |  |  |
| 5/1/06   |                                                                   |                       |                  |                        | 1*                        |                           |                | 2*                      |  |  |
| 1*       | * GB YTF 10,000 lbs/trip; GB winter flounder 5,000 lbs/trip;      |                       |                  |                        |                           |                           |                |                         |  |  |
| 2*       | Differential DAS cou                                              | unting for A DAS      | outside of US/C  | anada managem          | ent area (1.4 DAS         | for each day fishe        | d); modified c | od running-clock        |  |  |
|          | provision – can land                                              | additional cod but    | 24 – 34 hour tr  | ip charged 48 DA       | AS use, trips $> 34$ l    | nours charged 1.4:        | 1 DAS.         |                         |  |  |
| 5/19/06  |                                                                   |                       |                  |                        |                           |                           | CA II YTF S    | SAP closed through      |  |  |
|          |                                                                   |                       |                  |                        |                           |                           | Apr 30,2007    |                         |  |  |
| 6/19/06  |                                                                   |                       |                  |                        |                           |                           | DAS vessels    | in Eastern              |  |  |
|          |                                                                   |                       |                  |                        |                           |                           | US/Canada A    | Area must use           |  |  |
| 10/6/06  |                                                                   |                       |                  |                        |                           |                           | haddock sep    | arate trawl             |  |  |
| 10/6/06  | Emergency Rule                                                    |                       |                  |                        |                           |                           |                |                         |  |  |
|          | (5/1/06) extended                                                 |                       |                  |                        |                           |                           |                |                         |  |  |
| 11/22/06 | Eramowork 42                                                      |                       |                  | $COM \cdot 24 \cdot$   | 1*                        |                           |                | DAS counted 2:1 in      |  |  |
| 11/22/00 | FIAIIIEWOIK 42                                                    |                       |                  | GDM. 24,<br>GP: 22     | 1.                        |                           |                | inshore GOM             |  |  |
| 1*       | Possession prohibited                                             | l<br>I November to Ma | rch 31. GOM c    | <u>od. 800 lbc/day</u> | 4 000 lbs/trip: GB        | cod: 1 000 lbs/DA         | S 10 000 lbs   | trin: Fastern GR        |  |  |
| 1        | cod. 500 lbs/DAS 5                                                | 000  lbs/trin         |                  | ou. 000 105/udy,       | т,000 105/штр, ОD         | <b>Cou</b> . 1,000 105/DP | 10,000 108/    | uip, Lastelli OD        |  |  |
| 2/28/07  | Revised protocol                                                  | 000 105/ 010          | [                |                        |                           |                           |                |                         |  |  |
|          | for measuring net                                                 |                       |                  |                        |                           |                           |                |                         |  |  |
|          | mesh size                                                         |                       |                  |                        |                           |                           |                |                         |  |  |

| Date     | <b>Regulatory Action</b>                                                               | Cod end min.        | Minimum          | fish size (in)    | Commercial                              | Recreational          | Closures         | <b>Differential DAS</b> |  |  |  |
|----------|----------------------------------------------------------------------------------------|---------------------|------------------|-------------------|-----------------------------------------|-----------------------|------------------|-------------------------|--|--|--|
|          |                                                                                        | mesh size (in)      | Commercial       | Recreational      | trip limits-lbs                         | trip limits-lbs       |                  | Counting                |  |  |  |
| 3/5/07   |                                                                                        |                     |                  |                   | 1*                                      |                       | 2*               |                         |  |  |  |
| 1*       | GB YTF 5,000 lbs/tr                                                                    | ip for non haddock  | k separator traw | 'l trips          |                                         |                       |                  |                         |  |  |  |
| 2*       | In Eastern US/Canad                                                                    | a are fish with had | ldock separator  | trawl or flounder | r trawl                                 |                       |                  |                         |  |  |  |
| 4/5/07   |                                                                                        |                     |                  |                   | GB YTF                                  |                       |                  |                         |  |  |  |
|          |                                                                                        |                     |                  |                   | 25,000 lbs/trip                         |                       |                  |                         |  |  |  |
| 4/25/07  |                                                                                        |                     |                  |                   |                                         |                       | Eastern US/C     | Canada Area closed      |  |  |  |
|          |                                                                                        |                     |                  |                   |                                         |                       | to limited ac    | cess DAS vessels        |  |  |  |
| 5/1/07   |                                                                                        |                     |                  |                   | GB YTF 3,000 lt                         | os/trip in US/Cana    | da Managemei     | nt Area                 |  |  |  |
| 6/4/07   |                                                                                        |                     |                  |                   |                                         |                       | CA II YTF S      | SAP closed for FY       |  |  |  |
| 0/0/07   |                                                                                        |                     | TT 11 1          | TT 11 1           |                                         |                       | 2007             |                         |  |  |  |
| 8/9/07   | Emergency Action                                                                       |                     | Haddock          | Haddock           |                                         |                       |                  |                         |  |  |  |
|          |                                                                                        |                     | GOM: 18          | GOM: 19           |                                         |                       |                  |                         |  |  |  |
| 10/20/07 |                                                                                        |                     | GB: 18           | GB: 19            | 1*                                      |                       | 2*               |                         |  |  |  |
| 10/20/07 | GR and: 1 000 lbs/trin in Eastern Us/Canada Area or Eastern US/Canada Haddook SAD      |                     |                  |                   |                                         |                       |                  |                         |  |  |  |
| 1        | CD COU. 1,000 105/1110 III Easterii OS/Callada Alea OI Easterii OS/Callada Haddock SAF |                     |                  |                   |                                         |                       |                  |                         |  |  |  |
|          |                                                                                        | area open to minte  |                  |                   | GB YTE 7 500 ll                         | ns/trin               |                  |                         |  |  |  |
| 1/10/08  |                                                                                        |                     |                  |                   | GB YTF 1 500 lt                         | os/trip               |                  |                         |  |  |  |
| 1/24/08  |                                                                                        |                     |                  |                   | GB YTF possess                          | ion prohibited        |                  |                         |  |  |  |
| 3/28/08  |                                                                                        |                     |                  |                   |                                         |                       | Eastern US/C     | Canada Area access      |  |  |  |
|          |                                                                                        |                     |                  |                   |                                         |                       | delayed until    | Aug 1, 2008 except      |  |  |  |
|          |                                                                                        |                     |                  |                   |                                         |                       | for longline     | gear vessels            |  |  |  |
| 5/1/08   |                                                                                        |                     |                  |                   | GB YTF 5,000 lt                         | os/trip for limited a | access DAS ve    | ssels in US/Canada      |  |  |  |
|          |                                                                                        |                     |                  |                   | Management Are                          | a                     |                  |                         |  |  |  |
| 5/30/08  |                                                                                        |                     |                  |                   |                                         |                       | Zero trips in    | CA II YTF SAP for       |  |  |  |
|          |                                                                                        |                     |                  |                   |                                         |                       | FY 2008          |                         |  |  |  |
| 8/11/08  |                                                                                        |                     | Haddock          |                   |                                         |                       |                  |                         |  |  |  |
|          |                                                                                        |                     | GOM: 19          |                   |                                         |                       |                  |                         |  |  |  |
|          |                                                                                        |                     | GB: 19           |                   | CD 1100 1                               |                       |                  | 1                       |  |  |  |
| 10/23/08 |                                                                                        |                     |                  |                   | GB YTF 2,500 lt                         | os/trip for limited a | access DAS ve    | ssels in US/Canada      |  |  |  |
| 10/02/02 |                                                                                        |                     |                  |                   | Management Are                          |                       | 4 . 6            | 1 (* 1 *                |  |  |  |
| 12/23/08 |                                                                                        |                     |                  |                   | EGB cod: 1,000                          | 10S/DAS, 10,000       | os/trip for vess | els fishing             |  |  |  |
| 2/26/00  |                                                                                        |                     |                  | 001 1 24          | exclusively in Easter US/Canada Area    |                       |                  |                         |  |  |  |
| 2/26/09  |                                                                                        |                     |                  | GOM cod: 24       | EGB cod: 1,000 lbs/DAS, 10,000 lbs/trip |                       |                  |                         |  |  |  |

| Date     | <b>Regulatory Action</b> | Cod end min.        | Minimum           | fish size (in)    | Commercial                    | Recreational          | Closures         | <b>Differential DAS</b> |  |
|----------|--------------------------|---------------------|-------------------|-------------------|-------------------------------|-----------------------|------------------|-------------------------|--|
|          |                          | mesh size (in)      | Commercial        | Recreational      | trip limits-lbs               | trip limits-lbs       |                  | Counting                |  |
| 3/9/09   |                          |                     |                   |                   | EGB 500 lbs/DA                | S, 5,000 lbs/trip; 0  | GB YTF 5,000     | lbs/trip                |  |
| 4/6/09   | Interim Rule             |                     | Haddock: 18       | Haddock: 18       | 1*                            | 2*                    |                  |                         |  |
| 1*       | GB cod 1,000 lbs/DA      | AS, 10,000 lbs/trip | ; Eastern US/Ca   | inada Area 500 l  | bs/DAS, 5,000 lbs/            | /trip                 |                  |                         |  |
| 2*       | Charter/party vessels    | : GB cod trip limit | t of 10 cod/perse | on/day            |                               |                       |                  |                         |  |
| 4/16/09  |                          |                     |                   |                   |                               |                       | Eastern US/C     | Canada Area closed      |  |
|          |                          |                     |                   |                   | to limited access DAS vessels |                       |                  |                         |  |
|          |                          |                     |                   |                   | for remainder of FY 2008      |                       |                  |                         |  |
| 5/1/09   | Interim rule             |                     |                   |                   | Possession prohi              | bited November to     | April 15         |                         |  |
| 6/3/09   |                          |                     |                   |                   | GB YTF 2,500 lt               | os/trip for limited a | access DAS ve    | ssels in US/Canada      |  |
|          |                          |                     |                   |                   | Management Are                | a                     | 1                |                         |  |
| 6/24/09  |                          |                     |                   |                   |                               |                       | Eastern          |                         |  |
|          |                          |                     |                   |                   |                               |                       | US/Canada        |                         |  |
|          |                          |                     |                   |                   |                               |                       | Area closed      |                         |  |
| 3/24/10  |                          |                     |                   |                   | GB YTF 5,000 lt               | os/trip for limited a | access DAS ve    | ssels in US/Canada      |  |
|          |                          |                     |                   |                   | Management Are                | a                     |                  |                         |  |
| 5/1/10   | Amendment 16             |                     |                   |                   | 1*                            |                       | 2*               | 3*                      |  |
| 1*       | 2,000 lbs/DAS, 20,00     | 00 lbs/trip; Commo  | on pool: 800 lbs  | /day (4000 lbs/ti | rip)                          |                       |                  |                         |  |
| 2*       | Some changes to roll     | ing closures for se | ctor vessels      |                   |                               |                       |                  |                         |  |
| 3*       | DAS counted in 24-h      | our blocks; no dif  | ferential DAS c   | ounting except a  | s AMS; reduction              | in DAS                |                  |                         |  |
| 7/30/10  |                          |                     |                   |                   | Common pool: 2                | 00 lbs/day (1000 l    | bs/trip)         |                         |  |
| 10/18/10 |                          |                     |                   |                   | Common pool: G                | OM & GB cod 50        | lbs/trip         |                         |  |
| 9/22/10  |                          |                     |                   |                   | Common pool: 1                | 00 lbs/day (1000 l    | bs/trip)         |                         |  |
| 10/18/10 |                          |                     |                   |                   | Handgear A: 50 l              | bs/trip               |                  |                         |  |
| 3/31/11  |                          |                     |                   |                   | GB cod: 3,000 lb              | s/DAS, 30,000 lbs     | /trip until Apr  | 30, 2011                |  |
| 4/19/11  |                          |                     |                   |                   | 1*                            |                       |                  | 2*                      |  |
| 1*       | Common pool: 3,000       | lbs/DAS, 30,000     | lbs/trip (outside | of Eastern US/C   | Canada Area), 500             | lbs/DAS, 5,000 lb     | s/trip (inside E | L US/Canada Area)       |  |
| 2*       | Common pool: A DA        | S charged at rate   | of 1.3: 1 or 31.2 | hours for each l  | DAS                           |                       |                  |                         |  |
| 8/30/11  |                          |                     |                   |                   | Common Pool: 3                | 00 lbs/DAS, 600 l     | bs/trip          |                         |  |
| 9/8/11   |                          |                     |                   |                   |                               |                       |                  | 1*                      |  |
| 1*       | Differential DAS for     | Offshore GOM &      | Inshore GB rec    | luced to 1.2; Off | shore GB remains              | 1.3                   |                  |                         |  |
| 10/3/11  |                          |                     |                   |                   | Common pool un                | der Handgear B p      | ermit: 25 lbs/ti | rip                     |  |

| Bank, 1978-2011.                                                                   |
|------------------------------------------------------------------------------------|
| 1978 Foreign fleets were excluded from the 200 mile exclusive economic zones of    |
| Canada and USA;                                                                    |
| 1984 Oct. Implementation of the maritime boundary between the USA and Canada in    |
| the Gulf of Maine Area;                                                            |
| 1985 5Z cod assessment started in Canada                                           |
| Set TAC; TAC=25,000mt                                                              |
| 1986 TAC=11,000mt                                                                  |
| 1987 TAC=12,500mt                                                                  |
| 1988 TAC=12,500mt                                                                  |
| 1989 TAC=8,000mt                                                                   |
| 5Zjm cod assessment                                                                |
| 1990 Changes to larger and square mesh size;                                       |
| Changes from TAC to individual and equal boat quotas of 280,000lb with bycatch     |
| restrictions;                                                                      |
| Temporary Vessel Replacement Program was introduced                                |
| 1991 TAC=15,000mt                                                                  |
| Dockside monitoring                                                                |
| Maximum individual quota holdings increased to 2% or 600t(whichever was less)      |
| 1992 TAC=15,000mt                                                                  |
| Introduction of ITQs for the OTB fleet                                             |
| 1993 TAC=15,000mt, ITQ for the OTB fleet not based on recommended catch quotas;    |
| OTB <65 fleet was allowed to fish during the spawning season (Mar.–May. 31).       |
| 1994 TAC=6,000mt,                                                                  |
| Spawning closures January to May 31;                                               |
| Mesh size was 130mm square for cod, haddock an Pollock for ITQ fleet;              |
| Minimum mesh size of 6" was required for gillnets;                                 |
| Minimum fish size is 43cm (small fish protocols) for cod, haddock an Pollock for   |
| ITQ fleet;                                                                         |
| OT>65' could not begin fishing until July 1;                                       |
| Fixed gear must choose to fish either 5Z or 4X during June 1 to September 30.      |
| 1995 TAC=1,000mt as a bycatch fishery;                                             |
| January 1 to June 18 was closed to all groundfish fishery;                         |
| 130mm square mesh size for all mobile fleets;                                      |
| Small fish protocols continued;                                                    |
| 100% dock side monitoring;                                                         |
| Fixed gear vessels with a history since 1990 of 25t or more for 3 years of cod,    |
| haddock, Pollock,                                                                  |
| hake or cusk combined can participate in 5Z fishery.                               |
| 1996 IAC=2,000mt;                                                                  |
| Prohibition of the landing of groundfish (except monkfish) by the scallop fishery; |
| 11Q vessel require minimum 130mm square mesh for directed cod, haddock and         |
| POHOCK trips;                                                                      |
| Small fish protocols continued;                                                    |
| For community management, quota allocation of each fixed gear based on catch       |

# Appendix B.1. Table 2. Canadian fishery management history of cod on eastern Georges

| histor    | y using the years 1986-1993;                                                     |
|-----------|----------------------------------------------------------------------------------|
|           | 100% mandatory dockside monitoring and weighout.                                 |
|           |                                                                                  |
|           |                                                                                  |
|           |                                                                                  |
| 1007      | $T \wedge C = 2.000$ mt                                                          |
| 1997      | TAC-5,000mt                                                                      |
| 1998      | TAC=1,900mt                                                                      |
| 1999      | TAC=1,800mt;                                                                     |
|           | Mandatory cod separator panel when no observer on board;                         |
| 2000      | Jan. and Feb. mobile gear winter Pollock fishery.                                |
| 2000      | TAC=1,600mt                                                                      |
|           | Jan. and Feb. mobile gear winter Pollock fishery                                 |
| 2001      | TAC=2,100mt                                                                      |
| 2002      | TAC=1,192mt                                                                      |
| 2003      | TAC=1,301mt;                                                                     |
| 2004      | TAC=1,000mt;                                                                     |
|           | Canada-USA resource sharing agreement on Georges Bank.                           |
| 2005      | TAC=740mt;                                                                       |
|           | Exploratory winter fishery Jan. to Feb. 18, 2005;                                |
|           | Spawning protocol: 25% of maturity stages at 5 and 6.                            |
| 2006      | TAC=1,326mt;                                                                     |
|           | Exploratory winter fishery Jan. to Feb.6, 2006;                                  |
|           | Spawning protocol: 30% of maturity stages at 5 to 7.                             |
| 2007      | TAC=1,406mt;                                                                     |
|           | Exploratory winter fishery Jan. to Feb. 15, 2007;                                |
|           | High mobile gear observer coverage (99%);                                        |
| • • • • • | Spawning protocol: 30% of maturity stages at 5 to 7.                             |
| 2008      | TAC=1,633mt;                                                                     |
|           | Winter fishery from Jan. 1 to Feb. 8, 2009;                                      |
| 010/1     | At sea observer coverage 38% by weight of the mobile gear fleet landings and     |
| 21% t     | by weight of the                                                                 |
|           | fixed gear landings;                                                             |
| 2000      | Spawning protocol: 30% of maturity stages at 5 to 7.                             |
| 2009      | IAC=1, I/3mt;                                                                    |
|           | Winter fishery from Jan. 1 to Feb. 21, 2009;                                     |
| 150/1     | At sea observer coverage 23% by weight of the mobile gear fleet landings and     |
| 13701     | fixed geer lendings:                                                             |
|           | Snowning protocol: 20% of maturity stages at 5 to 7                              |
| 2010      | Spawning protocol. $50\%$ of maturity stages at 5 to 7.                          |
| 2010      | $\frac{1}{1} = 1,550111,$ Winter fishery from Ian 1 to Eab 8 2010:               |
|           | winner history hundrand 180% by weight of the mobile over fleet landings and 60% |
| hu wo     | sight of the                                                                     |
| by we     | fixed gear landings:                                                             |
|           | nava soar landings,                                                              |

|       | Spawning protocol: 30% of maturity stages at 5 to 7.                          |
|-------|-------------------------------------------------------------------------------|
| 2011  | TAC=1,050mt;                                                                  |
|       | Winter fishery from Jan. 1 to Feb. 5, 2011;                                   |
|       | At sea observer coverage 19% by weight of the mobile gear fleet landings, 20% |
| by we | hight of the                                                                  |
|       | fixed gear landings and 3% by weight of the gillnet fleet landings;           |
|       | Spawning protocol: 30% of maturity stages at 5 to 7.                          |

|        | AGE  |      |       |       |      |      |      |     |     |     |  |
|--------|------|------|-------|-------|------|------|------|-----|-----|-----|--|
| SPRING | 1    | 2    | 3     | 4     | 5    | 6    | 7    | 8   | 9   | 10+ |  |
| 1978   | 478  | 247  | 7111  | 1249  | 1042 | 140  | 916  | 67  | 182 | 140 |  |
| 1979   | 541  | 1656 | 364   | 2406  | 681  | 280  | 121  | 167 | 13  | 45  |  |
| 1980   | 40   | 2846 | 3469  | 273   | 2220 | 487  | 197  | 40  | 39  | 123 |  |
| 1981   | 2960 | 2381 | 3630  | 2182  | 136  | 1098 | 332  | 170 | 0   | 145 |  |
| 1982   | 694  | 7425 | 12980 | 11372 | 8481 | 400  | 2549 | 503 | 342 | 47  |  |
| 1983   | 453  | 2666 | 4121  | 1088  | 952  | 605  | 37   | 299 | 0   | 188 |  |
| 1984   | 549  | 589  | 1039  | 1691  | 577  | 547  | 285  | 0   | 293 | 0   |  |
| 1985   | 152  | 3624 | 906   | 1517  | 1929 | 363  | 262  | 246 | 50  | 220 |  |
| 1986   | 1191 | 559  | 2520  | 499   | 738  | 844  | 84   | 171 | 139 | 21  |  |
| 1987   | 27   | 2203 | 517   | 1043  | 85   | 245  | 185  | 45  | 36  | 34  |  |
| 1988   | 984  | 832  | 4303  | 558   | 879  | 87   | 51   | 67  | 0   | 9   |  |
| 1989   | 424  | 1927 | 910   | 2163  | 321  | 480  | 69   | 54  | 75  | 127 |  |
| 1990   | 237  | 1259 | 2373  | 921   | 1246 | 178  | 195  | 18  | 22  | 37  |  |
| 1991   | 1402 | 721  | 941   | 1269  | 654  | 448  | 74   | 55  | 0   | 61  |  |
| 1992   | 168  | 1711 | 640   | 230   | 373  | 195  | 217  | 27  | 51  | 38  |  |
| 1993   | 12   | 545  | 1784  | 280   | 122  | 189  | 40   | 47  | 28  | 75  |  |
| 1994   | 170  | 372  | 273   | 296   | 45   | 8    | 60   | 0   | 26  | 0   |  |
| 1995   | 68   | 521  | 1166  | 729   | 818  | 146  | 304  | 53  | 30  | 0   |  |
| 1996   | 100  | 292  | 1006  | 1704  | 238  | 285  | 38   | 25  | 0   | 0   |  |
| 1997   | 397  | 597  | 233   | 667   | 577  | 68   | 183  | 27  | 0   | 0   |  |
| 1998   | 152  | 909  | 1773  | 1158  | 1031 | 728  | 139  | 42  | 0   | 0   |  |
| 1999   | 290  | 397  | 832   | 696   | 325  | 163  | 87   | 32  | 20  | 0   |  |
| 2000   | 301  | 1102 | 1134  | 1559  | 506  | 140  | 35   | 27  | 0   | 0   |  |
| 2001   | 83   | 320  | 1084  | 219   | 523  | 241  | 32   | 24  | 17  | 0   |  |
| 2002   | 88   | 127  | 524   | 1357  | 327  | 307  | 53   | 0   | 0   | 38  |  |
| 2003   | 22   | 289  | 361   | 839   | 963  | 106  | 104  | 14  | 0   | 0   |  |
| 2004   | 870  | 79   | 791   | 1921  | 1850 | 1219 | 244  | 357 | 18  | 0   |  |
| 2005   | 16   | 661  | 188   | 862   | 375  | 280  | 174  | 41  | 0   | 0   |  |
| 2006   | 244  | 316  | 1784  | 453   | 988  | 291  | 166  | 74  | 0   | 0   |  |
| 2007   | 171  | 873  | 513   | 2450  | 247  | 286  | 42   | 25  | 0   | 0   |  |
| 2008   | 864  | 1136 | 790   | 480   | 1312 | 52   | 61   | 0   | 0   | 0   |  |
| 2009   | 843  | 477  | 787   | 383   | 204  | 339  | 23   | 12  | 13  | 0   |  |
| 2010   | 141  | 795  | 500   | 792   | 195  | 45   | 169  | 0   | 12  | 0   |  |
| 2011   | 99   | 354  | 247   | 386   | 191  | 69   | 10   | 24  | 0   | 0   |  |
| 2012   | 38   | 471  | 715   | 773   | 195  | 134  | 24   | 0   | 0   | 0   |  |

**Appendix B.2** Swept area estimates for NEFSC spring, autumn, and DFO surveys.

|        | AGE  |      |      |      |     |     |  |  |  |  |  |
|--------|------|------|------|------|-----|-----|--|--|--|--|--|
| Autumn | 1    | 2    | 3    | 4    | 5   | 6   |  |  |  |  |  |
| 1978   | 2553 | 347  | 5700 | 1334 | 482 | 212 |  |  |  |  |  |
| 1979   | 2206 | 2291 | 221  | 2304 | 438 | 251 |  |  |  |  |  |
| 1980   | 1120 | 770  | 1057 | 72   | 369 | 71  |  |  |  |  |  |
| 1981   | 4818 | 3004 | 2083 | 1032 | 83  | 818 |  |  |  |  |  |
| 1982   | 760  | 2609 | 330  | 93   | 157 | 0   |  |  |  |  |  |
| 1983   | 1160 | 1488 | 1011 | 94   | 45  | 6   |  |  |  |  |  |
| 1984   | 2608 | 931  | 1269 | 1127 | 33  | 81  |  |  |  |  |  |
| 1985   | 253  | 1146 | 91   | 145  | 96  | 17  |  |  |  |  |  |
| 1986   | 3087 | 176  | 423  | 38   | 67  | 99  |  |  |  |  |  |
| 1987   | 565  | 1848 | 148  | 274  | 38  | 16  |  |  |  |  |  |
| 1988   | 1195 | 597  | 1235 | 82   | 265 | 0   |  |  |  |  |  |
| 1989   | 3823 | 1429 | 220  | 693  | 75  | 21  |  |  |  |  |  |
| 1990   | 497  | 2219 | 2478 | 563  | 390 | 53  |  |  |  |  |  |
| 1991   | 557  | 239  | 375  | 42   | 40  | 0   |  |  |  |  |  |
| 1992   | 563  | 1296 | 238  | 137  | 60  | 13  |  |  |  |  |  |
| 1993   | 1325 | 726  | 523  | 23   | 35  | 30  |  |  |  |  |  |
| 1994   | 554  | 907  | 592  | 210  | 93  | 29  |  |  |  |  |  |
| 1995   | 334  | 2473 | 1706 | 119  | 74  | 14  |  |  |  |  |  |
| 1996   | 328  | 267  | 566  | 195  | 82  | 36  |  |  |  |  |  |
| 1997   | 323  | 438  | 149  | 176  | 66  | 12  |  |  |  |  |  |
| 1998   | 458  | 1402 | 481  | 56   | 48  | 5   |  |  |  |  |  |
| 1999   | 191  | 211  | 423  | 348  | 119 | 0   |  |  |  |  |  |
| 2000   | 794  | 721  | 96   | 108  | 42  | 0   |  |  |  |  |  |
| 2001   | 64   | 520  | 627  | 81   | 75  | 11  |  |  |  |  |  |
| 2002   | 652  | 966  | 1907 | 2223 | 161 | 179 |  |  |  |  |  |
| 2003   | 196  | 447  | 283  | 212  | 111 | 0   |  |  |  |  |  |
| 2004   | 1017 | 186  | 970  | 344  | 439 | 345 |  |  |  |  |  |
| 2005   | 76   | 792  | 176  | 240  | 35  | 0   |  |  |  |  |  |
| 2006   | 591  | 221  | 702  | 46   | 170 | 20  |  |  |  |  |  |
| 2007   | 157  | 283  | 69   | 178  | 9   | 9   |  |  |  |  |  |
| 2008   | 533  | 848  | 242  | 15   | 152 | 48  |  |  |  |  |  |
| 2009   | 1758 | 879  | 487  | 100  | 35  | 50  |  |  |  |  |  |
| 2010   | 524  | 802  | 177  | 185  | 86  | 0   |  |  |  |  |  |
| 2011   | 644  | 943  | 369  | 236  | 122 | 19  |  |  |  |  |  |
|      | AGE  |      |      |      |      |      |      |     |     |     |  |
|------|------|------|------|------|------|------|------|-----|-----|-----|--|
| DFO  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8   | 9   | 10+ |  |
| 1986 | 844  | 3195 | 3955 | 521  | 915  | 619  | 366  | 56  | 99  | 42  |  |
| 1987 | 354  | 2993 | 1294 | 1534 | 466  | 164  | 298  | 104 | 41  | 99  |  |
| 1988 | 392  | 1396 | 6567 | 825  | 1438 | 182  | 109  | 245 | 63  | 72  |  |
| 1989 | 2146 | 3805 | 1896 | 3951 | 510  | 588  | 65   | 134 | 168 | 92  |  |
| 1990 | 637  | 3686 | 5422 | 2967 | 5478 | 596  | 1313 | 163 | 163 | 489 |  |
| 1991 | 1650 | 1635 | 2586 | 3011 | 1467 | 1830 | 219  | 312 | 46  | 127 |  |
| 1992 | 155  | 4025 | 2491 | 1126 | 1379 | 844  | 605  | 169 | 99  | 28  |  |
| 1993 | 70   | 844  | 3983 | 1464 | 873  | 1731 | 619  | 591 | 99  | 169 |  |
| 1994 | 28   | 1126 | 1253 | 2322 | 844  | 324  | 633  | 155 | 211 | 56  |  |
| 1995 | 99   | 943  | 2111 | 1210 | 844  | 267  | 56   | 70  | 28  | 28  |  |
| 1996 | 197  | 690  | 3251 | 5658 | 1534 | 1112 | 464  | 113 | 155 | 42  |  |
| 1997 | 450  | 746  | 774  | 1759 | 1731 | 380  | 84   | 42  | 28  | 14  |  |
| 1998 | 14   | 943  | 1337 | 493  | 493  | 394  | 99   | 28  | 6   | 28  |  |
| 1999 | 458  | 449  | 2092 | 1530 | 570  | 364  | 205  | 10  | 34  | 7   |  |
| 2000 | 142  | 619  | 1484 | 5478 | 2452 | 1116 | 546  | 340 | 20  | 33  |  |
| 2001 | 3    | 80   | 899  | 587  | 1559 | 731  | 365  | 235 | 231 | 73  |  |
| 2002 | 13   | 122  | 806  | 2887 | 962  | 1718 | 564  | 232 | 69  | 110 |  |
| 2003 | 0    | 31   | 419  | 912  | 1707 | 447  | 474  | 228 | 20  | 0   |  |
| 2004 | 754  | 134  | 552  | 596  | 635  | 545  | 104  | 165 | 28  | 10  |  |
| 2005 | 34   | 2013 | 873  | 3780 | 1701 | 739  | 456  | 37  | 19  | 0   |  |
| 2006 | 0    | 43   | 1695 | 747  | 1925 | 804  | 231  | 230 | 85  | 60  |  |
| 2007 | 170  | 642  | 1168 | 3635 | 480  | 748  | 119  | 94  | 53  | 4   |  |
| 2008 | 12   | 455  | 1260 | 836  | 3069 | 196  | 397  | 41  | 4   | 20  |  |
| 2009 | 42   | 330  | 2769 | 2457 | 513  | 2937 | 0    | 82  | 0   | 18  |  |
| 2010 | 5    | 144  | 1101 | 4671 | 2060 | 813  | 2119 | 75  | 98  | 5   |  |
| 2011 | 180  | 612  | 942  | 1100 | 1406 | 267  | 68   | 111 | 13  | 6   |  |
| 2012 | 9    | 174  | 405  | 350  | 203  | 164  | 8    | 17  | 4   | 0   |  |

# Appendix B.3 Alternative ASAP Models

## M Ramp

Natural mortality was profiled over historical and recent time series, to inform the WG discussion on whether there has been a long term change in M. Profiling of M over the time series (1978-2011) indicated little change in the ASAP objective function for M values between 0.1-0.5, however, the objective function (OF) increased for values greater than 0.6 (Appendix Figure B3.1). Profiling of M during 1978-2002 resulted in an increasing value in the OF as M increased from 0.1 to 0.9 (Appendix Figure B3.2). A profile of M during 2003-2011 resulted in the lowest OF at M=0.3 and M=0.4, with as increase in the OF for values of M = 0.2, 0.5 and 0.6 (Appendix Figure B3.3). The retrospective bias of the M=0.4 model was less than that of the M=0.3 model. Based on the M profile results and discussions centered on the Miller (2012) analysis of 2003-2006 tagging data, the WG agreed that an ASAP model formulation with changing M over the recent time period would be presented . In this formulation (MRamp) M=0.2 during 1978-1989 and M=0.4 during 2003-2011. The years in between, 1990-2002 ramp up from 0.2 to 0.4 by (0.4-0.2)/13 years.

Results from the MRamp model indicate higher SSB and lower F in recent years compared to the Base model results (Appendix Figure B3.4). The terminal year estimates are very similar, however, in both models. The retrospective analysis shows less bias than the Base model with a SSB rho = 0.053 and the F rho = 0.088 (Appendix Figure B3.5). The Mramp model, however, has a retrospective pattern early in the time series which is not seen in the Base model.

# Catch Multiplier

The catch multiplier model (Catmult) incorporates all the unaccounted for mortality, either natural or fishing, that would need to be accounted for in order to provide population estimates with little or no retrospective bias. A profile of catch multipliers, ranging from one-half to three times the current catch estimates for two time periods (1978-1994, 1995-2011) were evaluated relative to the retrospective bias in SSB and F measured by the rho value. The results indicate that the lowest retrospective bias would be achieved in the 1978-1994 time period if the catch were reduced by one-half, or in the 1995-2011 time period the catch were increased by three times (Appendix Figure B3.6). The WG agreed to evaluate a model that incorporated a three-fold increase in catch during the 1995-2011 time period.

Results from the Catmult model indicate higher SSB than the Base model starting in about 1985 (Appendix Figure B3.7). Fishing mortality is also higher than the Base model, and as expected F is lower F than the Base model, prior to 1995. The Catmult retrospective analysis shows less bias for SSB (rho = -0.053) and F (rho = 0.075) than the Base model (Appendix Figure B3.8).

# Support for and against Alternative Assessment Models

While the SAW 55 WG could not reach consensus on which model should serve as the basis of current stock status determination and management advice, it agreed that the 'newly proposed model' (TOR 7) should be that of each lead scientist, which in this case is the M = 0.2 model (referred to as the Base formulation). Notwithstanding this, the WG concurred that lack of

consensus should not be interpreted as implying equal support for the models and developed pros and cons of the main features of each model to indicate their relative level of support.

## BASE M Constant (M=0.2)

The features that lend support to the assumption of M has remained constant throughout the time series are those features which do not support the M ramp assumption, which is discussed below. The main feature against the assumption of constant M is the presence of a strong retrospective pattern.

## M Ramp

One of the main features supporting the assumption of a recent change in natural mortality is that it employs an M (0.4) which is generally consistent with the results of the 2003 – 2006 Northeast Regional Cod Tagging Program (NRCTP) data and associated analyses (if one assumes a 50% reporting rate of high reward tags). The tagging analysis indicated that M could be as high as 0.6. Tag reporting rates would have to be very low in order to be consistent with an M of 0.2. Another line of support for this assumption is the model fits. The value of the objective function for the M ramp model was lower (by 10 log-likelihood points depending) than that of the constant M model. Further, compared to the constant M model, assuming that M had changed more recently resolves the retrospective pattern.

The final observation supporting a recently elevated M in Gulf of Maine Cod is evidence of increasing M in the adjacent NAFO Div. 4X cod stock, this based on both tagging analyses and assessment model fits.

A number of features don't lend support to a recently increasing M. There is no evidence for increased predation, either by fish or pinnipeds, in the diet compositional data collected by the NEFSC. Regarding the analysis of the NRCTP tagging data, if reporting rates of high reward tags were less than 50%, M would be less than 0.4. It is unfortunate that there are little or no historical tagging studies to which these results could be compared. Besides using different assumptions, these earlier studies did not formally incorporate parameters to estimate movement. For these reasons, the tagging studies which suggested higher (than 0.2) M in 4X may not apply to Georges Bank Cod (SAW 55 WG, 2012a).

Regarding model fits, the likelihood profile of M for the 2004 - 2011 period was relatively flat, with estimates between 0.3 and 0.4 potentially possible. Exploratory runs indicated that M profiling was sensitive to which years to include in the recent period of high M.

The final lines of evidence against a recently elevated M relate to the life history information. Condition, while declining in the spring, is stable in the autumn which does not suggest increased mortality. Maturity at age has increased over the last decade, suggesting a decreasing total mortality. Since fishing mortality over this period has declined, this trend in maturity potentially suggests a constant M. Meta-analyses of life history parameters suggest an M of 0.2 -0.3 with no trend over time.

# Catch Multiplier

One of the features in support of increasing recent catches by 300% is that it resolves the retrospective pattern. Unreported discards may have been substantial prior to 2010 and sector

## management.

One of the features that does not lend support to increased recent catches is the lack of evidence on substantial under-reporting of the landings. Regarding model fits, the value of the objective function is the highest for the Catch Multiplier model, being 29 log-likelihood points higher that of the base formulation.

## Yield per Recruit Analysis

## MRamp Model – YPR

A YPR analysis for the MRamp model used the same input as the Base ASAP except that the average M for the last 5 years was 0.4 instead of 0.2 (Appendix Table B3.1). Results of the YPR analysis are presented in Appendix Table B3.2.

The replacement line analysis indicated that  $F_{40\%}$  may not be an appropriate  $F_{MSY}$  proxy for MRamp model results given that F would have to decrease to as low as  $F_{80\%}(0.07)$  to ensure adequate replacement (Appendix Figure B3.9). This was due to the constraint imposed by Z. As M increases, F must decrease. The WG considered that this  $F_{MSY}$  proxy is likely too low and is inconsistent with commonly used ranges of percent spawner per recruit for BRPs and estimates of SSBmsy/SSB<sub>0</sub> where these can be obtained for specific stocks or from meta-analyses. It noted however, that  $F_{MED}$  and  $F_{MEAN}$  for the 2001 – 2011 stock – recruit data were  $F_{40\%}$  and  $F_{50\%}$  respectively. The WG agreed to adopt the  $F_{50\%}$  (0.29) proxy based upon the need for a more conservative approach when M is assumed to be high.

Non-parametric estimates of MSY and SSB<sub>MSY</sub> based on  $F_{50\%}$  were estimated using the 33-year time series mean recruitment (16,460 million age1 fish), Y/R (0.53) and SSB/R (2.27) (Appendix Table B3.3) as:  $F_{50\%} = 0.29$ , MSY = 8,730 mt, SSB<sub>MSY</sub> = 37,412 mt. *Catmult Model* – *YPR* 

A YPR analysis for the Catmult model would have the same input as the Base ASAP model (Appendix Table B3.1). Results of the YPR analysis are presented in Appendix Table B3.2.

Although the absolute magnitude of SSB and recruitment estimates from the Catmult model has increased compared to the BASE model results, the relative magnitude is essentially the same; the scatterplot of SSB and recruitment look similar. Thus, the analysis of replacement lines under recent productivity indicated similar results to the Base model. About 90% of the years were above the  $F_{40\%}$  replacement line such that  $F_{40\%}$  would be an appropriate  $F_{MSY}$  proxy for this model (Appendix Figure B3.10).

Non-parametric estimates of MSY and SSB<sub>MSY</sub> based on  $F_{40\%}$  were estimated using the 33-year time series mean recruitment (19,095 million age 1 fish), Y/R (1.28) and SSB/R (7.89) (Appendix Table B3.3) as:  $F_{40\%} = 0.18$ , MSY = 150,685 mt, SSB<sub>MSY</sub> = 24,424 mt.

# MSY Biological Reference Points

# MRamp–Long-term Stochastic Projection

Long term stochastic projections were run using the same input data as the YPR for 100 years with  $F_{MSY} = 0.29$ . As described for the Base model, recruitment was estimated from a 2 stage CDF and in this case, with a cut-point of 41,500 mt, with either a CDF of 20 low estimates or a CDF of 13 high estimates of age 1 recruitment. The long term projection provided the following non-parametric biomass reference points (Appendix Table B3.3):

 $F_{50\%} = 0.29$ ,

MSY = 5,740 mt, (80% CI: 4,585 - 6,986) $SSB_{MSY} = 24,596 \text{ mt} (80\% \text{ CI: } 19,559 - 30,043)$ 

#### Catmult Model - Long-term Stochastic Projection

Long term stochastic projections were run using the same input data as the YPR for 100 years with  $F_{MSY} = 0.18$ . In this case, there was no evidence of a breakpoint in the stock – recruitment data and thus WG agreed that the projections sample recruitment from the entire stock – recruit time series. The long term projection provided the following non-parametric biomass reference points (Appendix Table B3.3):

 $F_{40\%}$ = 0.18, MSY = 23,995 mt, (80% CI: 19,352- 29,464) SSB<sub>MSY</sub> = 146,288 mt (80% CI: 118,159 - 179,049)

## Projections

Short term stochastic projections under  $F = 75\%F_{MSY}$  were performed from the MRamp and Catmult model results to estimate landings and SSB during 2013-2015. The input values for mean catch and stock weights, PR, and maturity are the same as described above for the YPR analysis. Recruitment was estimated from the 2-stage CDF described above and associated with a SSB breakpoint of 41,500 mt for MRamp model and for the complete times series of empirical recruitment for the Catmult model . Catch in 2012 was estimated based on year-to-date catch (commercial and recreational landings and discards) and assumed catch for the remainder of the year (pers. comm. Tom Nies, NEFMC).

#### Consequence Analysis

The risks associated with management actions taken during 2013 - 2015 were examined by undertaking stock projections under the competing assumptions of the state of nature. For instance, if the true state of nature is that natural mortality has remained unchanged at 0.2 and that stock productivity is best reflected by the M = 0.2 model, then the consequences of management actions taken by setting projected catch according to 75% F<sub>MSY</sub> based on the two alternative states of nature (M ramp and Catch Multiplier) were examined. Data input is as described above. Since these are short term projections, any longer-term consequences would be revealed through a more extensive analysis. This is beyond the current terms of reference. The column headers in Appendix Tables B3.4 and B3.5 and Appendix Figure B3.11 represent the 'true' states of nature, these being

- Base: M = 0.2 (adjusted for the retrospective pattern)
- Mramp: M ramped from 0.2 to 0.4 during 1990 2002
- Catch Mult: recent catch, since 1995, increased by 300%

The row headers in Appendix Table B3.4 indicate the basis of the management action during the projected period (2013 - 2015). Thus, the row header 'M ramp' indicates that catch was projected assuming that the stock conditions and reference points were as per these dynamics. The cells of the table indicate the SSB and  $F_{full}$  which are a consequence of applying the catch based on the assumed state of nature to the SSB of the 'true' state of nature. The diagonal rows represent the situation in which the management actions based upon the assumed state of nature are in fact correct.

The consequence analysis is summarized in Appendix Figure B3.11. As with Appendix Table B3.4, the column headers indicate the management model or one of the 'true' states of nature. The row headers indicate whether or not catch, SSB or  $F_{full}$  is being displayed along the row. The content of each cell summarizes the consequences of assuming one state of nature when another is true. The black line in each cell indicates the catch, SSB and  $F_{full}$  for the 'true' state of nature. The coloured lines (for the projected period only) indicate the catch, SSB and  $F_{full}$  which result when the 75%  $F_{MSY}$  estimated catch is incorrectly based upon an alternate state of nature. The dashed lines in each figure are the  $B_{MSY}$ ,  $F_{MSY}$  and MSY for the 'true' states of nature. The reference points associated with the 'true' states of nature are indicated in Appendix Table B3.4.

When management actions are correctly based upon a particular state of nature (the diagonals of Appendix Table B3.4), an increase in SSB is projected until 2015 for the three options, this particularly the case for Catch Mult. The 2012 SSB estimates range 18,184 to 43,863 mt across the three options. Fishing at 75%  $F_{MSY}$ , catch increases from 2,910 to 3,265, 4,556 and 3,275 mt for the base, Mramp and catch mult options, respectively. If the management actions are correctly based upon the 'true' state of nature, the base and catch mult models indicate that, in 2013, the stock is in an overfished state (Appendix Table B3.5). In contrast, the MRamp model indicates that the stock would not be in an overfished state in 2013. In all cases, overfishing is not occurring.

In regards to the consequences of mis-specifying the state of nature, there is little impact on the absolute estimate of SSB (but not status), although assuming an M ramp when increased recent catch is true results in less than 'planned' growth in SSB (Appendix Figure B3.11). Assuming an Mramp when either of the other models is true also has significant implications for 2013  $F_{FULL}$  and catch. In each case, catch would be higher than 'planned', resulting in higher than 'planned' catch. The consequences of assuming the base and catch mult models when Mramp is true are relatively modest in absolute terms. However, due to the changes in the reference points, the 2013 status changes depending on the basis of the management action and the state of nature (Appendix Table B3.5).

If the Base model is the true state of nature, assuming increased recent catch when setting catch will result in the same status (overfished but not overfishing) while assuming Mramp when setting catch will result in being overfished and overfishing. If the Mramp is the true state of nature, assuming either of the other options when setting 2013 – 2015 catch will not change status (not overfished and no overfishing). If catch mult is the true state of nature, while status does not change if setting catches is based upon the base option (not overfished and no overfishing), status changes to overfished and overfishing if catch are based upon the M ramp option.

In summary, the base option is the most sensitive of the three to setting 2013 -2015 catch according to the alternate states, while the Mramp option is the least sensitive.

Appendix Table B3.1. Input data for yield-per-recruit and projection analysis computed from 5-year averages of 2007-2011 data.

|     | A  | SAP        |           |        |       |        |            |          |
|-----|----|------------|-----------|--------|-------|--------|------------|----------|
| Age | S  | electivity | selx on M | stk wt |       | catch  | spw stk wt | % mature |
|     | 1  | 0.01       | 1         | (      | ).221 | 0.397  | 0.221      | 0.02     |
|     | 2  | 0.11       | 1         | (      | ).738 | 1.407  | 0.738      | 0.27     |
|     | 3  | 0.51       | 1         |        | 1.750 | 2.219  | 1.750      | 0.85     |
|     | 4  | 0.90       | 1         | 2      | 2.547 | 2.953  | 2.547      | 0.99     |
|     | 5  | 0.99       | 1         | 3      | 3.304 | 3.664  | 3.304      | 1.00     |
|     | 6  | 1.00       | 1         | 2      | 1.043 | 4.482  | 4.043      | 1.00     |
|     | 7  | 1.00       | 1         | 2      | 1.924 | 5.431  | 4.924      | 1.00     |
|     | 8  | 1.00       | 1         | 6      | 6.185 | 6.666  | 6.185      | 1.00     |
|     | 9  | 1.00       | 1         | 7      | 7.487 | 8.375  | 7.487      | 1.00     |
|     | 10 | 1.00       | 1         | 11     | 1.352 | 11.352 | 11.352     | 1.00     |

Appendix Table B3.2. Yield-per-recruit (YPR) analysis results: spawning stock biomass per recruit (SSB/R), total stock weight per recruit (TSB/R), mean age and mean generation time (mn gen) at four fishing mortality rates for the MRamp and CatMult ASAP models.

| MRAMP     |      |      |      |      |          |        |
|-----------|------|------|------|------|----------|--------|
| Reference | F    | YPR  | SSBR | TSBR | mean age | mn gen |
| F zero    | 0.00 | 0.00 | 4.54 | 5.55 | 3.03     | 4.71   |
| F-01      | 0.46 | 0.63 | 1.79 | 2.72 | 2.21     | 3.47   |
| F-Max     | 4.37 | 0.82 | 0.39 | 1.21 | 1.64     | 2.45   |
| F40%      | 0.45 | 0.62 | 1.81 | 2.74 | 2.22     | 3.48   |
| F50%      | 0.29 | 0.53 | 2.27 | 3.22 | 2.37     | 3.73   |

#### CatMult

| Reference | F    | YPR  | SSB/R | TSB/R | mean age | mn gen |
|-----------|------|------|-------|-------|----------|--------|
| F zero    | 0.00 | 0.00 | 19.72 | 21.24 | 5.52     | 7.29   |
| F-01      | 0.18 | 1.28 | 7.81  | 9.14  | 3.54     | 4.98   |
| F-Max     | 0.46 | 1.43 | 3.75  | 4.96  | 2.70     | 3.91   |
| F40%      | 0.18 | 1.28 | 7.89  | 9.22  | 3.55     | 5.00   |

Appendix Table B3.3. Biological reference points based on yield-per-recruit (YPR) analysis and long term projection of  $F_{MSY}$  proxies for the MRamp and Catmult ASAP model results.

| MRAMP                |              |      |      |         |               |         |        |
|----------------------|--------------|------|------|---------|---------------|---------|--------|
| Model                | F40%         | , `  | Y/R  | SSB / I | R Recruitment | SSBmsy  | MSY    |
| YPR -F40%            | 0.45         | 6 0  | .62  | 1.8     | 1 16,460      | 29,867  | 10,212 |
| YPR -F50%            | 0.29         | ) (  | ).53 | 2.2     | 16,460        | 37,412  | 8,730  |
| Projection (CDF >50k | () 13 values | F40% |      |         | 23,904        | 19,579  | 6,717  |
| Projection (CDF >50k | () 13 values | F50% |      |         | 23,904        | 24,596  | 5,740  |
|                      |              |      |      |         |               |         |        |
| CatMult              |              |      |      |         |               |         |        |
| Model                | F40%         | Y/R  | SS   | 6B / R  | Recruitment   | SSBmsy  | MSY    |
| YPR                  | 0.18         | 1.28 |      | 7.89    | 19,095        | 150,685 | 24,424 |
| Projection           | 33 values    |      |      |         | 19,095        | 146,288 | 23,995 |

Appendix Table B3.4. Projection of spawning stock biomass (SSB), fishing mortality (F), and catch during 2013 -2015 of Georges Bank Atlantic cod for F= F75% for each of three 'true' management models (diagonal): BASE, MRamp, and Catch Multiplier, and consequence projections (diagonal) of alternative management actions (off diagonal).

| Hypothesis | Base |         |               | M Ramp |        |         |               | Catch Mult    |         |                   |                  |                           |
|------------|------|---------|---------------|--------|--------|---------|---------------|---------------|---------|-------------------|------------------|---------------------------|
| Catch 2012 |      | 2910 mt |               |        | 2910 m | ıt      |               |               | 8730    |                   |                  |                           |
| SSB MSY    |      | 186,617 |               |        | 24,596 |         |               |               | 146,288 | ;                 |                  |                           |
| MSY        |      | 30,622  |               |        | 5,740  |         |               |               | 23,995  |                   |                  |                           |
| 75% Fmsy   |      | 0.14    |               |        | 0.22   |         |               |               | 0.14    |                   |                  |                           |
|            |      | 10%     | SSB           | 90%    |        | 10%     | SSB           | 90%           |         | 10%               | SSB              | 90%                       |
|            |      | 13.144  | 18.184        | 25.334 | 2012   | 18.042  | 24.173        | 32.331        | 2012    | 31.157            | 43.863           | 60.951                    |
|            |      | 13.904  | 20.174        | 28.551 | 2013   | 18.700  | 25.885        | 35.599        | 2013    | 35.693            | 52.849           | 76.582                    |
|            |      | 15.280  | 21.415        | 29.373 | 2014   | 19.726  | 26.587        | 35.903        | 2014    | 42.147            | 61.534           | 88.070                    |
|            |      | 19.423  | 26.005        | 34.211 | 2015   | 21.426  | 28.375        | 36.886        | 2015    | 52.823            | 76.288           | 105.791                   |
|            |      | 10%     | F             | 90%    |        | 10%     | F             | 90%           |         | 10%               | F                | 90%                       |
|            | se   | 0.12    | 0.17          | 0.25   | 2012   | 0.11    | 0.15          | 0.20          | 2012    | 0.16              | 0.23             | 0.33                      |
|            | Ba   |         | 0.14          |        | 2013   | 80.0    | 0.12          | 0.16          | 2013    | 0.11              | 0.16             | 0.25                      |
|            |      |         | 0.14          |        | 2014   | 0.09    | 0.12          | 0.17          | 2014    | 0.10              | 0.15             | 0.23                      |
|            |      |         | 0.14          |        | 2015   | 0.10    | 0.14          | 0.18          | 2015    | 0.10              | 0.14             | 0.21                      |
|            |      | 10%     | Catch         | 90%    | 0040   | 10%     | Catch         | 90%           | 0040    | 10%               | Catch            | 90%                       |
|            |      | 4 705   | 2.910         | 0.704  | 2012   |         | 2.910         |               | 2012    |                   | 2.910            | x3 in proj.               |
|            |      | 1.795   | 2.594         | 3.704  | 2013   |         | 2.594         |               | 2013    |                   | 2.594            | x3 in proj.               |
|            |      | 1.991   | 2.816         | 3.890  | 2014   |         | 2.816         |               | 2014    |                   | 2.816            | x3 in proj.               |
|            |      | 2.430   | 3.205         | 4.312  | 2015   |         | 3.205         |               | 2015    |                   | 3.205            | x3 in proj.               |
|            |      | 10%     | SSB           | 90%    |        | 10%     | SSB           | 90%           |         | 10%               | SSB              | 90%                       |
|            |      | 13.144  | 18.184        | 25.334 | 2012   | 18.04   | 24.17         | 32.33         | 2012    | 31.157            | 43.863           | 60.951                    |
| uo         |      | 13.371  | 19.806        | 28.386 | 2013   | 18.56   | 25.52         | 34.96         | 2013    | 34.514            | 51.746           | 75.546                    |
| Acti       |      | 12.057  | 19.111        | 28.302 | 2014   | 18.90   | 24.57         | 32.19         | 2014    | 35.219            | 54.617           | 81.162                    |
| nt ∕       |      | 14.000  | 22.134        | 32.409 | 2015   | 20.02   | 25.24         | 31.46         | 2015    | 41.006            | 64.477           | 93.979                    |
| ner        | d    | 10%     | +<br>0.17     | 90%    | 2012   | 10%     | - F           | 90%           | 2012    | 10%               | +<br>0.22        | 90%                       |
| ger        | am   | 0.12    | 0.17          | 0.25   | 2012   | 0.11    | 0.15          | 0.20          | 2012    | 0.10              | 0.23             | 0.33                      |
| na         | R.   | 0.18    | 0.27          | 0.41   | 2013   |         | 0.22          |               | 2013    | 0.21              | 0.31             | 0.49                      |
| Ma         | 2    | 0.17    | 0.20          | 0.44   | 2014   |         | 0.22          |               | 2014    | 0.10              | 0.20             | 0.47                      |
| of         |      | 0.10    | 0.24<br>Cotob | 0.40   | 2015   | 10%     | 0.22<br>Catab | 0.00/         | 2015    | 0.10              | 0.24<br>Catab    | 0.41                      |
| sis        |      | 1070    | 2 010         | 90%    | 2012   | 10%     | 2 010         | 90%           | 2012    | 1076              | 2 010            | 90%<br>v3 in proi         |
| Ba         |      |         | 2.910         |        | 2012   | 3 / 18  | 2.910         | 6 305         | 2012    |                   | 2.910            | x3 in proj.<br>x3 in proj |
|            |      |         | 4 520         |        | 2013   | 3 4 3 3 | 4 520         | 6.001         | 2013    |                   | 4 520            | x3 in proj.               |
|            |      |         | 4.556         |        | 2015   | 3.626   | 4 556         | 5 695         | 2015    |                   | 4 556            | x3 in proj.               |
|            |      | 400/    | 000           | 000/   |        | 400/    | 000           | 000/          |         | 400/              | 000              | 000/                      |
|            |      | 10%     | 55B           | 90%    | 2012   | 10%     | 22B           | 90%           | 2012    | 10%               | 55B              | 90%                       |
|            |      | 13.144  | 18.184        | 25.334 | 2012   | 18.042  | 24.173        | 32.331        | 2012    | 31.157            | 43.803           | 76 292                    |
|            |      | 13.792  | 20.197        | 20.772 | 2013   | 20.040  | 20.944        | 36 220        | 2013    | JO.ZZI            | 53.011<br>62.570 | 70.203<br>85 780          |
|            |      | 19.340  | 21.307        | 36 594 | 2014   | 20.040  | 20.903        | 37 230        | 2014    | 4J.J94<br>58 / 10 | 77 628           | 101 521                   |
|            |      | 10.175  | 20.517<br>F   | 90.094 | 2015   | 10%     | 20.727<br>F   | 97.209<br>90% | 2013    | 10%               | 77.020<br>F      | 90%                       |
|            | luh  | 0.12    | 0 17          | 0.25   | 2012   | 0 11    | 0 15          | 0.20          | 2012    | 0.16              | 0.23             | 0.33                      |
|            | ЧЧ   | 0.09    | 0.13          | 0.20   | 2013   | 0.07    | 0.10          | 0.20          | 2013    | 0.10              | 0.14             | 0.00                      |
|            | atc  | 0.09    | 0.13          | 0.20   | 2014   | 0.08    | 0.12          | 0.16          | 2014    |                   | 0.14             |                           |
|            | ö    | 0.10    | 0.14          | 0.21   | 2015   | 0.10    | 0.13          | 0.18          | 2015    |                   | 0.14             |                           |
|            |      | 10%     | Catch         | 90%    |        | 10%     | Catch         | 90%           | _2.0    | 10%               | Catch            | 90%                       |
|            |      |         | 2.910         |        | 2012   |         | 2.910         |               | 2012    |                   | 2.910            |                           |
|            |      |         | 2.244         |        | 2013   |         | 2.244         |               | 2013    | 1.530             | 2.244            | 3.238                     |
|            |      |         | 2.692         |        | 2014   |         | 2.692         |               | 2014    | 1.930             | 2.692            | 3.738                     |
|            |      |         | 3.275         |        | 2015   |         | 3.275         |               | 2015    | 2.468             | 3.275            | 4.292                     |

Appendix Table B3.5. Status of 2013 spawning stock biomass and fishing mortality of Georges Bank cod evaluated under a management action relative to a management model assumed to be the 'true' state of the population.





Appendix Figure B3.1. Profile of M values from 0.1 - 0.8 evaluted by objective function in ASAP, 1978-2011.



Appendix Figure B3.2. Profile of M values from 0.1 - 0.9 evaluted by objective function in ASAP, 1978-2002.



Appendix Figure B3.3. Profile of M values from 0.2 – 0.6 evaluted by objective function in ASAP, 2003-2011.













Appendix Figure B3.5. Retropsective analysis of MRamp ASAP model for spawning stock biomass (rho=0.053) and fishing mortality (rho=0.088).





Appendix Figure B3.6. Profile of catch multipliers evaluated by the retropsective bias measured by rho value.







Appendix Figure B3.7. Spawning stock biomass, fishing mortality and recruitment (age 1) from BASE and Catch multipler (3x) ASAP model runs





Appendix Figure B3.8. Retropsective analysis of Catch multipler (3X) ASAP model for spawning stock biomass (rho=0.053) and fishing mortality (rho=0.075).



Appendix Figure B3.9. Replacement lines using recent productivity from the MRamp ASAP model results for a range of fishing mortalities for Georges Bank Atlantic cod, 1978-2011.



**Replacement Lines Using Recent Productivity** 

Appendix Figure B3.10. Replacement lines using recent productivity from the CatMult ASAP model results for a range of fishing mortalities for Georges Bank Atlantic cod, 1978-2011.



Appendix Figure B3.11. Trends in SSB (top row), fully recruited fishing mortality (middle row) and catch (bottom row) during 2000 – 2015 for Georges Bank cod with projected SSB, F, and catch, for three management models under catch from two alternative management actions (see Appendix Table B3.4) during 2013-2015. Correctly specified (black) and mis-specified (red: BASE ASAP, blue: MRamp, green: Catch Multiplier. MSY – based reference points indicated in dashed line on each plot.

#### Clearance

All manuscripts submitted for issuance as CRDs must have cleared the NEFSC's manuscript/abstract/ webpage review process. If any author is not a federal employee, he/she will be required to sign an "NEFSC Release-of-Copyright Form." If your manuscript includes material from another work which has been copyrighted, then you will need to work with the NEFSC's Editorial Office to arrange for permission to use that material by securing release signatures on the "NEFSC Use-of-Copyrighted-Work Permission Form."

For more information, NEFSC authors should see the NEFSC's online publication policy manual, "Manuscript/abstract/webpage preparation, review, and dissemination: NEFSC author's guide to policy, process, and procedure," located in the Publications/Manuscript Review section of the NEFSC intranet page.

#### Organization

Manuscripts must have an abstract and table of contents, and (if applicable) lists of figures and tables. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area" and/or "Experimental Apparatus," "Methods," "Results," "Discussion," "Conclusions," "Acknowledgments," and "Literature/References Cited."

#### **Style**

The CRD series is obligated to conform with the style contained in the current edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. The CRD series relies more on the CSE Style Manual. Manuscripts should be prepared to conform with these style manuals.

The CRD series uses the American Fisheries Society's guides to names of fishes, mollusks, and decapod

crustaceans, the Society for Marine Mammalogy's guide to names of marine mammals, the Biosciences Information Service's guide to serial title abbreviations, and the ISO's (International Standardization Organization) guide to statistical terms.

For in-text citation, use the name-date system. A special effort should be made to ensure that all necessary bibliographic information is included in the list of cited works. Personal communications must include date, full name, and full mailing address of the contact.

#### Preparation

Once your document has cleared the review process, the Editorial Office will contact you with publication needs – for example, revised text (if necessary) and separate digital figures and tables if they are embedded in the document. Materials may be submitted to the Editorial Office as files on zip disks or CDs, email attachments, or intranet downloads. Text files should be in Microsoft Word, tables may be in Word or Excel, and graphics files may be in a variety of formats (JPG, GIF, Excel, PowerPoint, etc.).

# **Production and Distribution**

The Editorial Office will perform a copy-edit of the document and may request further revisions. The Editorial Office will develop the inside and outside front covers, the inside and outside back covers, and the title and bibliographic control pages of the document.

Once both the PDF (print) and Web versions of the CRD are ready, the Editorial Office will contact you to review both versions and submit corrections or changes before the document is posted online.

A number of organizations and individuals in the Northeast Region will be notified by e-mail of the availability of the document online. Research Communications Branch Northeast Fisheries Science Center National Marine Fisheries Service, NOAA 166 Water St. Woods Hole, MA 02543-1026

## MEDIA MAIL

# Publications and Reports of the Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "conducting ecosystem-based research and assessments of living marine resources, with a focus on the Northeast Shelf, to promote the recovery and long-term sustainability of these resources and to generate social and economic opportunities and benefits from their use." Results of NEFSC research are largely reported in primary scientific media (*e.g.*, anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Currently, there are three such media:

*NOAA Technical Memorandum NMFS-NE* -- This series is issued irregularly. The series typically includes: data reports of long-term field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

*Northeast Fisheries Science Center Reference Document* -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review and most issues receive copy editing.

*Resource Survey Report* (formerly *Fishermen's Report*) -- This information report is a regularly-issued, quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. This report undergoes internal review, but receives no technical or copy editing.

**TO OBTAIN A COPY** of a *NOAA Technical Memorandum NMFS-NE* or a *Northeast Fisheries Science Center Reference Document*, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2350) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc.noaa.gov/nefsc/publications/). To access *Resource Survey Report*, consult the Ecosystem Surveys Branch webpage (http://www.nefsc.noaa.gov/femad/ecosurvey/mainpage/).

ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSE-MENT.